32
Morrey Spaces Hendra GUNAWAN* *http://personal.fmipa.itb.ac.id/hgunawan/ Analysis and Geometry Group Bandung Institute of Technology Bandung 40132, INDONESIA Functional Analysis & Operator Algebras Seminar 2019 UPI Bandung, 24 September 2019 HG* (*ITB Bandung) Morrey Spaces 24 September 2019 1 / 29

Morrey Spaces - WordPress.com

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Morrey Spaces

Hendra GUNAWAN*

*http://personal.fmipa.itb.ac.id/hgunawan/

Analysis and Geometry GroupBandung Institute of TechnologyBandung 40132, INDONESIA

Functional Analysis & Operator Algebras Seminar 2019UPI Bandung, 24 September 2019

HG* (*ITB Bandung) Morrey Spaces 24 September 2019 1 / 29

Outline

1 Introduction: Geometric Constants for Banach Spaces

2 Morrey Spaces

3 Small Morrey Spaces

4 Acknowledgement

HG* (*ITB Bandung) Morrey Spaces 24 September 2019 2 / 29

Outline

1 Introduction: Geometric Constants for Banach Spaces

2 Morrey Spaces

3 Small Morrey Spaces

4 Acknowledgement

HG* (*ITB Bandung) Morrey Spaces 24 September 2019 2 / 29

Outline

1 Introduction: Geometric Constants for Banach Spaces

2 Morrey Spaces

3 Small Morrey Spaces

4 Acknowledgement

HG* (*ITB Bandung) Morrey Spaces 24 September 2019 2 / 29

Outline

1 Introduction: Geometric Constants for Banach Spaces

2 Morrey Spaces

3 Small Morrey Spaces

4 Acknowledgement

HG* (*ITB Bandung) Morrey Spaces 24 September 2019 2 / 29

Abstract

In this talk, we shall discuss about Morrey spaces. In particular, weshall be interested in their geometric properties.

Three geometric constants will be computed, namely VonNeumann-Jordan constant, James constant, and Dunkl-Williamsconstant.

These constants measure the uniformly non-squareness of the spaces.We found that Morrey spaces are not uniformly non-square, whichconfirms the fact that they are not reflexive spaces.

HG* (*ITB Bandung) Morrey Spaces 24 September 2019 3 / 29

Introduction: Geometric Constants for Banach Spaces

Von Neumann-Jordan and James Constants

Let (X , ‖ · ‖X ) be a Banach space. The von Neumann-Jordanconstant1 CNJ(X ) and the James constant2 CJ(X ) for X are given by

CNJ(X ) := sup

{‖x + y‖2X + ‖x − y‖2X

2(‖x‖2X + ‖y‖2X ): x , y ∈ X \ {0}

}and

CJ(X ) := sup {min{‖x + y‖X , ‖x − y‖X} : x , y ∈ SX} ,

respectively. Here SX := {x ∈ X : ‖x‖X = 1}.

1P. Jordan and J. von Neumann, “On inner products in linear, metricspaces”, Ann. Math. (2) 36 (1935), 719–723

2R.C. James, “Uniformly non-square Banach spaces”, Ann. Math. 80(1964), 542–550

HG* (*ITB Bandung) Morrey Spaces 24 September 2019 4 / 29

Introduction: Geometric Constants for Banach Spaces

Parallelogram’s Diagonals

HG* (*ITB Bandung) Morrey Spaces 24 September 2019 5 / 29

Introduction: Geometric Constants for Banach Spaces

Dunkl-Williams Constant

There is a third constant, namely the Dunkl-Williams constant3

CDW(X ) for X , given by

CDW(X ) := sup

{‖x‖X + ‖y‖X‖x − y‖X

∥∥∥∥ x

‖x‖X− y

‖y‖X

∥∥∥∥X

: x 6= y ∈ X \ {0}}.

