Multi Degree of Freedom

Embed Size (px)

Citation preview

  • 7/29/2019 Multi Degree of Freedom

    1/67

    Twodegreeoffreedomsystems

    Equationsofmotionforforcedvibration

    Freevibrationanalysisofanundampedsystem

  • 7/29/2019 Multi Degree of Freedom

    2/67

    Systemst atrequiretwoin epen entcoor inatesto escri et eir

    motionarecalledtwodegreeoffreedomsystems.

    masseachofmotionofs stemin thes stemtheof

    typespossibleofnumbermassesofNumberfreedomofdegrees

    oum

    er

  • 7/29/2019 Multi Degree of Freedom

    3/67

    T erearetwoequations oratwo egreeo ree omsystem,one oreac

    mass(preciselyoneforeachdegreeoffreedom).

    Theyaregenerallyintheformofcoupleddifferentialequationsthatis,

    eachequationinvolvesallthecoordinates.

    Ifaharmonicsolutionisassumedforeachcoordinate,theequationsof

    motionleadtoafre uenc e uation that ivestwonaturalfre uenciesof

    thesystem.

  • 7/29/2019 Multi Degree of Freedom

    4/67

    weg vesu a e n a exc a on, esys emv ra esa oneo esenaturalfrequencies.Duringfreevibrationatoneofthenatural

    frequencies,the

    amplitudes

    of

    the

    two

    degrees

    of

    freedom

    (coordinates)

    mode,principlemode,ornaturalmodeofvibration.

    Thus

    a

    two

    degree

    of

    freedom

    system

    has

    two

    normal

    modes

    of

    vibration

    correspondingtotwonaturalfrequencies.

    Ifwegiveanarbitraryinitialexcitationtothesystem,theresultingfreevibrationwillbeasuperpositionofthetwonormalmodesofvibration.

    However,if

    the

    system

    vibrates

    under

    the

    action

    of

    an

    external

    harmonic

    force,theresultingforcedharmonicvibrationtakesplaceatthefrequencyoftheappliedforce.

  • 7/29/2019 Multi Degree of Freedom

    5/67

    Asisevi ent romt esystemss ownint e igures,t econ igurationo a

    systemcanbespecifiedbyasetofindependentcoordinatessuchas

    length,angle

    or

    some

    other

    physical

    parameters.

    Any

    such

    set

    of

    coordinatesiscalledgeneralizedcoordinates.

    generallycoupled

    so

    that

    each

    equation

    involves

    all

    coordinates,

    it

    is

    alwayspossibletofindaparticularsetofcoordinatessuchthateach

    equat ono mot onconta nson yonecoor nate. eequat onso mot on

    arethenuncoupled andcanbesolvedindependentlyofeachother.Such

    aset

    of

    coordinates,

    which

    leads

    to

    an

    uncoupled

    system

    of

    equations,

    is

    calledprinciplecopordinates.

  • 7/29/2019 Multi Degree of Freedom

    6/67

    Equationsofmotionforforced

    vibration Consi eraviscous y ampe two egreeo ree omspringmasssystem

    showninthefigure.

    Themotionofthesystemiscompletelydescribedbythecoordinatesx1(t)

    andx2(t),whichdefinethepositionsofthemassesm1 andm2 atanytimet

    .

  • 7/29/2019 Multi Degree of Freedom

    7/67

    Equationsofmotionforforced

    vibration T eexterna orcesF1 an F2 actont emassesm1 an m2,respective y.

    Thefreebodydiagramsofthemassesareshowninthefigure.

    Thea lication ofNewtonssecondlawofmotiontoeachofthemasses

    givestheequationofmotion:

  • 7/29/2019 Multi Degree of Freedom

    8/67

    Equationsofmotionforforced

    vibration Itcan eseent att e irstequationcontainstermsinvo vingx2,w ereas

    thesecondequationcontainstermsinvolvingx1.Hence,theyrepresenta

    systemof

    two

    coupled

    second

    order

    differential

    equations.

    We

    can

    thereforeexpectthatthemotionofthem1 willinfluencethemotionof

    m2,andvicaversa.

