66
Multidisciplinary analysis and optimization under uncertainty Chen Liang Doctoral Dissertation Defense 1 Multidisciplinary Analysis and Optimization under Uncertainty Chen Liang Dissertation Defense Adviser: Sankaran Mahadevan Department of Civil and Environmental Engineering Vanderbilt University, Nashville, TN Aug. 21 st , 2015

Multidisciplinary analysis and optimization under uncertainty

Embed Size (px)

Citation preview

Page 1: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense1

Multidisciplinary Analysis and Optimization

under Uncertainty

Chen Liang

Dissertation Defense

Adviser: Sankaran Mahadevan

Department of Civil and Environmental Engineering

Vanderbilt University, Nashville, TN

Aug. 21st , 2015

Page 2: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense2

MDA Overview

Three-objective two-stage-to-orbit launch vehicle

Heatsink

Aircraft wing analysis

Nodal Pressures

Nodal

Displacements

Wing Backsweep Angle,

Speed and Angle of Attack

Lift, drag, stress

FEA

structure

CFD

fluid

Compatibility Fixed-point-iteration

(FPI)

Page 3: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense3

MDO under uncertainty

Presence of uncertainty sources UQ

Sampling outside FPI SOFPI Repeated MDA

New design input values at each iteration

Computationally unaffordable Need efficient methods for MDA and

MDO under uncertainty

UQ / Reliability Analysis

FEA CFD

MDA

Optimization

Page 4: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense4

Three types of sources

β€’ Physical variability

β€’ Data uncertainty

(e.g., sparse/interval data)

β€’ Model Uncertainty

Forward problem

β€’ For a given input Uncertainty of output needs to

be evaluated

β€’ Propagation of aleatory uncertainty is well-studied

β€’ Inclusion of epistemic uncertainty becomes

more important

β€’ Little work regarding the propagation of epistemic

uncertainty in feedback coupled MDA

Uncertainty and errors in optimization

Sources of Uncertainty and Errors

Aleatory (Irreducible)

Natural Variability

Epistemic (Reducible)

Data Uncertainty

Sparse Data

Interval Data

Model Uncertainty

Numerical error

Discretization error

Round off error

Truncation error

Surrogate model error

UQ error

Model Form Error

Page 5: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense5

Overall Research Goal

Efficient UQ techniques for feedback coupled MDA

and MDO

Combine information with both aleatory and

epistemic sources of uncertainty

Particular emphasis on

β€’ Representation of epistemic sources of uncertainty

β€’ Propagation through feedback coupled analysis

β€’ Inclusion in the design optimization of multidisciplinary

analysis with feedback coupling (high-dimensional)

Page 6: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense6

Research objectives

MDA with epistemic uncertainty

- Inclusion of data uncertainty and model error

MDA with high-dimensional coupling

- Large number of coupling variables

- Dependence among all variables

- Efficient uncertainty propagation

Multi-objective optimization under uncertainty

- Reliability-based design optimization

- Solution enumeration (Pareto front construction)

Multidisciplinary design optimization

- Concurrent interdisciplinary compatibility enforcement and

objective/constraint functions evaluation

A. Multidisciplinary analysis under uncertainty

B. Multidisciplinary optimization under uncertainty

Bayesian

Framework

Page 7: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense7

𝑔2

𝑓

𝑒12

𝑔1

𝑒21

Analysis 1

π‘¨πŸ(𝒙, 𝑒21)

Analysis 2

π‘¨πŸ(𝒙, 𝑒12)

Analysis 3

π‘¨πŸ‘(𝑔1, 𝑔2)

π‘₯1π‘₯𝑠 π‘₯2

Uncertainty propagation under

the compatibility condition

No need for full convergence

analysis

Multi-disciplinary multi-level system

Review of MDA under uncertainty methods

Sankararaman & Mahadevan,

J. Mechanical Design, 2012

Approximation Method

β€’ First-order Second Moment

(FOSM) approximationsβ€’ Linear approximations of disciplinary

analyses

β€’ PDF based on mean & variance

β€’ Du & Chen, Mahadevan & Smith

β€’ Fully Decoupled Approachβ€’ Calculate PDFs of u12 & u21

β€’ Cut-off feedback both directions

β€’ Ignores dependence between u12 &

u21

β€’ Lack of one-toβ€”one correspondence

between 𝑔1 and 𝑔2 in calculating f

Likelihood-based approach for MDA

(LAMDA) 𝑒21 𝑒12

Page 8: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense8

𝑒12

𝑔2

𝑓

𝑒12

𝑔1

𝑒21

Analysis 1

π‘¨πŸ(𝒙, 𝑒21)

Analysis 2

π‘¨πŸ(𝒙, 𝑒12)

Analysis 3

π‘¨πŸ‘(𝑔1, 𝑔2)

π‘₯1π‘₯𝑠 π‘₯2

Multi-disciplinary multi-level system

Likelihood-based approach for MDA

(LAMDA)

Objective 1: MDA with epistemic uncertainty

𝑔2

𝑓

𝑔1

Analysis 1

π‘¨πŸ(𝒙, 𝑒21)

Analysis 2

π‘¨πŸ(𝒙, 𝑒12)

Analysis 3

π‘¨πŸ‘(𝑔1, 𝑔2)

π‘₯1π‘₯𝑠π‘₯2

𝑒21

Page 9: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense9

π‘ˆ12

πΉπ‘ˆ12

𝐺Interdisciplinary compatibility:

LAMDA

𝑒12 Analysis 1

π‘¨πŸ(𝒙, 𝑒21)

Analysis 2

π‘¨πŸ(𝒙, 𝑒12)

𝑒21 π‘ˆ12

Given a value of 𝑒12 what is 𝑃(π‘ˆ12 = 𝑒12|𝑒12) 𝐿(𝑒12)

𝑓 𝑒12 =𝐿(𝑒12)

𝐿(𝑒12)𝑑𝑒12

FORM is used to calculate the CDFs of

the upper and lower bounds: 𝑃𝑒 and 𝑃𝑙

𝐿 𝑒12 ∝ 𝑒12βˆ’

