MOSAICOSREGULARES

Embed Size (px)

Citation preview

  • 8/9/2019 MOSAICOSREGULARES

    1/7

    http://en.wikipedia.org/wiki/Tilings_of_regular_polygons

    Tiling by regular polygons

    From Wikipedia, the free encyclopedia

    (Redirected from Tilings of regular polygons)

    Planetilings by regular polygons have been widely used since antiquity. The first

    systematic mathematical treatment was that ofKeplerinHarmonices Mundi.

    Contents

    [hide]

    1 Regular tilings

    2 Archimedean, uniform or semiregular tilings

    3 Combinations of regular polygons that can meet at a vertex

    4 Other edge-to-edge tilings

    5 Tilings that are not edge-to-edge

    6 The hyperbolic plane

    7 See also

    8 References

    9 External links

    Regular tilings

    Following Grnbaum and Shephard (section 1.3), a tiling is said to be regularif the

    symmetry group of the tiling acts transitively on theflags of the tiling, where a flag is atriple consisting of a mutually incident vertex, edge and tile of the tiling. This means that

    for every pair of flags there is a symmetry operation mapping the first flag to the second.

    This is equivalent to the tiling being an edge-to-edge tiling bycongruent regular polygons.There must be six equilateral triangles, foursquares or three regularhexagons at a vertex,

    yielding the three regular tessellations.

    http://en.wikipedia.org/w/index.php?title=Tilings_of_regular_polygons&redirect=nohttp://en.wikipedia.org/wiki/Plane_(mathematics)http://en.wikipedia.org/wiki/Tessellationhttp://en.wikipedia.org/wiki/Regular_polygonhttp://en.wikipedia.org/wiki/Johannes_Keplerhttp://en.wikipedia.org/wiki/Harmonices_Mundihttp://en.wikipedia.org/wiki/Harmonices_Mundihttp://toggletoc%28%29/http://en.wikipedia.org/wiki/Tilings_of_regular_polygons#Regular_tilingshttp://en.wikipedia.org/wiki/Tilings_of_regular_polygons#Archimedean.2C_uniform_or_semiregular_tilingshttp://en.wikipedia.org/wiki/Tilings_of_regular_polygons#Combinations_of_regular_polygons_that_can_meet_at_a_vertexhttp://en.wikipedia.org/wiki/Tilings_of_regular_polygons#Other_edge-to-edge_tilingshttp://en.wikipedia.org/wiki/Tilings_of_regular_polygons#Tilings_that_are_not_edge-to-edgehttp://en.wikipedia.org/wiki/Tilings_of_regular_polygons#The_hyperbolic_planehttp://en.wikipedia.org/wiki/Tilings_of_regular_polygons#See_alsohttp://en.wikipedia.org/wiki/Tilings_of_regular_polygons#Referenceshttp://en.wikipedia.org/wiki/Tilings_of_regular_polygons#External_linkshttp://en.wikipedia.org/wiki/Branko_Gr%C3%BCnbaumhttp://en.wikipedia.org/wiki/Symmetry_grouphttp://en.wikipedia.org/wiki/Group_actionhttp://en.wikipedia.org/wiki/Vertex_(geometry)http://en.wikipedia.org/wiki/Edge-to-edge_tilinghttp://en.wikipedia.org/wiki/Congruence_(geometry)http://en.wikipedia.org/wiki/Congruence_(geometry)http://en.wikipedia.org/wiki/Equilateral_trianglehttp://en.wikipedia.org/wiki/Square_(geometry)http://en.wikipedia.org/wiki/Hexagonhttp://en.wikipedia.org/wiki/Hexagonhttp://en.wikipedia.org/w/index.php?title=Tilings_of_regular_polygons&redirect=nohttp://en.wikipedia.org/wiki/Plane_(mathematics)http://en.wikipedia.org/wiki/Tessellationhttp://en.wikipedia.org/wiki/Regular_polygonhttp://en.wikipedia.org/wiki/Johannes_Keplerhttp://en.wikipedia.org/wiki/Harmonices_Mundihttp://toggletoc%28%29/http://en.wikipedia.org/wiki/Tilings_of_regular_polygons#Regular_tilingshttp://en.wikipedia.org/wiki/Tilings_of_regular_polygons#Archimedean.2C_uniform_or_semiregular_tilingshttp://en.wikipedia.org/wiki/Tilings_of_regular_polygons#Combinations_of_regular_polygons_that_can_meet_at_a_vertexhttp://en.wikipedia.org/wiki/Tilings_of_regular_polygons#Other_edge-to-edge_tilingshttp://en.wikipedia.org/wiki/Tilings_of_regular_polygons#Tilings_that_are_not_edge-to-edgehttp://en.wikipedia.org/wiki/Tilings_of_regular_polygons#The_hyperbolic_planehttp://en.wikipedia.org/wiki/Tilings_of_regular_polygons#See_alsohttp://en.wikipedia.org/wiki/Tilings_of_regular_polygons#Referenceshttp://en.wikipedia.org/wiki/Tilings_of_regular_polygons#External_linkshttp://en.wikipedia.org/wiki/Branko_Gr%C3%BCnbaumhttp://en.wikipedia.org/wiki/Symmetry_grouphttp://en.wikipedia.org/wiki/Group_actionhttp://en.wikipedia.org/wiki/Vertex_(geometry)http://en.wikipedia.org/wiki/Edge-to-edge_tilinghttp://en.wikipedia.org/wiki/Congruence_(geometry)http://en.wikipedia.org/wiki/Equilateral_trianglehttp://en.wikipedia.org/wiki/Square_(geometry)http://en.wikipedia.org/wiki/Hexagon
  • 8/9/2019 MOSAICOSREGULARES

