23
1 1 Multiple Valued Logic - MVL Olivier Sentieys Juin 2001 2 What is MVL? Currently, computers and other electronic devices run as 101101… binary logic with 2 logical states: 0, 1 Multivalued logic offers many logical states: 0, 1, 2, 3, 4,5 … and more complex functions in less time and space than binary applications Until the SUS-LOC technology was developed, MVL was impractical or unachievable through conventional means, and drew only theoreticians and researchers looking for the key to making it usable SUS-LOC was invented in the 1990’s by Dan Olson and is proving to be the long sought solution

Multiple Valued Logic - MVL 2001.pdf · a source of power to an output terminal of a circuit, per output logic level fiOnly one controllable path, or branch, conducts from a source

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Multiple Valued Logic - MVL 2001.pdf · a source of power to an output terminal of a circuit, per output logic level fiOnly one controllable path, or branch, conducts from a source

1

1

Multiple Valued Logic - MVL

Olivier SentieysJuin 2001

2

What is MVL?® Currently, computers and other electronic devices run

as 101101… binary logic with 2 logical states: 0, 1

® Multivalued logic offers many logical states: 0, 1, 2, 3,4,5 … and more complex functions in less time andspace than binary applications

® Until the SUS-LOC technology was developed, MVLwas impractical or unachievable through conventionalmeans, and drew only theoreticians and researcherslooking for the key to making it usable

® SUS-LOC was invented in the 1990’s by Dan Olsonand is proving to be the long sought solution

Page 2: Multiple Valued Logic - MVL 2001.pdf · a source of power to an output terminal of a circuit, per output logic level fiOnly one controllable path, or branch, conducts from a source

2

3

Technical advantages of SUS-LOCMVL circuits and devices

® A decrease in requiredpower

® A decrease of passiveparasitic values

® Ability to performmultiple logic functionsin one operation® e.g. (A+B) AND D

® An increase in datadensity

® Reduced package sizedue to fewer requiredpins

® Superior performance(more bandwidth) with areduced clock rate® 1 Mbit/s = 125 kbyte/s® 1 byte = 5-6 ternary digit® 750 ktit/s

4

Introduction

®Les bases pour aborder la MVL®Les fonctions à 1 entrée®Les fonctions à 2 entrées

Page 3: Multiple Valued Logic - MVL 2001.pdf · a source of power to an output terminal of a circuit, per output logic level fiOnly one controllable path, or branch, conducts from a source

3

5

Transistors à enrichissements

® Le MOSFETà enrichissementavec un canal N

® Le MOSFETà enrichissementavec un canal P

D

G

SVgs > Vtn > 0e.g. 0.45V

Id > 0

Vds > 0Vgs

B

≡Quand la Sourceest reliée au Bulk S

DG

≡En logique

binaire S

DG

S

G

D

Vgs < Vtp < 0e.g. -0.45

Id > 0

Vds < 0

Vgs

B

≡Quand la Sourceest reliée au Bulk

≡En logique

binaire D

SG

D

S

G

Conduction :

Conduction :

6

Les transistors àappauvrissements

S

D

G

S

DG

D

SG

≡D

SG

Le MOSFETà appauvrissementavec un canal N

Le MOSFETà appauvrissementavec un canal P

Vgs > V'tn < 0e.g. -0.45V

Vgs < V'tp > 0e.g. 0.45

Conduction :

Conduction :

Page 4: Multiple Valued Logic - MVL 2001.pdf · a source of power to an output terminal of a circuit, per output logic level fiOnly one controllable path, or branch, conducts from a source

4

7

Les caractéristiques : Id = F(Vgs)

VgsV'tn VtnV'tp

Id

Vtp 0

PMOS àEnrichissement

NMOS àAppauvrissement

PMOS àAppauvrissement

NMOS àEnrichissement

8

Number representation

Decimal Binary TernaryA Z Y X W V0 0 0 0 0 01 0 0 1 0 12 0 1 0 0 23 0 1 1 1 04 1 0 0 1 15 1 0 1 1 26 1 1 0 2 07 1 1 1 2 18 ##### ##### ##### 2 29 ##### ##### ##### ##### #####

Page 5: Multiple Valued Logic - MVL 2001.pdf · a source of power to an output terminal of a circuit, per output logic level fiOnly one controllable path, or branch, conducts from a source

5

9

Les Fonctions à 1 entrée

®Les fonctions élémentaires®L’inverseur binaire®L’inverseur ternaire

10

Les fonctionsélémentaires

®Les fonctions logiques binaires

®Des fonctions logiques ternaires (27)