πœ€2

𝑒12+πœ€2π‘“π‘ˆ12

π‘ˆ12 𝑒12 π‘‘π‘ˆ12

𝐿 𝑒12 ∝ (𝑃𝑒 βˆ’ 𝑃𝑙) finite difference

𝑷𝒖

𝑷𝒍

π’–πŸπŸ +𝜺

πŸπ’–πŸπŸ βˆ’

𝜺

𝟐

Page 10: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense10

Sources of Uncertainty and Errors

Aleatory (Irreducible)

Natural Variability

Epistemic (Reducible)

Data Uncertainty

Sparse Data

Interval Data

Model Uncertainty

Numerical error

Discretization error

Round off error

Truncation error

Surrogate model error

UQ error

Model Form Error

Uncertainty and errors in LAMDA

Considering epistemic

uncertainty sources

Page 11: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense11

Data uncertainty (sparse and interval data)

pi pQ

X

fX(x)

ΞΈQΞΈ3ΞΈ2ΞΈ1ΞΈi

p1

p2

n

i

b

a

X

m

i

iX dxPxfPxfPLi

i11

)|()|()(

Parametric approach Non-parametric approach

Likelihood

Sparse data Interval data

Convert sparse and interval data into a useable distribution

(for propagation)

Sankararaman &

Mahadevan RESS 2011

Zaman, et. al,

RESS 2011

Page 12: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense12

Sources of Uncertainty and Errors

Aleatory (Irreducible)

Natural Variability

Epistemic (Reducible)

Data Uncertainty

Sparse Data

Interval Data

Model Uncertainty

Numerical error

Discretization error

Round off error

Truncation error

Surrogate model error

UQ error

Model Form Error

Uncertainty and errors in LAMDA

Page 13: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense13

Model uncertainty estimation

Training

points

(e.g. FEA)

Prediction

Uncertainty

Discretization error estimation

β€’ GP prediction ~ 𝑁(πœ‡, 𝜎) πœ‡ and 𝜎 are input dependent

Rangavajhala, et. al,

AIAA Journal 2010

Richardson

extrapolation

At each input 𝒙

Page 14: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense14

Auxiliary variable π‘ƒβ„Ž~π‘ˆ[0,1] CDF of GP output

Stochastic model output input random variable

FORM can be used for likelihood evaluation

π‘ˆ12

CDF of GP output

𝐿 𝑒12 ∝ 𝑃(π‘ˆ12 = 𝑒12|𝑒12)

β€’ Equation only calculable when π‘ˆ12 is deterministic given an 𝒙 and 𝑒12

Inclusion of model uncertainty in LAMDA

𝑒12 𝑒21𝐴2 𝒙, 𝑒12

GP model

(𝒙, 𝑒21)

𝒙 π‘ƒβ„Ž

Deterministic

π‘ƒβ„Ž

Extra loop of uncertainty propagation

Page 15: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense15

Electrical

Parameters

Component Heat

Total Power

Dissipation

Heatsink

Temperature

Electrical

Analysis

Thermal

Analysis

Power Density: Total Power DissipationVolume of the Heatsink

Heatsink Size

Parameters

Numerical example: electronic packaging

Model error in thermal Analysis

β€’ 2D steady state heat transfer equation (PDE)

π›»π‘‡π‘ π‘–π‘›π‘˜ π‘₯, 𝑦 +π‘ž(π‘₯, 𝑦)

π‘˜= 0

β€’ Solved by Finite Difference method

β€’ Limited computational resources

discretization error

MDO test suite: Heatsink

Data uncertainty

Temperature Coefficient of resistance (𝜢)

Data points Data intervals

0.0055

0.0057

[0.004,0.009]

[0.0043,0.0085]

[0.0045, 0.0088]4 5 6 7 8

x 10-3

0

200

400

600

800

1000

1200 Non-parametric PDF of 𝜢

PDF

𝜢

β€’ Uncertainty estimated auxiliary

variable

Page 16: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense16

Temperature

Thermal

Analysis

Electrical

Analysis

Power density

π’™πŸπ’™πŸ

Heat

Page 17: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense17

Results

Uncertainty of the coupling variables

Comparison between FPI and LAMDA

FPI with stochastic model errors is difficult

to converge

Only a few FPI realizations is affordable

LAMDA agrees well with the available data

Liang & Mahadevan

ASME JMD, 2015

Temerature(℃ )

PD

F

Component heat(Joule)

PD

F

Page 18: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense18

Likelihood Approach for Multidisciplinary Analysis

β€’ Data uncertainty and model error in feedback coupled

analysis.

β€’ Auxiliary variable stochastic model error.

Features of methodology

β€’ Likelihood-based approach for MDA (LAMDA)

β€’ FORM

β€’ GP estimation of model error

β€’ Auxiliary variable

Objective-1 summary

Page 19: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense19

High Dimensional Coupling

CFD FEA

UQ/Reliability Analysis

Nodal Pressures

Nodal Displacements

Multiple coupling variables in one direction

Joint distribution of the coupling variables in the same direction

FORM-based LAMDA is inefficient because:

β€’ First-order approximation: dimension ↑, accuracy ↓

β€’ Likelihood calculation (finite difference) Number of function ↑

Page 20: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense20

Research objectives

MDA with epistemic uncertainty

- Inclusion of data uncertainty and model error

MDA with high-dimensional coupling

- Large number of coupling variables

- Dependence among all variables

- Efficient uncertainty propagation

Multi-objective optimization under uncertainty

- Reliability-based design optimization

- Solution enumeration (Pareto front construction)

Multidisciplinary design optimization

- Concurrent interdisciplinary compatibility enforcement and

objective/constraint functions evaluation

A. Multidisciplinary analysis under uncertainty

B. Multidisciplinary optimization under uncertainty

Page 21: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense21

Probabilistic graphical model: represents random variables

and their conditional dependencies by nodes and edges.

Incorporate large number of variables with heterogeneous

formats: distribution (continuous, discrete, empirical) &

function.

Bayesian network is update by sampling approaches. An

efficient Gaussian copula-based sampling method is adopted.

Bayesian network and copula-based sampling

(BNC)

π‘Œπ‘

𝑋

𝑉

Uncertainty propagation (forward)

π‘£π‘œπ‘π‘ 

π‘Œπ‘

𝑋

Bayesian updating (inverse)

Page 22: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense22

Multi-variate Gaussian Copula

β€’ A copula is a function that joins the CDFs of multiple random

variables as a joint CDF function.

