40
Institut für Angewandte Physik LINAC AG MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 1 MYRRHA Injector Design Horst Klein Dominik Mäder, Holger Podlech, Ulrich Ratzinger, Alwin Schempp, Rudolf Tiede, Markus Vossberg, Chuan Zhang Institute for Applied Physics, Goethe-University Frankfurt am Main

MYRRHA Injector Design - Institut national de physique

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Institut für Angewandte Physik

LINAC AG

MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 1

MYRRHA Injector Design

Horst Klein

Dominik Mäder, Holger Podlech, Ulrich Ratzinger,

Alwin Schempp, Rudolf Tiede, Markus Vossberg, Chuan Zhang

Institute for Applied Physics, Goethe-University Frankfurt am Main

Institut für Angewandte Physik

LINAC AG

MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 2

Driver Linac Layout

Institut für Angewandte Physik

LINAC AG

MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 3

Injector Part

C. Zhang, H. Klein, H. Podlech et al., LINAC 2012, THPB005

0.03 MeV

Institut für Angewandte Physik

LINAC AG

MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 4

ECR Ion Source

• Pantechnik Monogan M-1000

• 20 mA capable

• 45 kV capable

• emittance measurement

(Allison scanner) included

• delivery and installation I-2013

εrms: 0.1 - 0.15 π mm mrad

(requested)

Courtesy of D. Vandeplassche

Institut für Angewandte Physik

LINAC AG

MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 5

LEBT Design & Space-Charge Compensation

0.12 T 0.15 T

Ltotal=2.3m

Courtesy of

J.-L. Biarrotte

Institut für Angewandte Physik

LINAC AG

MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 6

LEBT Beam Dynamics

Courtesy of J.-L. Biarrotte

Institut für Angewandte Physik

LINAC AG

MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 7

Injector Part

300kW 41kW 47kW ∑=388kW

94kW 16kW 20kW ∑=130kW

ε=0.2 0.22 0.27π mm mrad

C. Zhang, H. Klein, H. Podlech et al., LINAC 2012, THPB005

0.03 MeV

Institut für Angewandte Physik

LINAC AG

MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 8

4-Vane Structure vs. 4-Rod Structure

Mini Vanes

Institut für Angewandte Physik

LINAC AG

MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 9

RFQ Rp Values vs. Frequency

Rp~ f -1.5

Plot source: MAX_Deliverable_2.1.

The value for the IFMIF-EVEDA RFQ was kindly provided by Dr. A. Pisent.

Institut für Angewandte Physik

LINAC AG

MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 10

CH-DTL Shunt Impedance

Zeff ~ β -1

Institut für Angewandte Physik

LINAC AG

MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 11

Why change the frequency from 352MHz

(EUROTRANS) to 176MHz (MAX)?

For all RFQs: the value of Rp=U2/P is increasing by a factor of ~2.5.

Nevertheless the best choice for f≥300MHz is the 4-vane RFQ. The

low frequencies allow the use of the simple 4-rod RFQ, which has

some advantages: the chain of /4 resonators are strongly coupled,

resulting in a stable longitudinal field, so for example only 2 plungers

are needed for a 4m long RFQ. The outer conductor plays a small

role, so it can have a lid, which allows a direct access to the

electrodes for mounting and repair, increasing the reliability and

availability. It has a compact size, low weight, is relatively easy to

manufacture at low cost. And it can be built in a rather short time. Its

application allows to reduce the injection energy into the CH-linac to

1.5MeV, which reduces the overall power consumption considerably.

Institut für Angewandte Physik

LINAC AG

MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 12

Parameter EUROTRANS MAX SARAF (H+)

f [MHz] 352 176 176

I [mA] 5 5 5

Win / Wout [MeV] 0,05 / 3 0,03 / 1.5 0,02 / 1.5

U [kV] 65 40 32,5

Es, max / Ek 1,1 1 0,8

amin [mm] 2,3 2,9 2,7

mmax 1,8 2,3 2,7

gmin [mm] 2,6 3,6 3,7

εint., n., rms [π mm‐mrad] 0,2 0,2 0,175

εoutt., n., rms [π mm‐mrad] 0,21 / 0,20 0,22 / 0,22 0,19 / 0,19

εoutl., rms [π keV‐deg] 109 64,6 36

L [m] 4,3 4 3,8

T [%] ~100 ~100 95,5

T10mA [%] ~100 ~100 92,3

Rp [kΩm] 61 (MWS) 67 (after SARAF) 67 (meas.)