    2/7

    36

    Triangular tiling

    44

    Square tiling

    63

    Hexagonal

    Archimedean, uniform or semiregular tilings

    Vertex-transitivity means that for every pair of vertices there is a symmetry operation

    mapping the first vertex to the second.

    If the requirement of flag-transitivity is relaxed to one of vertex-transitivity, while thecondition that the tiling is edge-to-edge is kept, there are eight additional tilings possible,

    known asArchimedean, uniform orsemiregulartilings. Note that there are two mirror

    image (enantiomorphic orchiral) forms of 34.6 (snub hexagonal) tiling, both of which are

    shown in the following table. All other regular and semiregular tilings are achiral.

    34.6

    Snub hexagonal tiling

    34.6

    Snub hexagonal tilingreflection

    3.6.3.6

    Trihexagona

    http://en.wikipedia.org/wiki/Triangular_tilinghttp://en.wikipedia.org/wiki/Square_tilinghttp://en.wikipedia.org/wiki/Hexagonal_tilinghttp://en.wikipedia.org/wiki/Vertex-transitivehttp://en.wikipedia.org/wiki/Uniform_tessellationhttp://en.wikipedia.org/wiki/Mirror_imagehttp://en.wikipedia.org/wiki/Mirror_imagehttp://en.wikipedia.org/wiki/Chirality_(mathematics)http://en.wikipedia.org/wiki/Snub_hexagonal_tilinghttp://en.wikipedia.org/wiki/Snub_hexagonal_tilinghttp://en.wikipedia.org/wiki/Reflectionhttp://en.wikipedia.org/wiki/Reflectionhttp://en.wikipedia.org/wiki/Trihexagonal_tilinghttp://en.wikipedia.org/wiki/File:Tiling_Semiregular_3-6-3-6_Trihexagonal.svghttp://en.wikipedia.org/wiki/File:Tiling_Semiregular_3-3-3-3-6_Snub_Hexagonal_Mirror.svghttp://en.wikipedia.org/wiki/File:Tiling_Semiregular_3-3-3-3-6_Snub_Hexagonal.svghttp://en.wikipedia.org/wiki/File:Tiling_Regular_6-3_Hexagonal.svghttp://en.wikipedia.org/wiki/File:Tiling_Regular_4-4_Square.svghttp://en.wikipedia.org/wiki/File:Tiling_Regular_3-6_Triangular.svghttp://en.wikipedia.org/wiki/Triangular_tilinghttp://en.wikipedia.org/wiki/Square_tilinghttp://en.wikipedia.org/wiki/Hexagonal_tilinghttp://en.wikipedia.org/wiki/Vertex-transitivehttp://en.wikipedia.org/wiki/Uniform_tessellationhttp://en.wikipedia.org/wiki/Mirror_imagehttp://en.wikipedia.org/wiki/Mirror_imagehttp://en.wikipedia.org/wiki/Chirality_(mathematics)http://en.wikipedia.org/wiki/Snub_hexagonal_tilinghttp://en.wikipedia.org/wiki/Snub_hexagonal_tilinghttp://en.wikipedia.org/wiki/Reflectionhttp://en.wikipedia.org/wiki/Trihexagonal_tiling
  • 8/9/2019 MOSAICOSREGULARES