β€’ Types: Gaussian, Clayton, Gumbel, …

β€’ The Multivariate Gaussian Copula (MGC)

πΆπ›΄πΊπ‘Žπ‘’π‘ π‘  𝒖 = 𝚽𝚺 Ξ¦βˆ’1 𝑒1 … Ξ¦βˆ’1(𝑒𝑛)

where 𝑒𝑖 is the CDF value of any arbitrary marginal 𝐹𝑋𝑖(π‘₯𝑖),

β€’ Gaussian copula assumption needs verification (done for all examples)

β€’ Other copulas are not as efficient in conditional sampling

Hanea, et al.,

QREI, 2006

Efficient Conditional Sampling

𝑉 = 𝑣𝑂𝑏𝑠

π‘Œπ‘

𝑋

Bayesian updating (inverse)

If 𝑉 = π‘‰π‘œπ‘π‘ , the conditional samples of

𝑋, π‘Œ and 𝑍 can be obtained as following:

π‘₯ = πΉπ‘‹βˆ’1 ΦΣ′ π‘ˆπ‘‹|𝑉 = π‘£π‘œπ‘π‘ 

𝑦 = πΉπ‘Œβˆ’1 ΦΣ′ π‘ˆπ‘Œ|𝑉 = π‘£π‘œπ‘π‘ 

𝑧 = πΉπ‘βˆ’1 ΦΣ′ π‘ˆπ‘|𝑉 = π‘£π‘œπ‘π‘ 

Page 23: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense23

BNC-MDA:

π’–πŸπŸ π‘ΌπŸπŸ

πœΊπ’–πŸπŸ

BN with 20 coupling variables

β€’ Joint distribution of π‘ΌπŸπŸ are evaluated by the conditional samples

β€’ Given compatibility condition (πœ€21 = 0), generate samples from

the BN by copula-based sampling

π‘ΌπŸπŸπ’–πŸπŸ π’–πŸπŸ Analysis 2

π‘¨πŸ(π’–πŸπŸ, x)

Analysis 1

π‘¨πŸ(π’–πŸπŸ, x)

𝒙

πœΊπ’–πŸπŸ= π’–πŸπŸ βˆ’ π‘ΌπŸπŸ

Interdisciplinary

compatibility= 𝟎

β€’ Bayesian network is built using

samples of 𝑒21, π‘ˆ21 and πœ€π‘’21

π’–πŸπŸ π‘ΌπŸπŸ

πœΊπ’–πŸπŸ

One coupling variable

Page 24: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense24

Challenge for BNC-MDA

High dimensional coupling

β€’ Mesh resolution : 258 nodes 258 random variables

1

MAR 17 201

5

09:30:53

ELEMENTS

1

MAR 17 2015

12:54:37

ELEMENTS

Nodal Pressures

Nodal Displacements

FEA CFD

Aero-elastic analysis of an aircraft wingπ‘΅π‘·π’Šβˆ’πŸ π‘΅π‘·π’Š

𝜺

β€’ BN with 774 nodes : enormous effort

β€’ Variables are highly correlated Redundant

information, singularity of correlation coefficient

matrix of the copula

Page 25: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense25

Principal component analysis (PCA) Correlated variables linearly uncorrelated principal

component space

First 15~20 PCs cover more than 99% of the original variances

Bayesian updating on the 15~20 individual uncorrelated

principal components

Reduces a giant Bayesian network

into 15~20 small networks

Bayesian update can be

implemented in parallel

π’Šπ’•π’‰ PC at 𝒏 βˆ’ πŸπ’•π’‰

iterationπ’Šπ’•π’‰ PC at 𝒏𝒕𝒉

iteration

Difference

Updated by Interdisciplinary

compatibility (Difference = 0)

Page 26: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense26

π‘΅π‘·πŸ π‘΅π‘·πŸ‘

Numerical Example – MDA of an aircraft wing

Input uncertainty

β€’ Backsweep angle πœƒ ~ 𝑁 0.4,0.1

β€’ 110 FPI analyses Benchmark

β€’ 6 iterations till convergence

~1300 function calls (FEA and CFD in total)

FPI(secs)

BNC-MDA(secs)

Time saved(secs)

14,300 9,350 4,950

Total time consumed

Kullback-Leibler (K-L) divergence with

benchmark solution :

β€’ Smaller value Closer distributions

Higher fidelity more time saved

Method 2nd

Iteration3rd

Iteration BNC

K-L divergence 0.21 0.18 0.16

Estimation without full convergence analysis

= 0

PCA Reduced

π‘΅π‘·πŸ

Difference

PCA Reduced

π‘΅π‘·πŸ‘

β€’ 𝑁𝑃2: nodal pressure after 2nd iteration

β€’ 𝑁𝑃3: nodal pressure after 3rd iteration

β€’ 𝑁𝑃2 & 𝑁𝑃3 BNC-MDA (660 function calls)

Page 27: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense27

Objective-2 summary

Bayesian Approach for Multidisciplinary Analysis

β€’ Novel BNC-MDA for UQ in high-dimensional coupled MDA

β€’ Dimension and iteration reduction Efficient while

preserving the dependencies

β€’ Time for physics analysis ≫ time for stochastic analysis

Features of methodology

β€’ Bayesian Network

β€’ Gaussian copula-based sampling

β€’ Principal component analysis

Page 28: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense28

Research objectives

MDA with epistemic uncertainty

- Inclusion of data uncertainty and model error

MDA with high-dimensional coupling

- Large number of coupling variables

- Dependence among all variables

- Efficient uncertainty propagation

Multi-objective optimization under uncertainty

- Reliability-based design optimization

- Solution enumeration (Pareto front construction)

Multidisciplinary design optimization

- Concurrent interdisciplinary compatibility enforcement and

objective/constraint functions evaluation

A. Multidisciplinary analysis under uncertainty

B. Multidisciplinary optimization under uncertainty

Page 29: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense29

Robustness-based Design

Optimization (RDO)

Reliability-based Design

Optimization (RBDO)

Attempts to minimize variability

in the system performance due

to variations in the inputs.

Aims to maintain design feasibility

at desired reliability levels.