  • 7/29/2019 Multi Degree of Freedom

    9/67

    Equationsofmotionforforced

    vibration T eequationscan ewritteninmatrix ormas:

    , , ,

    respectively andx(t)andF(t)arecalledthedisplacementandforce

    vectors,respectively.whicharegivenby:

  • 7/29/2019 Multi Degree of Freedom

    10/67

    Equationsofmotionforforced

    vibration Itcan eseent att ematrices m , c an area 2x2matricesw ose

    elementsaretheknownmasses,dampingcoefficienst,andstiffnessofthe

    system,respectively.

    Further,thesematricescanbeseentobesymmetric,sothat:

    Freevibrationanalysisofanundampedsystem

    ,

    F1(t)=F2(t)=0.Further,ifthedampingisdisregarded,c1=c2=c3=0,andthe

    equationsofmotionreduceto:

  • 7/29/2019 Multi Degree of Freedom

    11/67

    Freevibrationanalysisofan

    undampedsystem

    Weareintereste in nowingw et erm1 an m2 canosci ate

    harmonicallywiththesamefrequencyandphaseanglebutwithdifferent

    amplitudes.Assuming

    that

    it

    is

    possible

    to

    have

    harmonic

    motion

    of

    m1

    andm2 atthesamefrequency andthesamephaseangle,wetakethesolutionstotheequations

    as:

    w ere 1 an 2 areconstantst at enotet emax mumamp tu eso

    x1(t)andx2(t)and isthephaseangle.Substitutingtheabovetwosolutionsintothefirsttwoequations,wehave:

  • 7/29/2019 Multi Degree of Freedom

    12/67

    Freevibrationanalysisofan

    undampedsystem

    Sincetheaboveequationsmustbesatisfiedforallvaluesoftimet,the

    termsbetweenbracketsmustbezero.Thisyields,

    theunknownsX1 andX2.Itcanbeseenthattheaboveequationcanbe

    satisfied

    by

    the

    trivial

    soution

    X1=X2=0,

    which

    implies

    that

    there

    is

    no

    v rat on. oranontr v a so ut ono 1 an 2,t e eterm nanto

    coefficientsofX1 andX2 mustbezero.

  • 7/29/2019 Multi Degree of Freedom

    13/67

    Freevibrationanalysisofan

    undampedsystem

    Theaboveequationiscalledthefrequency orcharacteristicequation

    0}))({(})({)( 2232212

    1322214

    21 kkkkkmkkmkkmm

    because

    solution

    of

    this

    equation

    yields

    the

    frequencies

    of

    the

    characteristicvaluesofthesystem.Therootsoftheaboveequationare

    ivenb :

  • 7/29/2019 Multi Degree of Freedom

    14/67

    Freevibrationanalysisofan

    undampedsystem

    ss ows a sposs e or esys em o aveanon r v a armon csolutionoftheform

    when=1 and=2 givenby:

    WeshalldenotethevaluesofX1 andX2 correspondingto1 asandthosecorrespondingto2 as .

  • 7/29/2019 Multi Degree of Freedom

    15/67

    Freevibrationanalysisofan

    undampedsystem

    ur er,s nce

    theaboveequationishomogeneous,onlytheratios andr2= canbefound.For ,theequations

    give:

    Noticethatthetworatiosareidentical.

  • 7/29/2019 Multi Degree of Freedom

    16/67

    Freevibrationanalysisofan

    undampedsystem

    enorma mo eso v ra oncorrespon ng o can eexpressed,respectively,as:

    Thevectors ,whichdenotethenormalmodesofvibrationareknownasthemodalvectorsofthes stem.Thefreevibrationsolutionor

    themotion

    in

    time

    can

    be

    expressed

    using

    wheretheconstants aredeterminedbytheinitialconditions.

  • 7/29/2019 Multi Degree of Freedom

    17/67

    Freevibrationanalysisofan

    undampedsystem

    n a con ons:

    Eachofthetwoequationsofmotion,

    involvessecondordertimederivatives;henceweneedtospecifytwo.

    Thesystem

    can

    be

    made

    to

    vibrate

    in

    its

    ith

    normal

    mode

    (i=1,2)

    by

    subjectingittothespecificinitialconditions.

    However,for

    any

    other

    general

    initial

    conditions,

    both

    modes

    will

    be

    excited.Theresultingmotion,whichisgivenbythegeneralsolutionoftheequations

    can

    be

    obtained

    by

    a

    linear

    superposition

    of

    two

    normal

    modes.