    3/7

  • 8/9/2019 MOSAICOSREGULARES

    4/7

    species of vertex; in four cases there are two distinct cyclic orders of the polygons, yielding

    twenty-one types of vertex. Only eleven of these can occur in a uniform tiling of regular

    polygons. In particular, if three polygons meet at a vertex and one has an odd number ofsides, the other two polygons must be the same size. If they are not, they would have to

    alternate around the first polygon, which is impossible if its number of sides is odd.

    With 3 polygons at a vertex:

    3.7.42 (cannot appear in any tiling of regular polygons)

    3.8.24 (cannot appear in any tiling of regular polygons)

    3.9.18 (cannot appear in any tiling of regular polygons)

    3.10.15 (cannot appear in any tiling of regular polygons)

    3.122 - semi-regular, truncated hexagonal tiling

    4.5.20 (cannot appear in any tiling of regular polygons)

    4.6.12 - semi-regular, great rhombitrihexagonal tiling

    4.82 - semi-regular, truncated square tiling

    5

    2

    .10 (cannot appear in any tiling of regular polygons) 63 - regular,hexagonal tiling

    With 4 polygons at a vertex:

    32.4.12 - not uniform, has two different types of vertices 32.4.12 and 36

    3.4.3.12 - not uniform, has two different types of vertices 3.4.3.12 and 3.3.4.3.4

    32.62 - not uniform, occurs in two patterns with vertices 32.62/36 and 32.62/3.6.3.6.

    3.6.3.6 - semi-regular, trihexagonal tiling

    44 - regular,square tiling

    3.42.6 - not uniform, has vertices 3.42.6 and 3.6.3.6.

    3.4.6.4 - semi-regular, small rhombitrihexagonal tiling

    With 5 polygons at a vertex:

    34.6 -snub hexagonal tiling 33.42 - semi-regular, Elongated triangular tiling

    32.4.3.4 - semi-regular, Snub square tiling

    With 6 polygons at a vertex:

    36 - regular,Triangular tiling

    Other edge-to-edge tilings

    Any number of non-uniform (sometimes called demiregular) edge-to-edge tilings by

    regular polygons may be drawn. Here are four examples:

    http://en.wikipedia.org/wiki/Truncated_hexagonal_tilinghttp://en.wikipedia.org/wiki/Great_rhombitrihexagonal_tilinghttp://en.wikipedia.org/wiki/Truncated_square_tilinghttp://en.wikipedia.org/wiki/Hexagonal_tilinghttp://en.wikipedia.org/wiki/Hexagonal_tilinghttp://en.wikipedia.org/wiki/Uniform_polyhedronhttp://en.wikipedia.org/wiki/Trihexagonal_tilinghttp://en.wikipedia.org/wiki/Square_tilinghttp://en.wikipedia.org/wiki/Square_tilinghttp://en.wikipedia.org/wiki/Small_rhombitrihexagonal_tilinghttp://en.wikipedia.org/wiki/Snub_hexagonal_tilinghttp://en.wikipedia.org/wiki/Snub_hexagonal_tilinghttp://en.wikipedia.org/wiki/Elongated_triangular_tilinghttp://en.wikipedia.org/wiki/Snub_square_tilinghttp://en.wikipedia.org/wiki/Triangular_tilinghttp://en.wikipedia.org/wiki/Triangular_tilinghttp://en.wikipedia.org/wiki/Truncated_hexagonal_tilinghttp://en.wikipedia.org/wiki/Great_rhombitrihexagonal_tilinghttp://en.wikipedia.org/wiki/Truncated_square_tilinghttp://en.wikipedia.org/wiki/Hexagonal_tilinghttp://en.wikipedia.org/wiki/Uniform_polyhedronhttp://en.wikipedia.org/wiki/Trihexagonal_tilinghttp://en.wikipedia.org/wiki/Square_tilinghttp://en.wikipedia.org/wiki/Small_rhombitrihexagonal_tilinghttp://en.wikipedia.org/wiki/Snub_hexagonal_tilinghttp://en.wikipedia.org/wiki/Elongated_triangular_tilinghttp://en.wikipedia.org/wiki/Snub_square_tilinghttp://en.wikipedia.org/wiki/Triangular_tiling
  • 8/9/2019 MOSAICOSREGULARES

    5/7

    32.62 and 36 32.62 and 3.6.3.6

    32.4.12 and 36 3.42.6 and 3.6.3.6

    Such periodic tilings may be classified by the number oforbits of vertices, edges and tiles.If there are n orbits of vertices, a tiling is known as n-uniform orn-isogonal; if there are n

    orbits of tiles, as n-isohedral; if there are n orbits of edges, as n-isotoxal. The examples

    above are four of the twenty 2-uniform tilings. Chavey lists all those edge-to-edge tilingsby regular polygons which are at most 3-uniform, 3-isohedral or 3-isotoxal.

    Tilings that are not edge-to-edge

    http://en.wikipedia.org/wiki/Group_actionhttp://en.wikipedia.org/wiki/File:Dem3446bc.gifhttp://en.wikipedia.org/wiki/File:Dem3343tbc.gifhttp://en.wikipedia.org/wiki/File:Dem3366rbc.gifhttp://en.wikipedia.org/wiki/File:Dem3366bc.pnghttp://en.wikipedia.org/wiki/Group_action
  • 8/9/2019 MOSAICOSREGULARES

    6/7

    Regular polygons can also form plane tilings that are not edge-to-edge. Such tilings may

    also be known as uniform if they are vertex-transitive; there are eight families of such

    uniform tilings, each family having a real-valued parameter determining the overlapbetween sides of adjacent tiles or the ratio between the edge lengths of different tiles.

    The hyperbolic plane

    Main article: Uniform tilings in hyperbolic plane

    These tessellations are also related to regular and semiregular polyhedra and tessellations ofthe hyperbolic plane. Semiregular polyhedra are made from regular polygon faces, but their

    angles at a point add to less than 360 degrees. Regular polygons in hyperbolic geometry

    have angles smaller than they do in the plane. In both these cases, that the arrangement ofpolygons is the same at each vertex does not mean that the polyhedron or tiling is vertex-

    transitive.

    Some regular tilings of the hyperbolic plane (Using Poincar disc model projection)

    See also

    List of uniform tilings Wythoff symbol

    Tessellation

    Wallpaper group

    Regular polyhedron (the Platonic solids)