X E 0 E 1 E 2 C 0 C 1 C 2 N(x) Id(x)0 0 1 2 2 0 0 2 01 0 1 2 0 2 0 1 12 0 1 2 0 0 2 0 2

X E0 Id Not E1

0 0 0 1 1

1 0 1 0 1

Page 6: Multiple Valued Logic - MVL 2001.pdf · a source of power to an output terminal of a circuit, per output logic level fiOnly one controllable path, or branch, conducts from a source

6

11

L’inverseur binaire

S

Vdd = 5V

E

Vss = 0V

E = 0

S = 1

Vdd

E

Vss

Vgs=-5V

Vgs=0V

-3.25V

3.25V

E = 1S = 0

Vdd

E

Vss

Vgs=0V

Vgs=5V

-3.25V

3.25V

12

La logique 3 valeurs

®F(x) = <2 0 0> = C0(x)

®Différentes négations

0

1

2

2

0

0

X S

F

X N(x) = < 2 1 0 > C0(x) = < 2 2 0 >0 2 21 1 22 0 0

Page 7: Multiple Valued Logic - MVL 2001.pdf · a source of power to an output terminal of a circuit, per output logic level fiOnly one controllable path, or branch, conducts from a source

7

13

C0

VoutVin

V2

GND

Q4

MbreaknL = 3uW = 4u

Vout

Q5

Mbreakp+L = 3uW = 4u

V2

Vin

14

The three requirements of SUS-LOC:® There must be one controllable path, or branch, from

a source of power to an output terminal of a circuit,per output logic level

® Only one controllable path, or branch, conducts froma source of power to an output terminal per inputlogic level, contiguous group of input logic levels, orunique combination of input logic levels

® There must be « r » different sources of power, eachsource of power represents only one of  « r » differentlogic levels

Page 8: Multiple Valued Logic - MVL 2001.pdf · a source of power to an output terminal of a circuit, per output logic level fiOnly one controllable path, or branch, conducts from a source

8

15

Inverseur 3-VL

®Vin = 0® Figure 5

®Vin = 1® Figure 6

®Vin = 2® Figure 7

V1

Q2

MbreakpDVin

0

Vout

Q4

Mbreakn

Q3

MbreaknD

V2

Q1

Mbreakp

16

Inverseur 3-VL - Vin=0

V1

Q2

MbreakpDVin

0

Vout

Q4

Mbreakn

Q3

MbreaknD

V2

Q1

Mbreakp

-3.25V

3.25V

0.75V

-0.75V

0

=5V

=2.5V

Vgs=-5V

Vgs=0V

Vgs=-2.5V

Vgs=-5V

Retour

VgsVp-n Vt-nVp-p

Id

Vt-p 0

PMOS àEnrichissement

NMOS àAppauvrissement

PMOS àAppauvrissement

NMOS àEnrichissement

2

Page 9: Multiple Valued Logic - MVL 2001.pdf · a source of power to an output terminal of a circuit, per output logic level fiOnly one controllable path, or branch, conducts from a source

9

17

Inverseur 3-VL - Vin=1

V1

Q2

MbreakpDVin

0

Vout

Q4

Mbreakn

Q3

MbreaknD

V2

Q1

Mbreakp

-3.25V

3.25V

0.75V

-0.75V

=5V

=2.5V

1

Vgs=-2.5V

Vgs=2.5V

Vgs=0V

Vgs=0V

Retour

VgsVp-n Vt-nVp-p

Id

Vt-p 0

PMOS àEnrichissement

NMOS àAppauvrissement

PMOS àAppauvrissement

NMOS àEnrichissement

1

18

Inverseur 3-VL - Vin=2

V1

Q2

MbreakpDVin

0

Vout

Q4

Mbreakn

Q3

MbreaknD

V2

Q1

Mbreakp

-3.25V

3.25V

0.75V

-0.75V

=5V

=2.5V

2

Vgs=0V

Vgs=5V

Vgs=2.5V

Vgs=5V

Retour

VgsVp-n Vt-nVp-p

Id

Vt-p 0

PMOS àEnrichissement

NMOS àAppauvrissement

PMOS àAppauvrissement

NMOS àEnrichissement

0

Page 10: Multiple Valued Logic - MVL 2001.pdf · a source of power to an output terminal of a circuit, per output logic level fiOnly one controllable path, or branch, conducts from a source

