21
1 Multiscale Simulation of Thin-Film Epitaxy Kristen A. Fichthorn Departments of Chemical Engineering and Physics The Pennsylvania State University University Park, PA 16802 USA What (Generally) Happens in Thin- Film Epitaxy Deposition Aggregation Nucleation Terrace Diffusion Edge Diffusion

Multiscale Simulation of Thin-Film Epitaxy · Multiscale Simulation of Thin-Film Epitaxy ... from First Principles Continuum Equations for Fluid Flow, Heat Transfer, ... 6 KMC Transition

  • Upload
    dinhanh

  • View
    218

  • Download
    0

Embed Size (px)

Citation preview

  • 1

    Multiscale Simulation of Thin-Film Epitaxy

    Kristen A. FichthornDepartments of Chemical Engineering and Physics

    The Pennsylvania State UniversityUniversity Park, PA 16802

    USA

    What (Generally) Happens in Thin-Film Epitaxy

    Deposition

    Aggregation

    Nucleation

    Terrace Diffusion

    Edge Diffusion

  • 2

    Assembly at Surfaces

    Non-Equilibrium Kinetics + Interactions =

    .And More!!!

    Ag/ 2 ML Ag / Pt(111)H. Brune et al., Nature

    394, 451 (1998).

    Al / Al(110)F. Bautier de Mongeot et al.,

    PRL 91, 016102 (2003).InAs/GaAs(001)M. Xu et al., Surf. Sci.

    580, 30 (2005).

    Thin-Film Growthe.g. fcc(110) homoepitaxy

    Also Crystal Growth,Catalysis at Surfaces and More

    Surface Phenomena Involve MultipleLength and Time Scales

    K. Fichthorn and M. Scheffler,Nature 429, 617 (2004).

    Atoms Hopping (, ps)

    Hut Formation(nm, min)

    Hut Organization(m, min)

    Bautier de Mongeot et al., Phys. Rev. Lett. 91,016102 (2003).

  • 3

    Theoretical Techniques that Span theLength and Time Scales in Thin Film Growth:A Challenge is to Link Them!

    Continuum Equations

    Kinetic Monte Carlo(KMC)

    Molecular Dynamics

    Time (s)10-15 10-12 10-9 10-6

    Leng

    th (m

    )

    10-6

    10-8

    10-11

    ab initio(AIMD) semi-empirical

    (MD)

    A Practical Goal: Reactor Designfrom First Principles

    Continuum Equations forFluid Flow, Heat Transfer,Mass Transfer, Kinetics ina Rotating Disk Reactor (m,h)

    Kinetic Monte CarloSimulation of Growthof GaAs(001) (nm, s)

    Charge-Density Contoursfor GaAs(001) fromDensity-FunctionalTheory ()

    Example: Growth of GaAs Thin Films

    Transition-State Theory

    Kratzer and Scheffler, Comp. Sci. Eng. 2001.

  • 4

    Kinetic Monte Carlo Simulations

    Deposition, F

    Aggregation

    Nucleation

    Terrace Diffusion, D

    Edge Diffusion

    K. Fichthorn et al., Appl. Phys. A 75, 17 (2002).

    Kinetic Monte Carlo: Coarse-Graining MD

    Rare Events: =

    )/)(exp()/)(exp()(

    2 TBkVTBkV

    TSTvk

    RRRR

    MD of Co on Cu(001):The Whole Trajectory

    KMC: Coarse-GrainedHops

    TSTkt 1=

    Rotate

  • 5

    Kinetic Monte Carlo as an AccurateSolution to the Master Equation

    )'(

    ),(

    ),'()'(),()'(),(''

    xxW

    txP

    txPxxWtxPxxWdt

    txdPrr

    rr

    r

    rrrrrrr

    rr

    +=

    : Probability to be at State at Time txr

    : Transition Probability per Unit Timefrom to 'x

    rxr

    xr 'xr

    Kinetic Monte Carlo as a More AccurateSolution to the Master Equation

    )(

    ),(

    ),()(),()(),(

    xxW

    txP

    txPxxWtxPxxWdt

    txdP

    xx

    +=

    rr

    r

    rrrrrrr

    rr

    Detailed-Balance Criterion

    : Probability to be at State at Time txr

    xr: Transition Probability per Unit Time

    from to (e.g., TST rate)xr

    [ ]TkAxxWxxW

    txPxxWtxPxxW

    B

    eqeq

    /exp)()(

    ),()(),()(

    =

    =

    rr

    rr

    rrrrrr

    KMC Transition Probabilities areAlso Based on a Kinetic Model

  • 6

    KMC Transition Probabilities and theDetailed-Balance Criterion

    [ ]TkAxxWxxW

    B/ exp)()( =

    rr

    rr

    Metropolis MC Satisfies DetailedBalance, but not Kinetics

    >

    =

    if

    TBkE

    if

    EEife

    EEiffiW

    1)(

    /

    Ene

    rgy

    E *

    EiEf

    Eifb

    TST Satisfies DetailedBalance and Kinetics

    W(if) = 0 exp( Ebif /kBT )

    KMC Simulates a Poisson ProcessEvents Can Happen AnyTime with an Equal Probability per Unit Time r