  • 7/29/2019 Multi Degree of Freedom

    18/67

    Freevibrationanalysisofan

    undampedsystem

    n a con ons:

    Since

    and

    alreadyinvolve

    the

    unknown

    constants

    and

    constants.arecandcwhere

    )()()(

    21

    2211 txctxctx

    wecanchoosec1=c2=1withnolossofgenerality.Thus,thecomponentsofthevector canbeexpressed as:)(tx

    wheretheunknown canbedeterminedfromtheinitialconditions

  • 7/29/2019 Multi Degree of Freedom

    19/67

    Freevibrationanalysisofan

    undampedsystem

  • 7/29/2019 Multi Degree of Freedom

    20/67

    Freevibrationanalysisofan

    undampedsystem

  • 7/29/2019 Multi Degree of Freedom

    21/67

    Freevibrationanalysisofan

    undampedsystem

  • 7/29/2019 Multi Degree of Freedom

    22/67

    Examp e:Fin t enatura requenciesan

    modeshapesofaspringmasssystem,which

    isconstrained

    to

    move

    in

    the

    vertical

    direction.

    Solution:Theequationsofmotionaregiven

    Byassumingharmonicsolutionas:

    thefrequencyequationcanbeobtainedby:

  • 7/29/2019 Multi Degree of Freedom

    23/67

    Thesolutiontotheaboveequationgivesthenaturalfrequencies:

  • 7/29/2019 Multi Degree of Freedom

    24/67

    From

    theamplitude

    ratios

    are

    given

    by:

  • 7/29/2019 Multi Degree of Freedom

    25/67

    From

    Thenaturalmodesaregivenby

  • 7/29/2019 Multi Degree of Freedom

    26/67

    T enatura mo esare

    givenby:

  • 7/29/2019 Multi Degree of Freedom

    27/67

    Itcan eseent atw ent esystemvi ratesinits irstmo e,t e

    amplitudesofthetwomassesremainthesame.Thisimpliesthatthe

    lengthof

    the

    middle

    spring

    remains

    constant.

    Thus

    the

    motions

    of

    the

    mass1andmass2areinphase.

  • 7/29/2019 Multi Degree of Freedom

    28/67

    W ent esystemvi ratesinitssecon mo e,t eequations e ows ow

    thatthedisplacementsofthetwomasseshavethesamemagnitudewith

    oppositesigns.

    Thus

    the

    motions

    of

    the

    mass

    1and

    mass

    2are

    out

    of

    phase.Inthiscase,themidpointofthemiddlespringremainsstationary

    foralltime.Suchapointiscalledanode.

  • 7/29/2019 Multi Degree of Freedom

    29/67

    Usingequations

    themotion(generalsolution)ofthesystemcanbeexpressedas:

  • 7/29/2019 Multi Degree of Freedom

    30/67

    eequa ono mo ono agenera wo egreeo ree omsys emun erexternalforcescanbewrittenas:

    Weshall

    consider

    the

    external

    forces

    to

    be

    harmonic:

    where istheforcingfrequency.Wecanwritethesteadystatesolutionas:

    whereX1 andX2 are,ingeneral,complexquantitiesthatdependon andthesystemparameters.Substitutingtheabovetwoequationsintothefirstone:

  • 7/29/2019 Multi Degree of Freedom

    31/67

    Weo tain:

    IfwedefineatermcalledmechanicalimpedanceZrs(i) as:

    an wr te t e rst equat on as:

    where

  • 7/29/2019 Multi Degree of Freedom

    32/67

  • 7/29/2019 Multi Degree of Freedom

    33/67

    Multidegreeoffreedomsystems

    Modelingofcontinuoussystemsasmultidegreeoffreedomsystems

    Eigenvalueproblem

  • 7/29/2019 Multi Degree of Freedom

    34/67

    ss a e e ore,mos eng neer ngsys emsarecon nuous an haveaninfinitenumberofdegreesoffreedom.Thevibration

    analysis

    of

    continuous

    systems

    requires

    the

    solution

    of

    partial

    ,

    .

    Infact,analyticalsolutionsdonotexistformanypartialdifferentialequat ons. eana ys so amu t egreeo ree omsystemont e

    otherhand,

    requires

    the

    solution

    of

    aset

    of

    ordinary

    differential

    equations,whichisrelativelysimple.Hence,forsimplicityof,

    multidegreeoffreedomsystems.