10

19

Binary

delay power

0->1 80ps 3,1 uW

1->0 80ps 265 nW

Inverter delay and Power

®0.25 micron technology®Cl = 5fF®ELDO simulator

Ternary

delay power

2->1 140ps 470 nW

1->2 85ps 970 nW

2->0 160ps 411 nW

0->1 110ps 436 nW

1->0 82ps 35 nW

0->2 142ps 1,5 uW

20

Les Fonctions à 2 Entrées

®ET/OU®X.Y = MIN(X,Y)®X+Y = MAX(X,Y)

® Associativité, commutativité® C0(X+Y) = C0(X).C0(Y)® C0(X.Y) = C0(X)+C0(Y)

Idem avec N(x)

®A plus B, N(A plus B)

Page 11: Multiple Valued Logic - MVL 2001.pdf · a source of power to an output terminal of a circuit, per output logic level fiOnly one controllable path, or branch, conducts from a source

11

21

Les Fonctions à 2 Entrées

Etude de la fonction CGAND3 (≡ NAND2)

A0 1 2

0 2 2 21 2 1 1B2 2 1 0

A

BS

(CGAND = Complementing Generalized AND)

CGAND3

22

La fonction CGAND3

®Définir les paramètres du circuit®Développer le tableau de Karnaugh®Déterminer les liens logiques entre les

entrées et la sortie®Concevoir le circuit

Page 12: Multiple Valued Logic - MVL 2001.pdf · a source of power to an output terminal of a circuit, per output logic level fiOnly one controllable path, or branch, conducts from a source

12

23

Etape 1 - CGAND

® Logique ternaire [0 1 2]V0 = 0 VoltsV1 = 2.5 VoltsV2 = 5 Volts

0

1

2

X

LSV (Volts)

LSV = 2.5 Volts (Logic Step Voltage)

t (temps)

V (volts)

OP (%)

X=1

OP = 70 % (Overlap Percentage)

24

A0 1 2

0 2 2 2

1 2 1 1B2 2 1 0

Etape 2 - CGAND

Page 13: Multiple Valued Logic - MVL 2001.pdf · a source of power to an output terminal of a circuit, per output logic level fiOnly one controllable path, or branch, conducts from a source

13

25

A B S A B S A B S

0 0 2 0 1 2 0 2 2

1 0 2 1 1 1 1 2 1

2 0 2 2 1 1 2 2 0

Etape 3 - CGAND

26

A B S= 0 x = 2x = 0 = 2

= 1 ≥ 1 = 1≥ 1 = 1 = 1= 2 = 2 = 0

Etape 3 - CGAND

Page 14: Multiple Valued Logic - MVL 2001.pdf · a source of power to an output terminal of a circuit, per output logic level fiOnly one controllable path, or branch, conducts from a source

14

27

®Branches extrêmes® E > S : canal NMOS® E < S : canal PMOS

®Branches intermédiaires® E < S : canal PMOS E et NMOS D® E = S : canal PMOS D et NMOS D® E > S : canal PMOS D et NMOS E

®Vtn = Vi - (Vo + (OP*LSV)) : transistor N

®Vtp = Vi - (Vo – (OP*LSV)) : transistor P

Etape 4 - CGAND

28

B

V1

3.129V

Q8

MbreaknL = 3uW = 4u

Q2

MbreakpL = 3uW = 4u

Q6

MbreakpDL = 3uW = 4u

V2

Q3

MbreaknDL = 3uW = 4u

Q1

MbreakpL = 3uW = 4u

Q4

MbreaknDL = 3uW = 4u

0 V

A

V1

Vout

V2

2.171V

0 V

4.348V

V2

Q7

Mbreakn

W = 4uL = 3u

A

GND

Vout

3.757V

B

Q5

MbreakpDL = 3uW = 4u

Etape 4 - CGAND

Page 15: Multiple Valued Logic - MVL 2001.pdf · a source of power to an output terminal of a circuit, per output logic level fiOnly one controllable path, or branch, conducts from a source