Pc [kW] 300 (MWS, +20%) 94 60

RFQ parameters for EUROTRANS & MAX

See Chuan Zhang’s

talk for more details

Exp.: 85% @1mA

65% @4mA

Institut für Angewandte Physik

LINAC AG

MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 13

Several improvements of the RFQ were necessary to

fulfill the MYRRHA requirements (CW operation,

high reliability and availability)

Complete new design of the RFQ structure (e.g. outer conductor,

stems inserted from bottom) by A. Schempp, Lit.: Overview of Recent

RFQ Projects, Proc. LINAC08, MO302, p.41-43. Together with A.

Bechtold (NTG): New methods for production of stems and

electrodes, higher precision (~15m), an improved cooling system,

new techniques for production of cooling channels (milling and

galvanic copper plating, new rf contacts at the tuning plates, better

alignment).

Institut für Angewandte Physik

LINAC AG

MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 14

SARAF RFQ

Institut für Angewandte Physik

LINAC AG

MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 15

E-Field and H-Field simulation with MWS

Institut für Angewandte Physik

LINAC AG

MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 16

RFQ Test Section

Length [mm] 532 (432)

Stem distance [mm] 97

Electrodelength [mm] 342

Beam axis [mm] 145

Frequency [MHz] 176

Quality factor 4900

Tuner (diameter) [mm] 40

45 mm 40 mm 30 mm

Institut für Angewandte Physik

LINAC AG

MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 17

Surface Current

Power: 25 kW/m (design)

Power Test RFQ: 12 kW

Thermal losses: 8 kW

(simulated)

Institut für Angewandte Physik

LINAC AG

MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 18

Stems with the new coolingsystem design (NTG)

Because of the thermal

losses, a very good

water cooling system is

required to hold the

frequency steady during

cw-operation.The new

cooling system of the

stem is split into two

paths. Booth sides of

the stems are well

cooled. In addition the

stems have a channel

for the electrode

cooling.

Institut für Angewandte Physik

LINAC AG

MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 19

Electrodes with the new coolingsystem design (NTG)

Institut für Angewandte Physik

LINAC AG

MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 20

Silverplated Tuningplates

Institut für Angewandte Physik

LINAC AG

MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 21

Flow rate measurement (stems)

y = -0.0025x2 + 0.055x + 0.0344

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 2 4 6 8

Flo

w r

ate

[l/sec]

Pressure [bar]

Flow rate [l/sec]

Poly. (Flow rate [l/sec])

Reynolds Number

4700

8100

11400

16100

18800

19400

20800

Pressure[bar] Flow rate [l/sec] Water speed [m/s]

0,8 0,07 1,04

1,6 0,12 1,73

2,9 0,17 2,48

4,9 0,24 3,45

6,2 0,28 3,96

6,9 0,29 4,20

7,6 0,31 4,40

Institut für Angewandte Physik

LINAC AG

MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 22

Expansion measurement

accuracy 10 m

T [°C] x [mm]} y [mm] z [mm]

T ΔT x1 x2 Δx Δy1 Δy2 z1 z2 Δz

20,7 0 95,54 205,52 109,98 - - 181,11 156,17 24,94

30 9,3 95,52 205,52 0,02 0,01 0,01 181,11 156,16 0,01

40 19,3 95,52 205,54 0,04 0,02 0,02 181,13 156,18 0,01

50 29,3 95,52 205,55 0,05 0,04 0,03 181,15 156,19 0,02 Expansioncoefficient [mm/°C*m]

1,7*10-5 0,5*10-5 3,0*10-5 Lit: 1,6*10-5

Institut für Angewandte Physik

LINAC AG

MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 23

Pressure [bar] Coolingwater in [°C] Coolingwater out [°C] Copper Temperature [°C] Thermal bath [°C]

1,7 19 21,5 27,6 70

3 19 20,65 26 70

5,2 19 20,2 24,5 70

6,5 19 20 23,8 70

7,6 18,7 19,65 23,5 70

Thermal measurement

dm/dt [l/sec]] c [J/(kg*K]] DT [°C] P [W]

0,12 4182 2,5 1261

0,17 4182 1,65 1220

0,25 4182 1,2 1268

0,28 4182 1 1197

0,30 4182 0,95 1223

Power losses for a single Stem: 1350 W

→ DTK = 1,05 °C (for 7,6 bar)

Institut für Angewandte Physik

LINAC AG

MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 24

Thermal measurements on a single stem

Different temperatures during the measurement. The stem was cooled down to nearly

water temperature after 30 seconds with a water flow rate of only 0.08 l/s at a water

pressure of 1 bar.