    Forasystemhavingndegreesoffreedom,therearenassociatednaturalfrequencies,eachassociatedwithitsownmodeshape.

  • 7/29/2019 Multi Degree of Freedom

    35/67

    multidegreeoffreedomsystem.Asimplemethodinvolvesreplacingthedistributedmass orinertiaofthesystembyafinitenumberoflumpedmassesor

    rigidbodies.

    Thelumpedmassesareassumedtobeconnectedbymasslesselasticanddampingmembers.

    Linear

    coordinates

    are

    used

    to

    describe

    the

    motion

    of

    the

    lumped

    masses.

    Such

    modelsarecalledlumpedparameteroflumpedmassordiscretemasssystems.

    Theminimumnumberofcoordinatesnecessarytodescribethemotionofthelumpedmassesandrigidbodiesdefinesthenumberofdegreesoffreedomofthesystem.Naturally,thelargerthenumberoflumpedmassesusedinthemodel,the

    .

  • 7/29/2019 Multi Degree of Freedom

    36/67

    indicatethetypeoflumpedparametermodeltobeused.

    Forexample,thethreestoreybuildingshowninthefigureautomaticall su estsusin athreelumpedmassmodelasindicated

    in

    the

    figure.

    Inthismodel,theinertiaofthesystemisassumedtobeconcentratedasthreepoint

    levels,andtheelasticitiesofthecolumnsarereplacedbythes rin s.

  • 7/29/2019 Multi Degree of Freedom

    37/67

    Anot erpopu armet o o approximatingacontinuoussystemasa

    multidegreeoffreedomsysteminvolvesreplacingthegeometryofthe

    systemby

    alarge

    number

    of

    small

    elements.

    Byassumingasimplesolutionwithineachelement,theprinciplesof

    compatibility andequilibrium areusedtofindanapproximatesolutionto

    . .

  • 7/29/2019 Multi Degree of Freedom

    38/67

    UsingNewtonssecondlawtoderive

    equationsof

    motion

    amultidegreeoffreedomsystemusingNewtonssecondlawofmotion.

    .

    masses andrigidbodiesinthesystem.Assumesuitablepositivedirectionsforthedisplacements,velocitiesandaccelerationsofthemassesandrigidbodies.

    2. Determinethe

    static

    equilibrium

    configuration

    of

    the

    system

    and

    measure

    thedisplacementsofthemassesandrigidbodiesfromtheirrespectivestatic.

    3. Drawthefreebodydiagramofeachmassorrigidbodyinthesystem.

    ,bodywhenpositivedisplacementorvelocityaregiventothatmassorrigid

    body.

  • 7/29/2019 Multi Degree of Freedom

    39/67

    UsingNewtonssecondlawtoderive

    equationsof

    motion

    4.App yNewton ssecon awo motiontoeac massorrigi o ys own y

    thefreebodydiagramas:

    Example:Derivetheequationsofmotionofthespringmassdampersystem

    s ownint e igure.

    d l d

  • 7/29/2019 Multi Degree of Freedom

    40/67

    UsingNewtonssecondlawtoderive

    equationsof

    motion

    Draw ree o y iagramso massesan app yNewton ssecon awo

    motion.Thecoordinatesdescribingthepositionsofthemasses,xi(t),are

    measuredfrom

    their

    respective

    static

    equilibrium

    positions,

    as

    indicated

    inthefigure.TheapplicationoftheNewtonssecondlawofmotionto

    massmi gives:

    or

    Theequationsofmotionofthemassesm1 andm2 canbederivedfromthe

    aboveequationsbysettingi=1alongwithxo=0andi=nalongwithxn+1=0,

    .

  • 7/29/2019 Multi Degree of Freedom

    41/67

    T eequationso motioninmatrix ormint ea oveexamp e can e

    expressedas:

  • 7/29/2019 Multi Degree of Freedom

    42/67

  • 7/29/2019 Multi Degree of Freedom

    43/67

    oranun ampe sys em, eequa onso mo onre uce o:

    Thedifferential

    equations

    of

    the

    spring

    mass

    system

    considered

    in

    the

    example,canbeseentobecoupled.Eachequationinvolvesmorethanonecoordinate.Thismeansthattheequationscannotbesolvedindividuallyoneatatime;theycanonlybesolvedsimultaneously.