Background: Optimization under uncertainty

Focuses on πœŽπ‘œπ‘π‘— of the

objective function

Focuses on 𝑃𝑓 of the

constraint function

πˆπ’π’ƒπ’‹π‘° πˆπ’π’ƒπ’‹

𝑰𝑰

Objective

Function

PDF

Constraint

Function

PDF

Page 30: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense30

π‘šπ‘–π‘›πœ‡π‘‹,𝑑

[πœ‡π‘“ 𝑋, 𝑃, 𝑑, 𝑝𝑑 ]

s.t.

Prob(𝑔𝑖(𝑋, 𝑑, 𝑃, 𝑝𝑑) β‰₯ 0)) β‰₯ 𝑝𝑑𝑖, i= 1,2 … , π‘›π‘ž

Prob(𝑋 β‰₯ 𝑙𝑏𝑋)) β‰₯ 𝑝𝑙𝑏𝑑

Prob(𝑋 ≀ 𝑒𝑏𝑋)) β‰₯ 𝑝𝑒𝑏𝑑

𝑙𝑏𝑑 ≀ 𝑑 ≀ 𝑒𝑏𝑑

Reliability-based design optimization

β€’ Natural variability

β€’ Data uncertainty

β€’ Sparse

β€’ Interval

Model uncertainty

β€’ Numerical solution error

β€’ Model form error

β€’ The examples are formulated using the RBDO formulation

β€’ Proposed methodology is adaptable to solve RDO problems

𝑋: stochastic design variable

𝑃: stochastic non-design variable

𝑑: deterministic design variable

𝑃𝑑: deterministic non-design variable

Page 31: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense31

Research objectives

MDA with epistemic uncertainty

- Inclusion of data uncertainty and model error

MDA with high-dimensional coupling

- Large number of coupling variables

- Dependence among all variables

- Efficient uncertainty propagation

Multi-objective optimization under uncertainty

- Reliability-based design optimization

- Solution enumeration (Pareto front construction)

Multidisciplinary design optimization

- Concurrent interdisciplinary compatibility enforcement and

objective/constraint functions evaluation

A. Multidisciplinary analysis under uncertainty

B. Multidisciplinary optimization under uncertainty

Page 32: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense32

β€’ Conflicting objectives One objective cannot be improved

without worsening others

Objective 3: Multi-objective optimization

β€’ Pareto front tradeoff relationship

between different objectives

π‘šπ‘–π‘›π’™

[𝑓1 𝑿, 𝑃 , 𝑓2 𝑿, 𝑃 ]

s.t.

𝑙𝑏𝑋 ≀ 𝑿 ≀ 𝑒𝑏𝑋

β€’ Existing methods

Weighted sum

πœ€-Constraint

Goal programming

Non-dominated sorting genetic algorithm (NSGA)

Assign weights to each objective

One as objective, others as constraints

Global search and solution-

ranking strategy

Optimizes the weighted sum of the penalty

Page 33: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense33

π‘šπ‘–π‘›πœ‡π‘‹,𝑑

[πœ‡π‘“1 𝑋, 𝑑, 𝑃, 𝑝𝑑 , πœ‡π‘“2𝑋, 𝑑, 𝑃, 𝑝𝑑 , … , πœ‡π‘“π‘›

(𝑋, 𝑑, 𝑃, 𝑝𝑑)]

s.t.

Prob(𝑔𝑖(𝑋, 𝑑, 𝑃, 𝑝𝑑) β‰₯ 0)) β‰₯ 𝑝𝑑𝑖, i= 1,2 … , π‘›π‘ž

Prob(𝑋 β‰₯ 𝑙𝑏𝑋)) β‰₯ 𝑝𝑙𝑏𝑑

Prob(𝑋 ≀ 𝑒𝑏𝑋)) β‰₯ 𝑝𝑒𝑏𝑑

𝑙𝑏𝑑 ≀ 𝑑 ≀ 𝑒𝑏𝑑

Multi-objective optimization under uncertainty

β€’ Challenges of existing MOO methods

- Weights for objective aggregation is not intuitive

- Goal programming\Constraint-based method may not produce

Pareto solutions

- NSGA is computationally expensive (surrogate models)

β€’ Little work regarding the dependence relationships between

output variables (e.g. co-kriging for small number of outputs)

Page 34: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense34

Dependence among Objectives/Constraints

β€’ Joint probability formulation for MOUU

- Considered the dependence among objectives

- Joint probability of the design threshold being satisfied constraint

- FORM

Rangavajhala & Mahadevan

JMD 2011

Proposed method

Graphical surrogate model that integrates design variables, uncertain

variables, objectives and constraints in one Bayesian network

Gaussian copula-based sampling for efficient uncertainty propagation

and reliability assessment (forward propagation)

Training samples selection to improve the Pareto front (inverse

problem)

Inefficient for high-dimensional problems

Page 35: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense35

Numerical example: vehicle side impact model

FEA data is unavailable

Step-wise regression model generate training data & validate the

proposed method

115 training points by Latin Hypercube sampling

Vehicle side impact model Gu, et al. ,

IJVD, 2001

Problem description

* Design variables have variability, 2 additional

uncertain variables

min𝝁𝒙

πœ‡π‘Šπ‘’π‘–π‘”β„Žπ‘‘ & πœ‡π‘‰π‘’π‘™π‘‘π‘œπ‘œπ‘Ÿ

s.t. 𝑃 𝑖=19 (πΆπ‘œπ‘›π‘– < πΆπ‘Ÿπ‘–π‘‘π‘–) β‰₯ 0.99

0.5 ≀ πœ‡π‘₯𝑖≀ 1.5, 𝑖 = 1 …7

0.192 ≀ πœ‡π‘₯𝑗≀ 0.345, 𝑗 = 8 … 9

Page 36: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense36

Design variables

Uncertain

Sources

Constraints

Objectives

Optimization with Bayesian network

Optimizer

π‘₯1_𝑠𝑑 π‘₯2_𝑠𝑑 π‘₯3_𝑠𝑑 π‘₯4_𝑠𝑑 π‘₯5_𝑠𝑑 π‘₯6_𝑠𝑑 π‘₯7_𝑠𝑑 π‘₯8_𝑠𝑑 π‘₯9_𝑠𝑑 π‘₯10 π‘₯11