    Semiregular polyhedron (including the Archimedean solids) Hyperbolic geometry

    Penrose tiling

    http://en.wikipedia.org/wiki/Uniform_tilings_in_hyperbolic_planehttp://en.wikipedia.org/wiki/Hyperbolic_geometryhttp://en.wikipedia.org/wiki/List_of_uniform_tilingshttp://en.wikipedia.org/wiki/Wythoff_symbolhttp://en.wikipedia.org/wiki/Tessellationhttp://en.wikipedia.org/wiki/Wallpaper_grouphttp://en.wikipedia.org/wiki/Regular_polyhedronhttp://en.wikipedia.org/wiki/Platonic_solidhttp://en.wikipedia.org/wiki/Semiregular_polyhedronhttp://en.wikipedia.org/wiki/Archimedean_solidhttp://en.wikipedia.org/wiki/Hyperbolic_geometryhttp://en.wikipedia.org/wiki/Penrose_tilinghttp://en.wikipedia.org/wiki/File:Hyperbolic_tiling_snub_3-7.pnghttp://en.wikipedia.org/wiki/File:Hyperbolic_tiling_omnitruncated_3-7.pnghttp://en.wikipedia.org/wiki/File:Hyperbolic_tiling_runcinated_3-7.pnghttp://en.wikipedia.org/wiki/File:Hyperbolic_tiling_truncated_7-3.pnghttp://en.wikipedia.org/wiki/File:Hyperbolic_tiling_rectified_3-7.pnghttp://en.wikipedia.org/wiki/File:Hyperbolic_tiling_truncated_3-7.pnghttp://en.wikipedia.org/wiki/File:Hyperbolic_tiling_7-3.pnghttp://en.wikipedia.org/wiki/File:Hyperbolic_tiling_3-7.pnghttp://en.wikipedia.org/wiki/File:Hyperspace_tiling_5-4.pnghttp://en.wikipedia.org/wiki/File:Hyperspace_tiling_4-5.pnghttp://en.wikipedia.org/wiki/Uniform_tilings_in_hyperbolic_planehttp://en.wikipedia.org/wiki/Hyperbolic_geometryhttp://en.wikipedia.org/wiki/List_of_uniform_tilingshttp://en.wikipedia.org/wiki/Wythoff_symbolhttp://en.wikipedia.org/wiki/Tessellationhttp://en.wikipedia.org/wiki/Wallpaper_grouphttp://en.wikipedia.org/wiki/Regular_polyhedronhttp://en.wikipedia.org/wiki/Platonic_solidhttp://en.wikipedia.org/wiki/Semiregular_polyhedronhttp://en.wikipedia.org/wiki/Archimedean_solidhttp://en.wikipedia.org/wiki/Hyperbolic_geometryhttp://en.wikipedia.org/wiki/Penrose_tiling
  • 8/9/2019 MOSAICOSREGULARES

    7/7

    References

    Grnbaum, Branko; Shephard, G. C. (1987). Tilings and Patterns. W. H. Freeman

    and Company. ISBN 0-7167-1193-1. D. Chavey (1989). "Tilings by Regular PolygonsII: A Catalog of Tilings".

    Computers & Mathematics with Applications17: 147165. doi:10.1016/0898-1221(89)90156-9.

    D. M. Y. Sommerville,An Introduction to the Geometry ofn Dimensions. New

    York, E. P. Dutton, 1930. 196 pp. (Dover Publications edition, 1958) Chapter X:

    The Regular Polytopes

    http://en.wikipedia.org/wiki/Branko_Gr%C3%BCnbaumhttp://en.wikipedia.org/w/index.php?title=G.C._Shephard&action=edit&redlink=1http://en.wikipedia.org/wiki/Special:BookSources/0716711931http://en.wikipedia.org/wiki/Digital_object_identifierhttp://dx.doi.org/10.1016%2F0898-1221(89)90156-9http://dx.doi.org/10.1016%2F0898-1221(89)90156-9http://en.wikipedia.org/wiki/Duncan_MacLaren_Young_Sommervillehttp://en.wikipedia.org/wiki/Branko_Gr%C3%BCnbaumhttp://en.wikipedia.org/w/index.php?title=G.C._Shephard&action=edit&redlink=1http://en.wikipedia.org/wiki/Special:BookSources/0716711931http://en.wikipedia.org/wiki/Digital_object_identifierhttp://dx.doi.org/10.1016%2F0898-1221(89)90156-9http://dx.doi.org/10.1016%2F0898-1221(89)90156-9http://en.wikipedia.org/wiki/Duncan_MacLaren_Young_Sommerville