    Inaddition,thesystemcanbeseentobestaticallycoupledsincestiffnesses are cou led that is the stiffness matrix has at least onenonzerooffdiagonalterm.Ontheotherhand,ifthemassmatrixhasatleastoneoffdiagonaltermnonzero,thesystemissaidtobedynamically

    coupled.Further,

    if

    both

    the

    stiffness

    and

    the

    mass

    matrices

    have

    nonzero

    offdiagonalterms,thesystemissaidtobecoupledbothstaticallyanddynamically.

  • 7/29/2019 Multi Degree of Freedom

    44/67

    T eequationso motion ora ree yvi ratingun ampe systemcan e

    obtainedbyomittingthedampingmatrixandappliedloadvectorfrom:

    0kxxcxm

    inwhich0isazerovector.Theproblemofvibrationanalysisconsistsof

    determiningtheconditionsunderwhichtheequilibriumconditionexpressed

    b the above e uation will be satisfied.

    Byanalogy

    with

    the

    behavour

    of

    SDOF

    systems,

    it

    will

    be

    assumed

    that

    the

    freevibrationmotionissimpleharmonic(thefirstequationbelow),which

    xxx

    xx

    22 )sin(

    )sin()(

    t

    tt

    Intheaboveexpressions, representstheshapeofthesystem(whichdoes

    notchangewithtime;onlytheamplitudevaries)and isaphaseangle.Thethirde uationabovere resentstheaccelerationsinthefreevibration.

    x

  • 7/29/2019 Multi Degree of Freedom

    45/67

    u s u ng

    xxx

    xx

    22

    )sin(

    )sin()(

    t

    tt

    intheequation0kxxcxm

    2

    which(since

    the

    sine

    term

    is

    arbitrary

    and

    may

    be

    omitted)

    may

    be

    written:

    xxm snsn

    0xmk 2

    Theaboveequationisonewayofexpressingwhatiscalledaneigenvalueorcharacteristicvalueproblem.Thequantities aretheeigenvaluesor

    characteristic

    values

    indicating

    the

    square

    of

    the

    free

    vibration

    2

    frequencies,whilethecorrespondingdisplacementvectors expressthecorrespondingshapesofthevibratingsystem knownastheeigenvectorsormodeshapes.

    x

  • 7/29/2019 Multi Degree of Freedom

    46/67

    can es own y ramer sru e a eso u ono sse osimultaneousequationsisoftheform:

    0

    Henceanontrivialsolutionispossibleonlywhenthedenominatordeterminantvanishes.Inotherwords finiteam litudefreevibrationsare

    mk2

    possibleonlywhen

    02

    mk

    .ExpandingthedeterminantwillgiveanalgebraicequationoftheNthdegreeinthefrequencyparameter forasystemhavingNdegreesof2

    .

    TheNrootsofthisequation representthefrequenciesoftheNmodesofvibrationwhicharepossibleinthesystem.

    2232221 ,....,,, N

  • 7/29/2019 Multi Degree of Freedom

    47/67

    emo e av ng e owes requency sca e e rs mo e, enexhigherfrequencyisthesecondmode,etc.

    Thevector

    made

    up

    of

    the

    entire

    set

    of

    modal

    frequencies,

    arranged

    in

    sequence,wi eca e t e requencyvector.

    2

    1

    Normalization:

    N

    3

    wasno e ear er a ev ra onmo eamp u eso a ne rom eeigenproblemsolutionarearbitrary;anyamplitudewillsatisfythebasicfrequencyequation

    2andonlytheresultingshapesareuniquelydefined.

  • 7/29/2019 Multi Degree of Freedom

    48/67

    Int eana ysisprocess escri e a ove,t eamp itu eo one egreeo

    freedom(thefirstactually)hasbeensettounity,andtheother

    displacementshave

    been

    determined

    relative

    to

    this

    reference

    value.

    This

    iscallednormalizingthemodeshapeswithrespecttothespecified

    referencecoordinate.

    Other

    normalizing

    procedures

    also

    are

    frequently

    used;

    e.g.,

    in

    many

    computerprograms,theshapesarenormalizedrelativetothemaximum

    sp acementva ue neac mo erat ert anw t respecttoany

    particularcoordinate.Thus,themaximumvalueineachmodalvectoris

    unity,whichprovidesconvenientnumbersforuseinsubsequent

    calculations.