Page 37: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense37

π‘ͺ𝒐𝒔𝒕 𝑽𝒆𝒍𝒅𝒐𝒐𝒓 𝑳𝒐𝒂𝒅𝒂𝒃 π‘½π’†π’π‘©π‘·π‘«π‘½πŸ π‘«π‘½πŸ

π‘ͺ𝒐𝒔𝒕 𝑽𝒆𝒍𝒅𝒐𝒐𝒓 𝑳𝒐𝒂𝒅𝒂𝒃 π‘½π’†π’π‘©π‘·π‘«π‘½πŸ π‘«π‘½πŸ

Conditionalization (forward)

β€’ Conditional samples are used to

estimate objectives and joint

probability (constraint)

β€’ Optimizer generates a set of design

values to the BN

β€’ Bayesian network is conditionally

sampled using Gaussian copula

Posterior distributions of

objectives and constraints

In each BN evaluation:

Optimizer: NSGA – IIOptimizer: NSGA-II

by VisualDOC

Page 38: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense38

Pareto front - I

Weight

Do

or

Vel

oci

ty

Training values

Weight

Copula-generated samples

Page 39: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense39

Training point selection (inverse)

π‘Ύπ’†π’Šπ’ˆπ’‰π’• 𝑽𝒆𝒍𝒅𝒐𝒐𝒓 𝑳𝒐𝒂𝒅𝒂𝒃 π‘½π’†π’π‘©π‘·π‘«π‘½πŸ π‘«π‘½πŸ

Identify the input samples that

relate to the desired outputs

Weight

Copula-generated samples

Velocity

Sculpting

Select 20 input samples of the

calculated outputs

Cooke, Zang, Mavis, Tai

MAO Conf., 2015

Sample-based conditioning

Rebuild a BN with the

additional training samples

Page 40: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense40

Weight

Do

or

Vel

oci

ty

Pareto front – IIβ€’ For comparison, another 20 samples are chosen by Latin Hypercube

sampling calculate outputs.

β€’ Rebuild a BN with the additional samples

β€’ Recalculate the Pareto frontπœ‡

π‘‘π‘œπ‘œπ‘Ÿπ‘£π‘’π‘™

πœ‡π‘€π‘’π‘–π‘”β„Žπ‘‘ πœ‡π‘€π‘’π‘–π‘”β„Žπ‘‘

Approach II: selectively generated samplesApproach I: uniformly generated samples

Page 41: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense41

Objective-3 summary

Multi-objective optimization under uncertainty

β€’ Probabilistic graphical surrogate model

β€’ Efficient joint probability estimation

β€’ Concurrent training point selection for multiple outputs

Features of methodology

β€’ Bayesian network

β€’ Gaussian copula sampling

β€’ Sculpting

Page 42: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense42

Research objectives

MDA with epistemic uncertainty

- Inclusion of data uncertainty and model error

MDA with high-dimensional coupling

- Large number of coupling variables

- Dependence among all variables

- Efficient uncertainty propagation

Multi-objective optimization under uncertainty

- Reliability-based design optimization

- Solution enumeration (Pareto front construction)

Multidisciplinary design optimization

- Concurrent interdisciplinary compatibility enforcement and

objective/constraint functions evaluation

A. Multidisciplinary analysis under uncertainty

B. Multidisciplinary optimization under uncertainty

Page 43: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense43

Objective 4: MDO under uncertainty

π‘šπ‘–π‘›π’™

)𝑓(𝒙

s.t.

𝑔𝑖 𝒙, 𝒖 𝒙 , 𝒗 𝒙 ≀ 0, 𝑖 = 1, . . . , π‘›π‘ž

β„Ž1 𝒙, 𝒖, 𝒗 = 0β„Ž2 𝒙, 𝒖, 𝒗 = 0

𝐹𝐸𝐴(𝒙, π‘π‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’π‘ ) βˆ’ π‘‘π‘–π‘ π‘π‘™π‘Žπ‘π‘’π‘šπ‘’π‘›π‘‘π‘  = 𝟎𝐢𝐹𝐷(𝒙, π‘‘π‘–π‘ π‘π‘™π‘Žπ‘π‘’π‘šπ‘’π‘›π‘‘π‘ ) – π‘π‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’π‘  = 𝟎

Interdisciplinary

compatibility

FEA CFD

UQ / Reliability Analysis

Optimization

Nodal

displacements

Nodal

pressures

Deterministic MDO

Page 44: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense44

MDO under Uncertainty

Surrogate models are commonly used:

β€’ Training data can be expensive to get

β€’ Curse of dimensionality

β€’ Enforce compatibility

β€’ Evaluate (mean) objectives and

(probability) constraints

Simultaneously achieved without

fully converged physics analysis?

π‘šπ‘–π‘›π’™ ,𝝃

πœ‡(𝑓 𝒙, 𝝃 )

s.t.

𝑃(𝑔𝑖 𝒙, 𝝃, 𝒖 𝒙, 𝝃 , 𝒗 𝒙, 𝝃 β‰₯ 0) ≀ 𝛼𝑖

𝑖 = 1, . . . , π‘›π‘ž

β„Ž1 𝒙, πœ‰, 𝒖, 𝒗 = 0

β„Ž2(𝒙, πœ‰, 𝒖, 𝒗) = 0

𝝃 : a vector of random variables πƒπŸ, … , πƒπ’Ž

πœ‰ : one realization of the random variable πœ‰π›Όπ‘– : desired reliability for 𝑔𝑖

Problem formulation

Inclusion of epistemic uncertainty

Page 45: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense45

BNC-MDA + Optimization

π‘ΌπŸπŸπ’–πŸπŸ

Analysis2Analysis 1

𝒐𝒃𝒋 π‘ͺ𝒐𝒏𝒔𝒕𝒓

𝑫𝑽, 𝑼𝑽

BNC-MDO

BN is built with samples of the one-iteration analysis

Optimization framework on the top

𝐷𝑉 π‘ˆπ‘‰

𝑒21 π‘ˆ21

πΆπ‘œπ‘›π‘ π‘‘π‘Ÿ 𝑂𝑏𝑗

𝐷𝑖𝑓𝑓

OptimizationOne-iteration analysis

MDA

π‘«π’Šπ’‡π’‡ = 𝑼 βˆ’ 𝒖

Page 46: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense46

π‘«π’Šπ’‡π’‡ π’–πŸπŸ π‘ΌπŸπŸ 𝑢𝒃𝒋𝑫𝑽 𝑼𝑽 π‘ͺ𝒐𝒏

Concurrently enforce compatibility and estimate outputs

In each call of BN:

β€’ 𝐷𝑉 = 𝑑𝑒𝑠𝑖𝑔𝑛 π‘£π‘Žπ‘™π‘’π‘’, 𝑑𝑖𝑓𝑓 = 0 compatibility

Conditional samples of

objective and constraint are

generated for further analysis

Interdisciplinary compatibility and objective/constraint evaluation

simultaneously achieved using BNC

Page 47: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense47

MDO with High-dimensional Coupling

𝐷𝑉 π‘ˆπ‘‰

πΆπ‘œπ‘›π‘ π‘‘π‘Ÿ 𝑂𝑏𝑗

π‘ƒπΆπ‘ˆ21

𝑖𝑃𝐢𝑒21𝑖

πœ€π‘ƒπΆπ‘–

π‘ƒπΆπ‘ˆ21

2𝑃𝐢𝑒212

πœ€π‘ƒπΆπ‘–

π‘ƒπΆπ‘ˆ21

𝑙𝑃𝐢𝑒21𝑙

πœ€π‘ƒπΆπ‘–

β€’ The size of the Bayesian network

becomes very large

β€’ Including all coupling variables in one BN

is unwieldy for training and sampling.

BN reduction with PCA

1

MAR 17 2015

09:30:53

ELEMENTS

1

MAR 17 2015

12:54:37

ELEMENTS

Nodal Pressures

Nodal

Displacements

FEA CFD

Aeroelastic wing analysis

MDA

π’Šπ’•π’‰ PC at 𝒏 βˆ’ πŸπ’•π’‰

iterationπ’Šπ’•π’‰ PC at 𝒏𝒕𝒉

iteration

Difference

Small uncorrelated

Page 48: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense48

Electrical

Parameters

Component Heat

Total Power

Dissipation

Heatsink

Temperature

Electrical

Analysis

Thermal

Analysis

Watt Density: Total Power DissipationVolume of the Heatsink

Heatsink Size

Parameters

Example-1 : Electronic packaging

MDO test suite: Heatsink

Design variables:

π‘₯1: heat sink width

π‘₯2: heat sink length

π‘₯3: fin length

π‘₯4: fin width

Uncertain variables:

Variability of π‘₯1~π‘₯4

π‘₯5: nominal resistance at temperature π‘‡π‘œ

π‘₯6: temperature coefficient of electrical resistance

Likelihood-based non-parametric distribution

Page 49: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense49

Case I: MDO with data uncertainty (coarsest mesh size for thermal analysis)

maxπœ‡π’™

πœ‡π‘ƒπ· 𝑿

s.t.

𝑃 π‘‡π‘’π‘šπ‘ < 56π‘œπΆ ∩ π‘‰π‘œπ‘™π‘’π‘šπ‘’ < 6𝐸 βˆ’ 4 π‘š3 β‰₯ 0.95

𝑙𝑏𝑖 ≀ πœ‡π‘‹π‘–β‰€ 𝑒𝑏𝑖

𝑖 = 1, … , 4

π‘‡β„Žπ‘’π‘Ÿπ‘šπ‘Žπ‘™ β„Žπ‘’π‘Žπ‘‘, 𝒙 βˆ’ π‘‘π‘’π‘šπ‘π‘’π‘Ÿπ‘Žπ‘‘π‘’π‘Ÿπ‘’ = 0

πΈπ‘™π‘’π‘π‘‘π‘Ÿπ‘–π‘π‘Žπ‘™ π‘‘π‘’π‘šπ‘π‘’π‘Ÿπ‘Žπ‘‘π‘’π‘Ÿπ‘’ βˆ’ β„Žπ‘’π‘Žπ‘‘ = 0

Joint probability RBDO:

BN for optimization

Design

variables

Uncertainty

sources

Coupling

variables

System output

Compatibility

condition

β€’ Solved using the proposed BNC-MDO

β€’ Component temperature is used to enforce the compatibility

Optimizer:

DIviding RECTangle

(DIRECT)

π‘₯1_𝑠𝑑 π‘₯2_𝑠𝑑 π‘₯3_𝑠𝑑 π‘₯4_𝑠𝑑 π‘₯5 π‘₯6

Page 50: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense50

Results

Number of training samples for BN = 800 (5 seconds)

Time for optimization with BNC = ~4 min

RBDO using SOFPI (feedback): 10,000 / obj(con) evaluation

No. of function evaluations till convergence ~= 5

Total number of function evaluations = 6,950,000 (~ 4 hours)

β€’ BN gives larger (hence better) objective values

β€’ SOFPI produces suboptimal solution (insufficient samples, unreliable)

SOFPI

(original model)

BNC-MDO(surrogate)

π’™πŸ 0.056 0.052

π’™πŸ 0.056 0.052

π’™πŸ‘ 0.021 0.021

π’™πŸ’ 0.039 0.024

objective 73172 73781

re-evaluate with

original model

objectiveN/A

84997

constraint 0.962

Page 51: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense51

Case II: MDO with model uncertainty

Model error in thermal Analysis

β€’ 2D steady state heat transfer equation (PDE)

π›»π‘‡π‘ π‘–π‘›π‘˜ π‘₯, 𝑦 +π‘ž(π‘₯, 𝑦)

π‘˜= 0

β€’ Solved by Finite Difference methodβ€’ Limited computational resources

discretization error

At each realization of input 𝒙:

Training

pointsGP

Prediction

Auxiliary variable π‘ƒβ„Ž representation of the stochastic model output

Sample π‘ƒβ„Ž from π‘ˆ(0,1) inverse CDF deterministic output

β€’ GP prediction ~ 𝑁(πœ‡, 𝜎)

πœ‡ and 𝜎 are input dependent

Page 52: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense52

Representation of Model Error in BN

Design

variables

Uncertainty

sources

Coupling

variables

System

output

Compatibility

condition

(including 𝑷𝒉)

π‘₯1_𝑠𝑑 π‘₯2_𝑠𝑑 π‘₯3_𝑠𝑑 π‘₯4_𝑠𝑑 π‘₯5 π‘₯6 π‘ƒβ„Ž

Page 53: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense53

Results

Design

Variables

RBDO using

FPI

Design

Variables

π‘₯1 0.077

π‘₯2 0.149

π‘₯3 0.021

π‘₯4 0.010

Objective 𝝁𝑾𝑫 11170

Constraint Joint Probability 0.99

β€’ Cannot implement SOFPI since the FPI is hard to converge with stochastic

model output.