15

29

C

Q 7

M b r e a k n

W = 4 uL = 3 u

Q 1 6

M b r e a k pL = 3 uW = 4 u

Q 2

M b r e a k pL = 3 uW = 4 u

Q 1 8

M b r e a k n DL = 3 uW = 4 u

A

V 1

Q 1

M b r e a k pL = 3 uW = 4 u

A

V 2

V 2

Q 3

M b r e a k n DL = 3 uW = 4 u

B

Q 8

M b r e a k nL = 3 uW = 4 u

V 2

D

V 2

Q 1 3

M b r e a k n

W = 4 uL = 3 u

Q 2 0

M b r e a k n DL = 3 uW = 4 u

V o u t

G n d

Q 4

M b r e a k n DL = 3 uW = 4 u

Q 1 4

M b r e a k p DL = 3 uW = 4 u

Q 1 9

M b r e a k p DL = 3 uW = 4 u

Q 1 7

M b r e a k pL = 3 uW = 4 u

V o u t

Q 6

M b r e a k p DL = 3 uW = 4 u

Q 5

M b r e a k p DL = 3 uW = 4 u

V 1

0

B

V 2

Q 2 0

M b r e a k n

W = 4 uL = 3 u

C

D

Etape 4 - CGAND

30

Additionneur ternaire

®Equations logiques® Logique binaire® Logique ternaire

®Complexité

Page 16: Multiple Valued Logic - MVL 2001.pdf · a source of power to an output terminal of a circuit, per output logic level fiOnly one controllable path, or branch, conducts from a source

16

31

Logique binaire

l Si = aibic i v aibic i v aibici v aibici

l c i+1 = aibic i v aibic i v aibici v aibici

l c i+1 = aibi v aic i v b ic i

a i b i c i S i c i+1

0 0 0 0 00 0 1 1 00 1 0 1 00 1 1 0 11 0 0 1 01 0 1 0 11 1 0 0 11 1 1 1 1

32

Logique ternaire

l C i+1 = e1[C1(a i)C2(b i) v C2(ai)C1(bi) v C2(ai)C2(bi)]v c i[C2(bi) v C1(ai)C1(b i) v C2(a i)]

a i b i c i S i c i+1

0 0 0 0 00 1 0 1 00 2 0 2 01 0 0 1 01 1 0 2 01 2 0 0 12 0 0 2 02 1 0 0 12 2 0 1 10 0 1 1 00 1 1 2 00 2 1 0 11 0 1 2 01 1 1 0 11 2 1 1 12 0 1 0 12 1 1 1 12 2 1 2 1

l Si = e1C0(a i)C1(b i)C0(ci) V e1C1(a i)C0(b i)C0(c i) V e1C2(a i)C2(b i)C0(c i) V e1C0(a i)C0(b i)C1(c i) V e1C1(a i)C2(b i)C1(c i) V e1C2(a i)C1(b i)C1(c i) V C0(ai)C2(b i)C0(c i) V C1(ai)C1(b i)C0(c i) V C2(ai)C0(b i)C0(c i) V C0(ai)C1(b i)C1(c i) V C1(ai)C0(b i)C1(c i) V C2(ai)C2(b i)C1(c i)

Page 17: Multiple Valued Logic - MVL 2001.pdf · a source of power to an output terminal of a circuit, per output logic level fiOnly one controllable path, or branch, conducts from a source

17

33

Logique ternaire

34

Additionneur ternaire

®Optimisation FA ternaire®A plus B®A plus B plus carry®A plus B plus C plus carry

®Comparaison avec binaire®Binaire : adder 16 bits®Ternary : adder 10 tits

Page 18: Multiple Valued Logic - MVL 2001.pdf · a source of power to an output terminal of a circuit, per output logic level fiOnly one controllable path, or branch, conducts from a source

18

35

C0

VoutVin

V2

GND

Q4

MbreaknL = 3uW = 4u

Vout

Q5

Mbreakp+L = 3uW = 4u

V2

Vin

36

C1

M5

Mbreakp

W = 4uL = 3u

M2

Mbreakp

W = 4uL = 3u

V2

V2

Vout

V2

0

Vin

GND

Vout

M3

MbreakN

W = 4uL = 3u

0

M1

Mbreakp+

W = 4uL = 3u

M4

MbreakN+

W = 4uL = 3u

Vin

0

M6

MbreakN+

W = 4uL = 3u

Page 19: Multiple Valued Logic - MVL 2001.pdf · a source of power to an output terminal of a circuit, per output logic level fiOnly one controllable path, or branch, conducts from a source