  • 7/29/2019 Multi Degree of Freedom

    49/67

    enorma z ngproce uremos o enuse ncompu erprograms orstructuralvibrationanalysis,however,involvesadjustingeachmodalamplitudetotheamplitude ,whichsatisfiesthecondition

    n

    Thiscanbeaccomplishedbycomputingthescalarfactor1nn m

    nM mT

    n vmv

    where representsanarbitrarilydeterminedmodalamplitude,andthen

    computingthe

    normalized

    mode

    shapes

    as

    follows:

    nv

    2/1 MvBysimplesubstitution,itiseasytoshowthatthisgivsthedesiredresult.Aconsequenceofthistypeofnormalizingtogetherwiththemodalorthogonalityrelationshipsrelativetothemassmatrixisthat

    where isthecompletesetofNnormalizedmodeshapesandIisanNxNidentitymatrix.Themodeshapesnormalizedinthisfashionaresaidtobe

    Imn

    T

    n

    orthonormalrelativetothemassmatrix.

  • 7/29/2019 Multi Degree of Freedom

    50/67

    Amodelofafourstorythreebayframecanbeevaluatedto

    determinethemodeshapes. This2Dmodelisfromatypical

    .

    ,

    interest. Thefirst

    mode

    usually

    has

    the

    largest

    contribution

    to

    thestructure'smotion. The eriodofthismodeisthelon est

    andthenaturalfrequencyisthelowest.

    Pleaseclickonthemovietostart!

  • 7/29/2019 Multi Degree of Freedom

    51/67

    Firstmodesha e

  • 7/29/2019 Multi Degree of Freedom

    52/67

    Secondmodesha e

  • 7/29/2019 Multi Degree of Freedom

    53/67

    Thirdmodesha e

  • 7/29/2019 Multi Degree of Freedom

    54/67

    Examp e:

  • 7/29/2019 Multi Degree of Freedom

    55/67

  • 7/29/2019 Multi Degree of Freedom

    56/67

    So ution:

    Whenthecharacteristicequationpossessesrepeatedroots,the

    corres ondin

    modesha es

    are

    not

    uni ue.

  • 7/29/2019 Multi Degree of Freedom

    57/67

    So ution:

  • 7/29/2019 Multi Degree of Freedom

    58/67

    Anunrestraine systemisonet at asnorestraintsorsupportsan t at

    canmoveasarigidbody.Itisnotuncommontoseeinpracticesystems

    that

    are

    not

    attached

    to

    any

    stationary

    frame.

    Suchsystemsarecapableofmovingasrigidbodies,whichcanbe

    consideredasmodesofoscillationwithzerofrequency.

    , .

    systemsthat

    are

    not

    properly

    restrained,

    rigid

    body

    displacements

    can

    takeplacewithouttheapplicationofanyforce.Thus,denotingapossible

    r g o y sp acement yur,we ave

    0Kuf rr

    ,issingular.Inthiscase,thebelowequationcanonlybesatisfiedwhen

    =0. 0uMK r 2

  • 7/29/2019 Multi Degree of Freedom

    59/67

    T erigi o y isp acementsaret ose isp acementmo est att e

    elementmustbeabletoundergoasarigidbodywithoutstressesbeing

    developed

    in

    it.

    Rigidbodydisplacementshapesarealsoreferredtoasrigidbodymodes.

    Asystemcan,ofcourse,havemorethanonerigidbodymode.Inthemost

    , . ,

    spacecraftor

    an

    aeroplane

    in

    flight

    has

    all

    six

    possible

    rigid

    body

    modes,

    threetranslationsandthreerotations,onealongeachofthethreeaxis.

