27
Multilayer Optics for X-Ray Diffractometry Bernd Hasse – Incoatec GmbH, Geesthacht, Germany

Multilayer Optics for X-Ray Diffractometry

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Multilayer Optics for X-Ray Diffractometry

Multilayer Optics for X-Ray Diffractometry

Bernd Hasse – Incoatec GmbH, Geesthacht, Germany

Page 2: Multilayer Optics for X-Ray Diffractometry

Agenda

Bernd Hasse – APD IV 2

1. Multilayer Optics – Design and Fabrication

2. XRD-Applications with Multilayer Optics

3. The Past and the Future

Page 3: Multilayer Optics for X-Ray Diffractometry

1-dimensional Göbel Mirror Gutman Optics

2-dimensional KB mirrors Side-by-side optics 2-dim shaped optics

Plane / Curved WDXRF - Multilayer Analyser

different types Synchrotron EUV lithography X-ray microscopy Medical equipment X-ray astronomy

Diffractometry Spectrometry Others

Multilayer X-ray Optics for specific applications

Bernd Hasse – APD IV 3

Page 4: Multilayer Optics for X-Ray Diffractometry

High-End multilayer optics

NuSTAR Spectrocsopic Telescope Array

6 – 79 keV

Pt/SiC and W/Si coating

Shells spaced apart by graphite,

held together by epoxy

Bernd Hasse – APD IV 4

http://www.nustar.caltech.edu/about-nustar/instrumentation/optics

Page 5: Multilayer Optics for X-Ray Diffractometry

Bernd Hasse – APD IV

Gutman Optics Göbel Mirrors 1 dim curved

2 dim. curved

Montel-Optics Side by side

Substrate : ■ Roughness ■ Curvature (or plane) in one or two dimensions Multilayer film: ■ Materials ■ Layer Thickness ■ Gradients (lateral and depth)

Mounting: ■ combination of several multilayers

1 arcsec = 1/3600 deg = 0.00485 mrad; for comparison: Bragg peak widths ~ 100 – 200 arcsec

Ellipsoid, Paraboloid, …

Parts of Multilayer Optics

5

Page 6: Multilayer Optics for X-Ray Diffractometry

Bernd Hasse – APD IV

Material: Si, fused silica, quartz, zerodur, … Properties: ■ prefigured or “curved and glued” wafers with ■ low roughness (< 3 Å down to 1 Å) ■ curved with radii of several meters in beam

direction plus several mm curvature for ellipsoids, paraboloids,…

■ peak to valley: up to several 100 µm ■ length in lab instruments up to 15 cm ■ optimum shape: slope errors down to 5

arcsec (curved and glued), down to 0.03 arcsec (prefigured)

Substrates

6

mirror

Parabolic Shape

mirror

Elliptical Shape

Source

Source

Page 7: Multilayer Optics for X-Ray Diffractometry

Bernd Hasse – APD IV

Method: profilometry (e.g. Laser-Interferometry) Example: 1-dim parabolic mirror

60 mm

20 m

m

Shape as specified with

errors up to ± 100 nm

Slope error:

horizontal 3.3 arcsec rms

vertical 0.5 arcsec rms

nm +200 +100 0 -100 -200

Ideal

Substrates: Shape characterization

7

Page 8: Multilayer Optics for X-Ray Diffractometry

■ Typical Parameters ■ Reflected Photons:

λ: 0.01…40 nm / E: 30 eV … 100 keV ■ d: 1…30 nm ■ θ: 0 – 90 ° ■ N: 40…1000 (Number of Pairs) ■ Γ-Ratio: 0.1…0.8 (dabsorber/d) ■ Lengths: 0.15 m (lab)…1.5 m (synchr)

δ: Dispersion of Materials

d {

Multilayer X-ray Optics

θ

substrate

spacer absorber

𝑛𝜆 = 2𝑑sin𝜗 ∙ 1 −2𝛿 − 𝛿2

sin2𝜗

Bernd Hasse – APD IV 8

Page 9: Multilayer Optics for X-Ray Diffractometry

■ area for deposition: up to 150 x 12 cm or 8’’ diameter

■ lateral gradients by substrate moving

■ Target materials: absorber: W, WSi2, Ru, V, La, Mo, TiO2, Ni … spacer: C, BN, B4C, Si,…