19

37

C2

M1

Mbreakp

W = 4uL = 3u

M3

MbreakN+

W = 4uL = 3u

V2

Vout

0

V2

Vin

V2

M4

MbreakN

W = 4uL = 3u

M2

Mbreakp+

W = 4uL = 3u

Vin Vout

GND

0

38

AND à 3 entrées

B

V 1

V 2

Q3

MbreaknDL = 3uW = 4u

V2

Q15

MbreaknDL = 3uW = 4u

Vout

A

Q4

MbreaknDL = 3uW = 4u

B

Q16

MbreakpL = 3uW = 4u

Q9

Mbreakp

W = 4uL = 3u

V 2

Q7

Mbreakn

W = 4uL = 3u

C

Q8

MbreaknL = 3uW = 4u

Q11

MbreaknD

W = 4uL = 3u

Q10

MbreakpDW = 4uL = 3u

GND

A

V 1

Q14

MbreakpDL = 3uW = 4u

Q2

MbreakpL = 3uW = 4u

V 2

0

Q13

Mbreakn

W = 4uL = 3u

V 2

C

0

V 1

Q1

MbreakpL = 3uW = 4u

Vout

V 2

V 2

Q5

MbreakpDL = 3uW = 4u

V 2

Q12

Mbreakn

W = 4uL = 3u

Q6

MbreakpDL = 3uW = 4u

V 2

Page 20: Multiple Valued Logic - MVL 2001.pdf · a source of power to an output terminal of a circuit, per output logic level fiOnly one controllable path, or branch, conducts from a source

20

39

OR à 3 entréesQ1

MbreakpL = 3uW = 4u

Q8

MbreaknL = 3uW = 4u

Q9

Mbreakp

W = 4uL = 3u

Q20

MbreakpDL = 3uW = 4u

Vout

Q16

MbreakpL = 3uW = 4u

Q10

MbreakpDW = 4uL = 3u

Q3

MbreaknDL = 4uW = 3u

B

0

V1

Q11

MbreaknD

W = 4uL = 3u

Vout

C

A

Q4

MbreaknDL = 3uW = 4u

B

0

Q14

MbreaknDL = 3uW = 4u

V2

Q15MbreakpDL = 3uW = 4u

V1

Q13

Mbreakn

W = 3uL = 4u

Q6

MbreakpDL = 3uW = 4uA

CV1

Q7

Mbreakn

W = 3uL = 4u

GND

V2

0

0

Q12

Mbreakn

W = 4uL = 3u

V2

Q2

MbreakpL = 3uW = 4u

V1

40

Goal of our project

®Demonstration of the SUS-LOCtechnology efficiency for MVL (3L, 4L)®Power-Speed Efficiency

®Telecommunication application context®Digital Signal Processor Architecture®Dedicated Processing Unit (arithmetic unit,

hard-wired multiplier, register file)® Internal Memories (ROM, RAM)®Simple control model

Page 21: Multiple Valued Logic - MVL 2001.pdf · a source of power to an output terminal of a circuit, per output logic level fiOnly one controllable path, or branch, conducts from a source

21

41

Schedule (1)

®Study the power-speed efficiency ofSUS-LOC circuits on representativeblocks (arithmetic, memory, etc.)

®Ternary and Quaternary Logic®Compare the results with their

equivalent in binary

þAdder¨Multiplier¨Register

42

Schedule (2)

®Definition of a library of SUS-LOCstandard cells at the transistor level(flip-flop, latch, logic gates, arithmeticfunctions, multiplexer).®Characterization in terms of power, speed,

area

®Definition of VHDL-based models ofSUS-LOC standard cells at the gate(and transistor ?) level.

Page 22: Multiple Valued Logic - MVL 2001.pdf · a source of power to an output terminal of a circuit, per output logic level fiOnly one controllable path, or branch, conducts from a source

22

43

Schedule (3)

®Design of typical arithmetic and logicelements of a DSP (multiplier, ALU,barrel shifter, register files).

®Design of a Digital Signal Processor.®VHDL based design®Simulation for verification®Simulation for characterization

®Definition of a CAD tool for designingSUS-LOC structures

44

What we have done

®Design of basic SUS-LOC structuresusing Spice models®Ternary Full-Adder

®Porting of the structures in STM 0.25µtechnology (depletion transistorsextrapolated)

®Definition of a VHDL package forsimulation® “STD_TERNARY_LOGIC”

Page 23: Multiple Valued Logic - MVL 2001.pdf · a source of power to an output terminal of a circuit, per output logic level fiOnly one controllable path, or branch, conducts from a source

23

45

Research directions

®Logic Synthesis and Mapping for MVLand SUS/LOC®SIS/MVSIS (UCB)

®CAD Tools®Technology®SOI, new transistors

®Communications in higher radix than 2