Iteration

𝝁𝑾𝑫

β€’ Optimizer: Genetic algorithm

β€’ 100 populations, 15 iterations.

β€’ Build BN with 120 samples (240 function evaluations).

Page 54: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense54

π‘΅π‘·πŸ‘ π‘΅π‘·πŸ’

Example-2 Aeroelastic wing design

Design variables:

β€’ Backsweep angle πœƒ: [0 , 0.5]

β€’ Input variability: πœŽπœƒ ~ 𝑁(0, 0.03)

β€’ FPI takes 10 iterations to converge

Coupling variables: nodal pressure

β€’ 𝑁𝑃3: nodal pressure after 3rd iteration

β€’ 𝑁𝑃4: nodal pressure after 4th iteration

π‘΅π‘·πŸ‘ after PCA π‘΅π‘·πŸ’ after PCA

Difference = 0

I/O

BN with 30 principal components

Page 55: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense55

Optimization problem and solution

Optimal Value

Design

variableππ’ƒπ’˜ 0.405

Objective ππ’π’Šπ’‡π’• 1707.5

Constraint 𝑃(π‘ π‘‘π‘Ÿπ‘’π‘ π‘ ) 0.998

Optimizer: DIRECT

67 calls of BN

547 seconds

maxππ’ƒπ’˜

𝐸 𝐿

s.t

𝑃 𝑆 β‰₯ 3 βˆ— 105π‘ƒπ‘Ž ≀ 10βˆ’3

0.05 ≀ πœ‡π‘π‘€ ≀ 0.45

Optimization formulation

Optimal solution Optimization history

0 5 101695

1700

1705

1710

No. of iterations

Lift

BN is trained with samples without full convergence analysis

Page 56: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense56

Objective-4 summary

BNC-MDO under uncertainty

β€’ Efficiently integrates of MDA and optimization under

uncertainty

β€’ Simultaneously enforces the interdisciplinary

compatibility and evaluates objectives and constraints

Features of methodology

β€’ BNC

β€’ PCA

β€’ Optimization algorithm (DIRECT/GA)

Page 57: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense57

Future Work

(1)Scalability of the proposed BNC-MDA approach needs to be

investigated by solving larger problems.

(2)Extension in multi-level analyses, and multi-disciplinary feedback

coupled analyses (for more than two disciplines).

(3)Extension to robustness-based design optimization under both aleatory

and epistemic uncertainty.

(4)Analytical multi-normal integration of the Gaussian copula instead of

the sampling-based strategy for reliability assessment.

(5) Improve the efficiency for non-Gaussian copulas.

(6)Extension to time-dependent problems.

Page 58: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense58

List of journal manuscripts

1. Liang, C. and Mahadevan, S., Stochastic Multi-Disciplinary Analysis under Epistemic Uncertainty, Journal of Mechanical Design, Vol. 137, Issue 2, 2015.

2. Liang, C. and Mahadevan, S., Bayesian Sensitivity Analysis and Uncertainty Integration for Robust Optimization, Journal of Aerospace Information Systems, Vol 12, Issue 1, 2015.

3. Rangavajhala, S., Liang, C., Mahadevan, S. and Hombal, V., Concurrent optimization of mesh refinement and design parameters in multidisciplinary design, Journal of Aircraft, Vol. 49, No. 6, 2012.

4. Liang, C. and Mahadevan, S., Stochastic Multidisciplinary Analysis with High-Dimensional Coupling, AIAA Journal, under review.

5. Liang, C. and Mahadevan, S., Pareto Surface Construction for Multi-objective Optimization under Uncertainty, ready for submission.

6. Liang, C. and Mahadevan, S., Probabilistic Graphical Modeling for Multidisciplinary Optimization, ready for submission.

Page 59: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense59

List of conference proceedings

1. Liang, C. and Mahadevan, S., Reliability-based Multi-objective Optimization under Uncertainty,

16th AIAA/ISSMO Multidisciplinary Analysis and Optmization Conference, Dallas, Texas, 2015.

2. Liang, C. and Mahadevan, S., Bayesian Framework for Multidisciplinary Uncertainty

Quantification and Optimization, 16th AIAA Non-Deterministic Approaches Conference, National

Harbor, Maryland, 2014.

3. Liang, C. and Mahadevan, S., Multidisciplinary Analysis and Optimization under Uncertainty,

11th International Conference on Structural Safety and Reliability, New York, New York, 2013.

4. Liang, C. and Mahadevan, S., Multidisciplinary Analysis under Uncertainty, 10th World

Congress of Structural and Multidisciplinary Optimization, Orlando, Florida, 2013.

5. Liang, C. and Mahadevan, S., Design Optimization under Aleatory and Epistemic Uncertainty,

10th World Congress of Structural and Multidisciplinary Optimization, Orlando, Florida, 2013.

6. Liang, C. and Mahadevan, S., Inclusion of Data Uncertainty and Model Error in Multi-

disciplinary Analysis and Optimization, 54th Structures, Structural Dynamics, and Materials

Conference, Boston, Massachusetts, 2013.

7. Liang, C. and Mahadevan, S., Design Optimization under Aleatory and Epistemic Uncertainties,

14th Multidisciplinary Analysis and Optimization Conference, Indianapolis, Indiana, 2012.