■ precision: typical ±1%, up to ±0.2%

■ Difference of deposition facilities: sizes, gradients and precision

Magneton Sputtering

Bernd Hasse – APD IV 9

Page 10: Multilayer Optics for X-Ray Diffractometry

Perfect correspondence of the layer-thickness over 500 pairs

Mo/B4C, d = 1.4 nm Surface Pair 470 - 498

Si-Substrate Pair 2 - 30

Mea

sure

d by

Pro

f. Jä

ger e

t al.,

Uni

v. o

f Kie

l TEM-Picture of a multilayer coating

Bernd Hasse – APD IV 10

Page 11: Multilayer Optics for X-Ray Diffractometry

Bruker D8 with 5 degrees of freedom motorized table Substrates up to 30 x 30 x 6 cm³

Standard process control: Characterization with X-Ray Reflectometry

Bernd Hasse – APD IV 11

Page 12: Multilayer Optics for X-Ray Diffractometry

1st order

2nd order

3rd order

usually, the 1st order is used

total reflection

Reflectivity R = 70…90 %, bandpass ΔE/E = 1…10% Monochromatic beam (> 99% Kα) with high flux

Typical reflectivity curve at 8 keV (Cu Kα)

Bernd Hasse – APD IV 12

Page 13: Multilayer Optics for X-Ray Diffractometry

3,8

4,0

4,2

4,4

4,6

4,8

5,0

5,2

5,4

5,6

5,8

-75 -65 -55 -45 -35 -25 -15 -5 5 15 25 35 45 55 65 75Position (mm)

d-sp

acin

g (n

m)

Characterization with XRR

Graded Multilayer

Datapoint

Reference value

Tolerance ±1%

d-spacing accuracy better 1% !

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 1 2 3 4 5 6 7 8 9

Bernd Hasse – APD IV 13

Page 14: Multilayer Optics for X-Ray Diffractometry

from C. Morawe, ESRF

Tailoring the bandwidth at synchrotrons

Bernd Hasse – APD IV 14

Page 15: Multilayer Optics for X-Ray Diffractometry

Bernd Hasse – APD IV

KB (Kirkpatrick Baez) scheme, also called cross-coupled: two 1-dim optics; used at synchrotrons and few lab instruments

Side-by-side scheme, also called Montel Optics: two 1-dim optics mounted together; state-of-the-art in lab instruments

2-dim curved substrate: Single-reflection Optics

from www.xenocs.com

All concepts available for focusing and collimating

Concepts for two-dimensional Optics

15

Page 16: Multilayer Optics for X-Ray Diffractometry

Multilayer Optics for Lab-instruments

Bernd Hasse – APD IV 16

Page 17: Multilayer Optics for X-Ray Diffractometry

■ measurements in transmission

■ with Bruker D8 GADDS and VÅNTEC 2000

■ Sample: Ibuprofene

■ Sample-Detector distance: 290 mm

Focussing Mirror for XRD

Bernd Hasse – APD IV 17

Page 18: Multilayer Optics for X-Ray Diffractometry

Microfocus source

■ 0.3 mm snout

■ Focussing 2-dim optics

■ small slice for integration to obtain better resolution (poor detector calibration)

15 sec collection time

Sealed Tube

■ 0.3 mm collimator

■ cross-coupled mirrors

120 sec collection time

Focussing Mirror for XRD

Bernd Hasse – APD IV 18

Page 19: Multilayer Optics for X-Ray Diffractometry

■ Simultaneous XRD and XRF measurements ■ Position sensitive measurements using focusing Mo-microfocus source ■ Resolution 150 µm

K. Janssens, Antwerpen

Bernd Hasse – APD IV 19

Measurement of a Manuscript

Page 20: Multilayer Optics for X-Ray Diffractometry

Red

Black

Gold Brown 2

BrownGold (azurite on backside)

Blue

Green

RedWhite

DarkGreen DarkBlue White Brown

K. Janssens, Antwerpen

Bernd Hasse – APD IV 20

Illuminated Manuscript Point Measurements

Page 21: Multilayer Optics for X-Ray Diffractometry

Green Red

■ Mo-microfocus source: 50 kV, 600 µA, 30 sec exposure time ■ Scanning Micro diffraction (combined with XRF): 4 x 4.5 mm², resolution 150 µm, Total measurement time: 18 h ■ Measurements and data evaluation by Frederick Vanmeert