    Rigidbodymodesofaplanestresselement

  • 7/29/2019 Multi Degree of Freedom

    60/67

    T enatura mo escorrespon ingto i erentnatura requenciescan e

    showntosatisfythefollowingorthogonalityconditions.When :rn

    Proof: Thenthnaturalfrequencyandmodesatisfy

    rnrn m

    nnn mk

    2

    T

    Similarly

    the

    rth

    natural

    frequency

    and

    mode

    shape

    satisfy

    r

    nTrnn

    Tr mk

    2

    rrr mk2

  • 7/29/2019 Multi Degree of Freedom

    61/67

    Premu tip ying y gives:rrr m n

    r

    T

    nrr

    T

    n mk 2

    Thetransposeofthematrixontheleftsideof will

    equalthe transposeofthematrixontherightsideoftheequation:n

    Trnn

    Tr mk

    2

    Subtractingthe

    first

    equation

    from

    the

    second

    equation:

    rTnnr

    Tn mk

    2

    Theequation istruewhen whichforsystemswith

    022 rTnrn m

    0

    T

    mrn

    positivenaturalfrequenciesimpliesthat rn

    Modalequationsforundamped

  • 7/29/2019 Multi Degree of Freedom

    62/67

    q p

    systems T eequationso motion ora inearMDOFsystemwit out ampingis:

    p x

    haveillustratedbefore fora2dofsystemsubjectedtoharmonic

    excitationisnotefficientforsystemswithmoreDOF,norisitfeasiblefor

    . ,

    to

    transform

    these

    equations

    to

    modal

    coordinates. Thedisplacementvectorx ofaMDOF systemcanbeexpandedinterms

    ofmodalcontributions.Thus,thedynamicresponseofasystemcanbe

    expressedas:N

    )()()(1

    qt rr

    r qx

    Modalequationsforundamped

  • 7/29/2019 Multi Degree of Freedom

    63/67

    systemsN

    Usingt eequation ,t ecoup e equationsinxj t

    givenbelow

    p x

    )()()(1

    qrr

    r qx

    canbetransformed toasetofuncoupledequationswithmodal

    coordinatesqn(t)astheunknowns.Substitutingthefirstequationintothe

    p

    p N

    rrrrr

    N

    r

    (t )q(t )q

    p T

    NT

    NT

    Tn :givesbyequationin thiseach termyingPremultipl

    p nr rrnrrr n 11

    Modalequationsforundamped

  • 7/29/2019 Multi Degree of Freedom

    64/67

    systems ecauseo eor ogona yre a ons ,a

    termsineachofthesummationsvanishexceptther=nterm,reducingtheequationto:

    rnrn m

    or

    (t )q(t )q nnnnnnn

    p

    wherennnnn

    )()( ttPKM TnnnTnnnTnn pkm

    ea oveequa onmay e n erpre e as eequa ongovern ng eresponseqn(t)oftheSDOF systemwithmassMn,stiffnessKn,andexcitingforcePn(t).

    ere ore

    n sca e

    t e

    genera ze

    mass

    or

    t e

    nt

    natura

    mo e,

    n

    thegeneralizedstiffnessforthenthmode,andPn(t)thegeneralizedforceforthenthmode.Theseparametersonlydependonthenthmode.

  • 7/29/2019 Multi Degree of Freedom

    65/67

    W en ampingisinc u e ,t eequationso motion oraMDOFsystem

    are:

    p x Usingthetransformation

    p )()()( ttqt r

    N

    r qx

    wherer arethe natural modesofthesystemwithoutdamping,these

    equationscan

    be

    written

    in

    terms

    of

    the

    modal

    coordinates.

    Unlike

    the

    caseofundam eds stems,thesemodale uationsma becou led

    throughthedampingterms. However,forcertainformsofdampingthat

    arereasonableidealizationsformanystructures,theequationsbecome

    ,

    .equationintothefirst,weobtain:

    p NNN

    ttt p rrr 111

  • 7/29/2019 Multi Degree of Freedom

    66/67

    Premu tip yingeac termint isequation y gives:n

    T

    NT

    NT

    NT

    ttt

    whichcanberewrittenas:

    rrr 111

    (t )P(t )qK(t )qC(t )qM nnn

    N

    rrnrnn 1

    w erer

    TnnrC c

    HereCisanondiagonalmatrixofcoefficientsCnr.

    (t)PKqqCqM

  • 7/29/2019 Multi Degree of Freedom

    67/67

    Themodalequationswillbeuncoupledifthesystemhasclassical

    damping.ForsuchsystemsCnr=0ifnrandCn canbeexpressedas:

    Forsuchsystems:

    nnnn

    )(tPqKqCqM nnnnnnn n:

    )(2 2 nnnnnnn

    M

    tPqqq

    mode.nthfor theratiodampingtheiswhere n