    How Long Must We Wait?

    rt

    retWnPrrnP

    rt

    n

    /1

    )()()1()(

    0

    =

    =

    =

    Adsorbate Hopping isA Poisson Process

    J. Raut and K. Fichthorn, J. Chem. Phys. 103, 8694 (1995).

    t = n

    31 2

  • 7

    Multiple Independent Poisson Processes:One Big Poisson Process

    == i

    iRt rRtW ;Re)(

    t0,A t1,A

    t0,B t1,B

    +

    =t1t0

    A

    B

    AA r

    t 1=

    BB r

    t 1=

    BABA rr

    t+

    =+1

    BA

    B

    BA

    Arr

    rBP

    rrr

    AP+

    =+

    = )(;)(

    A Generic KMC Algorithm

    Initialize LatticeFinished

    ?

    Identify All Processesand Rates Ri

    Do Process , Increment Time

    ( )10

    )ln(R1

    i

    K

    =

    u

    ut

    i

    YesNo

    Choose a Process

    =

    i

    RP

    iR)(

    0 1=

    1)(

    iiP

    =

    1

    1)(

    iiP

    K. Fichthorn and W. Weinberg, J. Chem. Phys. 95, 1090 (1991).

  • 8

    KMC of Langmuir Adsorption / Desorption

    Initialize Lattice,N Sites

    Finished?

    Count of VacantSites, V

    YesNo

    Choose Adsorption with

    DA

    AA rVNVr

    VrP)( +

    =

    AD PP =1

    Choose Desorption with

    PA PD

    Find a Site, Do Process, Increment Time

    ( )10

    )ln()(

    1

    K+

    =

    u

    urVNVr

    tDA

    NVN )(

    =0 1

    rDrA

    Application of KMC to LangmuirAdsorption / Desorption

    ( )( )[ ]

    1-1- s 2;s 1

    exp1)(

    0)0(;)1(

    ==

    ++

    =

    ==

    DA

    DADA

    A

    DA

    rr

    trrrr

    rt

    rrdtd

    rDrA

    K. Fichthorn and W.H. Weinberg,J. Chem. Phys. 95, 1090 (1991).

  • 9

    Rates from Transition-State Theory (TST)

    )/exp(

    0

    *

    0

    )/)(exp(

    )/)(exp(*)(,

    TkEqq

    k

    BA

    TkV

    TkV

    BATSTA B

    A B

    =

    =

    R

    RRRR*

    A

    B

    Nudged Elastic Band Method: Henkelman and JonssonRidge Method: Ionova and CarterDimer Method: Henkelman and JonssonStep and Slide Method: Miron and FichthornString Method: E, Ren, Vanden-Eijnden

    TST Search Methods

    MD Naturally Gives TST Rates, but its SLOW

    )/exp( 073

    1

    *

    63

    1 TkEv

    vk BN

    jj

    N

    jj

    TST

    =

    =

    =Potential-Energy Minima

    Saddle Point

    Harmonic Transition-State TheoryG. Henkelman, G. Jhannesson, and H. Jnsson,in Progress on Theoretical Chemistry and Physics,(Kluwer Academic Publishers, 2000).

  • 10

    [ ] [ ]

    02

    021

    1)(;0

    MEP AlongGradient

    )(

    Gradient

    )(

    RRRRu

    uuRRuuRR

    =

    == iiii U

    dtd

    iiiUiU 44 344 2143421

    The Minimum-Energy Path(AKA The Reaction Coordinate)

    ui = unit vector pointingalong the path at i

    Elber and Co-Workers

    R3

    R2R1

    R0

    The Nudged Elastic Band (NEB) Method

    [ ]{

    ( ) i1iii1isi

    si

    k

    0iiiUiU

    uRRRRF

    FuuRR

    =

    =+

    +

    ==Images)t Equidistanfor 0(Path Along Force Spring0) (Path toOrthogonal Force

    )()(4444 34444 21

    Springs Keep ImagesDistributed On the Path

    ( ) siiiii Udtd FuuR += 1

    H. Jnsson, G. Mills, K. W. Jacobsen, in Classical and Quantum Dynamics inCondensed Phase Simulations, Ed.B. J. Berne, G. Ciccotti and D. F. Coker (World Scientific, 1998)

  • 11

    Hopping of Al on Al(110): The NEB Method in First-Principles DFT (VASP)

    In-Channel Cross-Channel

    E = 0.47 eV E = 0.71 eV

    In-Channel Cross-Channel

    Exchange of Al on Al(110): The NEB Method in First-Principles DFT (VASP)

    E = 0.39 E = 0.38

  • 12

    Rates from Transition-State Theory (TST)

    )/exp(

    0

    *

    0

    )/)(exp(

    )/)(exp(*)(,

    TkEqq

    k

    BA

    TkV

    TkV

    BATSTA B

    A B

    =

    =

    R

    RRRR*

    A

    B

    Accelerate MD to Find andSimulate Rare Events!!