Page 60: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense60

Acknowledgement

Committee members:

Dr. Prodyot Basu (CEE)

Dr. Mark N. Ellingham (Math)

Dr. Mark P. McDonald (Lipscomb)

Dr. Dimitri Mavris (GT)

Dr. Roger M. Cooke (TU Delft)

University of Melbourne:

Dr. Anca Hanea

Dan Ababei

Vanderbilt University:Dr. Sirisha Rangvajhala

Dr. Shankar Sankararaman

Dr. You Ling

Dr. Vadiraj Hombal

Adviser:

Dr. Sankaran Mahadevan

Ghina Nakad Absi, Dr. Bethany Burkhart, Beverly Piatt

Defense preparation:

Great friends at Vanderbilt University !

Page 61: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense61

Acknowledgement

Funding support:

(1) NASA Langley National Laboratory

(2) Sandia National Laboratory

(3) Vanderbilt University, Department of Civil and Environmental

Engineering

Software Licenses:

(1) UNINET by LightTwist Inc. (Dan Ababei)

(2) VisualDOC by Vanderplaats R&D Inc. (Garret Vanderplaats,

Juan-Pablo Leiva)

Page 62: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense62

Page 63: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense63

Fit a Gaussian process model to 𝒇 with π‘₯𝑇 and 𝑦𝑇 as inputs, and

predict the function value at desired points π‘₯𝑃:

GP Model the underlying covariance in the data instead of the functional

form:

GP Surrogate Modeling

𝑝 𝑓𝑝 π’šπ‘», 𝒙𝑻, 𝒙𝑷, 𝚯 ~𝑁(π‘š, 𝑆)

Function

valueTraining

dataPrediction

Point

GP

Parameters

Gaussian distribution

π’Ž = 𝑲𝑷𝑻 𝑲𝑻𝑻 + πˆπ’πŸπ‘°

βˆ’πŸπ’šπ‘»

𝑺 = 𝑲𝑷𝑷 βˆ’ 𝑲𝑷𝑻 𝑲𝑻𝑻 + πˆπ’πŸπ‘°

βˆ’πŸπ‘²π‘»π‘·

β€’ Models that evaluate π’ˆ are substituted by GP

Page 64: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense64

Vine copula based sampling

𝑋1

π‘Œ1 π‘Œ2

𝑋2

M

𝑋1

𝑋2

π‘Œ1

π‘Œ2

Goal: estimate 𝑓 𝑋1, 𝑋2, π‘Œ1, π‘Œ2

πœŒπ‘–π‘— = 2sin(π‘Ÿπ‘–π‘—πœ‹

6) 𝜌12;3…𝑛 =

𝜌12;3…,π‘›βˆ’1 βˆ’ 𝜌1𝑛;3,…,π‘›βˆ’1 βˆ— 𝜌2𝑛;3,…,π‘›βˆ’1

1 βˆ’ 𝜌1𝑛;3,…,π‘›βˆ’12 1 βˆ’ 𝜌2𝑛;3,…,π‘›βˆ’1

2

𝑐𝑅 𝑷 =1

det 𝑅exp βˆ’

1

2

Ξ¦βˆ’1 𝑃π‘₯1

Ξ¦βˆ’1 𝑃π‘₯2

Ξ¦βˆ’1 𝑃𝑦1

Ξ¦βˆ’1 𝑃𝑦2

βˆ™ π‘…βˆ’1 βˆ’ 𝐼 βˆ™

Ξ¦βˆ’1 𝑃π‘₯1

Ξ¦βˆ’1 𝑃π‘₯2

Ξ¦βˆ’1 𝑃𝑦1

Ξ¦βˆ’1 𝑃𝑦2

where πœŒπ‘–π‘— are the elements of 𝑅

π‘Ÿπ‘–π‘—

Page 65: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense65

Kullback-Leibler Divergence

For continuous distributions 𝑝 and π‘ž

𝐷𝐾𝐿(𝑝||π‘ž) = βˆ’βˆž

+∞

𝑝(π‘₯)l n(𝑝 π‘₯

)π‘ž(π‘₯)𝑑π‘₯

Numerical implementation

𝐷𝐾𝐿(𝑝||π‘ž) =

𝑖=1

𝑛

ln𝑝 π‘₯𝑖

π‘ž π‘₯𝑖𝑝 π‘₯𝑖 βˆ— (π‘₯𝑖 βˆ’ π‘₯π‘–βˆ’1)

Page 66: Multidisciplinary analysis and optimization under uncertainty

Multidisciplinary analysis and optimization

under uncertainty

Chen Liang

Doctoral Dissertation Defense66

Vine copula based sampling

𝑋1

π‘Œ1 π‘Œ2

25

4

6

𝑋21

M

𝑋1

𝑋2

π‘Œ1

π‘Œ2

Goal: estimate 𝑓 𝑋1, 𝑋2, π‘Œ1, π‘Œ2

π‘Ÿπ‘‹2π‘Œ2π‘Ÿπ‘‹1π‘Œ1 π‘Ÿπ‘‹1𝑋2

π‘Ÿπ‘‹2π‘Œ1|𝑋1

π‘Ÿπ‘Œ1π‘Œ2|𝑋1𝑋2

𝑋1 𝑋2π‘Œ1 π‘Œ2

π‘Ÿπ‘‹1π‘Œ2|𝑋2

πœŒπ‘–π‘— = 2sin(π‘Ÿπ‘–π‘—πœ‹

6)

𝜌12;3…𝑛 =𝜌12;3…,π‘›βˆ’1 βˆ’ 𝜌1𝑛;3,…,π‘›βˆ’1 βˆ— 𝜌2𝑛;3,…,π‘›βˆ’1

1 βˆ’ 𝜌1𝑛;3,…,π‘›βˆ’12 1 βˆ’ 𝜌2𝑛;3,…,π‘›βˆ’1

2

𝑐𝑅 𝑷 =1

det 𝑅exp βˆ’

1

2

Ξ¦βˆ’1 𝑃π‘₯1

Ξ¦βˆ’1 𝑃π‘₯2

Ξ¦βˆ’1 𝑃𝑦1

Ξ¦βˆ’1 𝑃𝑦2

βˆ™ π‘…βˆ’1 βˆ’ 𝐼 βˆ™

Ξ¦βˆ’1 𝑃π‘₯1

Ξ¦βˆ’1 𝑃π‘₯2

Ξ¦βˆ’1 𝑃𝑦1

Ξ¦βˆ’1 𝑃𝑦2

where πœŒπ‘–π‘— are the elements of π‘