Institut für Angewandte Physik

LINAC AG

MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 25

Thermal simulation with cooling (25 kW/m)

Institut für Angewandte Physik

LINAC AG

MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 26

Institut für Angewandte Physik

LINAC AG

MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 27

Institut für Angewandte Physik

LINAC AG

MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 28

Institut für Angewandte Physik

LINAC AG

MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 29

Institut für Angewandte Physik

LINAC AG

MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 30

Institut für Angewandte Physik

LINAC AG

MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 31

Institut für Angewandte Physik

LINAC AG

MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 32

Institut für Angewandte Physik

LINAC AG

MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 33

Injector Part

300kW 41kW 47kW ∑=388kW

94kW 16kW 20kW ∑=130kW

ε=0.2 0.22 0.27π mm mrad

C. Zhang, H. Klein, H. Podlech et al., LINAC 2012, THPB005

0.03 MeV

Institut für Angewandte Physik

LINAC AG

MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 34

CH-DTL parameters for EUROTRANS & MAX

EUROTRANS MAX

Veff Lcell ßavg Ea Veff Lcell ßavg Ea

[MV] [m] [MV/m] [MV] [m] [MV/m]

RB1 0.19 0.07 0.08 2.79 0.15 0.10 0.06 1.56

RT1 1.16 0.40 0.09 2.91 1.03 0.54 0.06 1.92

RT2 1.30 0.50 0.10 2.59 1.14 0.66 0.08 1.74

RB2 0.47 0.09 0.10 5.23 0.53 0.36 0.09 1.44

SC1 2.54 0.63 0.11 4.00 3.50 0.86 0.10 4.06

SC2 3.22 0.81 0.14 3.99 3.98 0.99 0.13 4.00

SC3 3.74 0.94 0.16 3.99 4.18 1.07 0.16 3.91

SC4 3.76 1.05 0.18 3.57 4.09 1.07 0.18 3.83

See Holger Podlech’s talk for more details

Institut für Angewandte Physik

LINAC AG

MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 35

Transverse Beam Envelopes along the CH-DTL

C. Zhang, H. Klein, H. Podlech et al., LINAC 2012, THPB005

See Chuan Zhang’s

talk for more details

Institut für Angewandte Physik

LINAC AG

MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 36

Room Temperature CH-Cavities

Prototype cavity presently under

construction

RF test up to 40 kW/m

Parameter CH-1 CH-2 Unit

Frequency 176 176 MHz

Duty factor 100 100 %

Zeff 113 100 MW/m

Ueff 1.03 1.14 MV

Pc 16.5 18.5 kW

CH-1

Institut für Angewandte Physik

LINAC AG

MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 37

Test Results SC CH-Prototype

MYRRHA

Institut für Angewandte Physik

LINAC AG

MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 38

CH3

CH4 CH5 CH6

sc CH-Cavities Parameter Unit SC-CH-1 SC-CH-2 SC-CH-3 SC-CH-4

Frequency MHz 176.1 176.1 176.1 176.1

Gap number --- 10 9 8 7

Aperture Diam. mm 30 30 40 40

Average b --- 0.102 0.131 0.157 0.178

Ltot mm 916 1060 1129 1127

Ea MV/m 3.88 3.71 3.59 3.47

Ua MV 3.55 3.93 4.05 3.91

Institut für Angewandte Physik

LINAC AG

MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 39

Bellow Tuner Static Tuners

Helium Vessel Coupler Flanges

325 MHz CH-Cavity

Institut für Angewandte Physik

LINAC AG

MYRRHA Accelerator 1st International Design Review, Nov. 12-13, 2012 40

Parameter Unit CH-1

Beta 0.059

Frequency MHz 216.816

Gap number 15

Total length mm 687

Cavity diameter mm 409

Cell length mm 40.82

Aperture mm 20

Ua MV 3.369

Energy gain MeV 2.97

Accelerating gradient MV/ m 5.1

Ep/ Ea 6.4

Bp/ Ea mT/ (MV/m) 5.4

R/ Q Ω 3320

Static tuner 9

Dynamic bellow tuner 3

Main parameters of the 217 MHz CH-structure

Construction has started

3D-view of the 217 MHz cavity with helium vessel, without tuners

Helium vessel

Coupler flange Pickup flange

Inclined

end stem

Tuner flange

Preparation

flange

217 MHz CH-Cavity