K. Janssens, Antwerpen

Bernd Hasse – APD IV 21

Results

Page 22: Multilayer Optics for X-Ray Diffractometry

Bernd Hasse – APD IV

Fast Stress Analysis: Steel Spring

H. and U. Göbel, LabXA and M. Schuster, Siemens, Munich

22

Page 23: Multilayer Optics for X-Ray Diffractometry

Steel Spring: Measurement

23 Bernd Hasse – APD IV

H. and U. Göbel, LabXA and M. Schuster, Siemens, Munich

Page 24: Multilayer Optics for X-Ray Diffractometry

Compressive Stress: -238 MPa

+Ω -Ω

Incident X-ray Beam

Reflected X-ray Beam

06-0696 (*) - Iron, syn - Fe - Cubic - a 2.86640 - b 2.86640 - c 2.86File: I4560.RAW - innen p=45 o=60 - WL1: 2.2897 - WL2: 2.29361

File: I4545.RAW - innen p=45 o=45 - WL1: 2.2897 - WL2: 2.29361File: I4530.RAW - innen p=45 o=30 - WL1: 2.2897 - WL2: 2.29361File: I450.RAW - innen p=45 o=0 - WL1: 2.2897 - WL2: 2.29361File: I45_30.RAW - innen p=45 o=-30 - WL1: 2.2897 - WL2: 2.293File: I45_45.RAW - innen p=45 o=-45 - WL1: 2.2897 - WL2: 2.293

Lin

(Cou

nts)

0

2000

2-Theta - Scale148.5 149 150 151 152 153 154 155 156 157 158 159 160 161 162

α-Fe(211)

Incident X-ray Beam

Reflected X-ray Beam

06-0696 (*) - Iron, syn - Fe - Cubic - a 2.86640 - b 2.86640 - c 2.86File: I_4560.RAW - innen p=-45 o=60 - WL1: 2.2897 - WL2: 2.293File: I_4545.RAW - innen p=-45 o=45 - WL1: 2.2897 - WL2: 2.293

File: I 4530.RAW - innen p=-45 o=30 - WL1: 2.2897 - WL2: 2.293File: I_450.RAW - innen p=-45 o=0 - WL1: 2.2897 - WL2: 2.29361File: I_45_30.RAW - innen p=-45 o=-30 - WL1: 2.2897 - WL2: 2.29File: I_45_45.RAW - innen p=-45 o=-45 - WL1: 2.2897 - WL2: 2.29File: I_45_60.RAW - innen p=-45 o=-60 - WL1: 2.2897 - WL2: 2.29

Lin

(Cou

nts)

0

2000

2-Theta - Scale148.5 149 150 151 152 153 154 155 156 157 158 159 160 161 162

α-Fe(211)

Tensile Stress: +241 MPa

Inner Surface of Spring, +45°-Direction

Inner Surface of Spring, -45°-Direction

Bernd Hasse – APD IV 24

Steel Spring: Results – Tensile and compressive stress at the inner surface

H. and U. Göbel, LabXA and M. Schuster, Siemens, Munich

Page 25: Multilayer Optics for X-Ray Diffractometry

The Past and the Future

■ Multilayer mirrors for a variety of

energies: Cr, Mn, Fe, Co, Cu, Ge, Mo,

Ag, and higher energies for

synchrotrons

■ Large variety of possible material

combinations

■ Multilayers are stable (except against

ozone)

New sources with (sub-) micrometer

beams:

■ microfocus sources

■ liquid metal jet sources

■ synchrotron beam lines

Energy range 5 keV to 100 keV

Requirement: Pre-figured substrates with

a very low figure error for very small

spots of focusing mirrors and very

homogeneous spots of collimating

mirrors

Bernd Hasse – APD IV 25

Page 26: Multilayer Optics for X-Ray Diffractometry

Acknowledgement

H. Göbel, U. Hermeking-Göbel, LabXA, Munich

M. Schuster, Siemens, Munich

K. Janssens, F. Vanmeert, Antwerpen

All People from Bruker and Incoatec

Thank You

Bernd Hasse – APD IV 26

Page 27: Multilayer Optics for X-Ray Diffractometry

Please contact for more information Incoatec GmbH

Max-Planck-Str. 2 21502 Geesthacht Germany Tel: +49(0)41 52 - 88 93 81 www.incoatec.de