    MD Naturally Gives TST Rates, but its SLOW

    HyperdynamicsParallel Replica DynamicsTemperature-Accelerated Dynamics

    Art Voter

    =A

    TBkVA

    TBkV

    BATSTkB

    )/)(exp(

    )/)(exp(*)(

    , R

    RRR

    Accelerated Molecular Dynamics(Hyperdynamics)

    A. Voter, J. Chem.Phys. 106, 11 (1997).

    Detailed Balance!

    V (R)

    **

    ABC

    **

    BA

    C

    -V (R) -V (R)

    -V (R) -V (R)

    =

    =

    =

    )/exp(/)(/)/exp()/exp(/)/exp()(

    )(exp)(

    )(/)/)(exp()()(/)/)(exp()()(

    *

    *

    TkWTkTkTkk

    TkVW

    WTkVWWTkVWk

    BB

    BBBTST

    B

    B

    BBTST

    RRR

    RR

    RRRRRRRR

  • 13

    Accelerated Molecular Dynamics(Hyperdynamics) A. Voter, J. Chem. Phys. 106, 11 (1997).

    Detailed Balance!

    ABC

    **

    kTST,AC / 1/W(R)A

    =

    =

    =

    CATST

    BATST

    CATST

    BATST

    kk

    k

    k

    ,

    ,

    ,

    , kTST,AB / 1/W(R)A

    kTST,ABkTST,AC

    MD Time: tMD= Nt

    AMD Time: ( )==

    =

    =N

    ii

    N

    i i

    kTVtRWtt

    11

    /exp)(

    =

    kTVexpBoost

    Accelerated Molecular DynamicsThe Bond Boost Method

    R. Miron & K. Fichthorn, J. Chem. Phys. 119, 6210 (2003)

    EmpiricalThreshold

  • 14

    Accelerated Molecular DynamicsDetails of the Bond Boost Method

    Channels the Boost intothe Bond thats Readyto Break

    Overview of the Bond Boost MethodR. Miron & K. Fichthorn, J. Chem. Phys. 119, 6210 (2003)

  • 15

    Diffusion on Cu(100): Elementary Processes

    Adatom Hop

    Vacancy HopDimer Hop

    Dimer ExchangeAdatom Exchange

    R. Miron & K. Fichthorn,J. Chem. Phys. 119, 6210(2003)

    The Bond-Boost Method: Diffusion on Cu(100)R. Miron & K. Fichthorn,J. Chem. Phys. 119, 6210(2003)

  • 16

    Boost = Physical Time / Simulation Time

    exp

    =

    TkVBoost

    B

    The Bond-Boost Method: Diffusion on Cu(100)

    log 10(Boost)

    (kBT)-1 (eV-1)

    V(R)

    R. Miron & K. Fichthorn,J. Chem. Phys. 119, 6210 (2003)

    Accelerated AIMD (VASP): Diffusion on Al/Al(110)

    Climbing-ImageNudged ElasticBand Method

    AcceleratedAIMD

    vs.

    The Winner!!

    EB = 0.38 eV EB = 0.33 eV

  • 17

    The Boost in ab initio MD

    73 ns

    Co/Cu Heteroepitaxy

    Promising for spintronic recording media

    1 ML of Co on Cu(001) Pentcheva and Scheffler, Phys. Rev. B 60 (2000).

    Interesting heteroepitaxial growth modes

  • 18

    ab initio KMC of Submonolayer Co/Cu(001)Heteroepitaxy

    R. Pentcheva, K. Fichthorn, M. Scheffler,et al., PRL 90, 076101 (2003).

    Experiment

    Co Grows on Top of Cu

    Co Trapped at Exchanged Co

    Co, Cu Escape from Exchanged Co

    Spin-Polarized, FP-LAPW DFTFor Energy Barriers..

    Hopping / Exchangeof Co & Cu Adatoms

    Cu Hopping Awayfrom Exchanged Co

    Co Hopping Awayfrom Exchanged Co

    Tight Binding Potential

    R. Miron and K. Fichthorn, Phys. Rev. B. 72, 115433 (2005).

    Based on potential by Levanov et al.,Phys. Rev. B 61 (2000).

    Levanov Miron Levanov Miron

  • 19

    Thin Film Growth at 250 K, F = 0.1 ML/s

    Note ClusterMobility

    R. Miron and K. Fichthorn, PRL 93, 138201 (2004).PRB 72, 115433 (2005).

    R. Miron, K. Fichthorn,Phys. Rev. Lett. 93, 2004.

    Accelerated MD SimulationOf Cluster Diffusion

    Static Barriers Agreewith MD Values

  • 20

    State-Bridging Accelerated MD of Co/Cu(001)Heteroepitaxy: T = 250 K, F = 0.1 ML/s, = 0.54 ML

    Mechanism of BilayerIsland Formation

    MD Simulations were run for 5.4 s

    When an atom is pulled up, it stays there!

    Co/Cu(001): Bilayer FormationMechanisms

  • 21

    ConclusionsSurface Phenomena are Complex, Interesting, and Multiscale

    KMC Coarse-Grains MD, SimulatesExperiments

    TST Searches Can Characterize RateProcesses (e.g., NEB method)

    Accelerated MD Finds Rate Processes,Simulates Experiments

    Theres Room for New Developments!