3C. F. Dunkl and K.S. Williams, “A simple norm inequality”, Amer.Math. Monthly 71 (1964), 53–54

HG* (*ITB Bandung) Morrey Spaces 24 September 2019 6 / 29

Introduction: Geometric Constants for Banach Spaces

It is well known that 1 ≤ CNJ(X ) ≤ 2 for every Banach space X , andthat CNJ(X ) = 1 if and only if X is a Hilbert space. 4

Meanwhile,√

2 ≤ CJ(X ) ≤ 2 holds for every Banach space X , andCJ(X ) =

√2 if (but not only if) X is a Hilbert space. 5

As for the Dunkl-Williams constant, we have 2 ≤ CDW(X ) ≤ 4 andCDW(X ) = 2 if and only if X is a Hilbert space.6

4E. Casini, “About some parameters of normed linear spaces”, AttiAccad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. – Ser. VIII 80(1986), no. 1-2, 11–15

5J. Gao and K.-S. Lau, “On the geometry of spheres in normed linearspaces”, J. Aust. Math. Soc. Ser. A 48 (1990), 101–112

6C.F. Dunkl and K.S. Williams, “A simple norm inequality”, Amer.Math. Monthly 71 (1964), 53–54

HG* (*ITB Bandung) Morrey Spaces 24 September 2019 7 / 29

Introduction: Geometric Constants for Banach Spaces

For Lebesgue spaces Lp = Lp(Rd) where 1 ≤ p ≤ ∞, we have

CNJ(Lp) = max{22/p−1, 21−2/p}

andCJ(Lp) = max{21/p, 21−1/p}.7

Meanwhile, we know that CDW(L1) = CDW(L∞) = 4.8

7M. Kato and L. Maligandra, “On James and Jordan-von Neumannconstants of Lorentz sequence spaces”, J. Math. Anal. Appl. 258 (2001),457–465

8A. Jimenez-Melado, E. Liorens-Fuster, and E.M. Mazcunan-Navarro,“The Dunkl–Williams constant, convexity, smoothness and normalstructure”, J. Math. Anal. Appl. 342, Issue 1 (2008), 298–310

HG* (*ITB Bandung) Morrey Spaces 24 September 2019 8 / 29

Introduction: Geometric Constants for Banach Spaces

Theorem. For every Banach spaces X , we have

C 2J (X )

2≤ CNJ(X ) ≤ CJ(X ).9

Theorem (James). A Banach space X is reflexive iff X is uniformlynon-square, that is, there exists δ > 0 s.t.

min{‖x + y‖X , ‖x − y‖X} ≤ 2(1− δ)

for all x , y ∈ SX .10

Corollary. A Banach space X is reflexive iff CJ(X ) < 2.

9M. Kato, L. Maligandra, and Y. Takahashi, Studia Math. 144 (2001)& M. Kato and Y. Takahashi, JMAA 359 (2009)

10R.C. James, Ann. Math. 80 (1964)HG* (*ITB Bandung) Morrey Spaces 24 September 2019 9 / 29

Morrey Spaces

Morrey Spaces

Let 1 ≤ p ≤ q <∞. The Morrey space Mpq =Mp

q(Rd) is the set ofall the measurable functions f on Rd for which

‖f ‖Mpq

:= supB=B(a,r)

|B |1q− 1

p

(∫B

|f (y)|p dy) 1

p

<∞,

where B(a, r) denotes the ball centered at a ∈ Rd having radiusr > 0 and Lebesgue measure |B |.11

Example. For 1 ≤ p < q <∞, | · |−d/q ∈Mpq \ Lq.

Note. In general, Lq ⊆Mpq, and the inclusion is proper. Moreover,

Mp1q ⊆Mp2

q

whenever 1 ≤ p2 ≤ p1 ≤ q.11D.R. Adams and J. Xiao, “Morrey spaces in harmonic analysis”, Ark.

Mat. 50 (2012), 201–230HG* (*ITB Bandung) Morrey Spaces 24 September 2019 10 / 29

Morrey Spaces

Since Mpq is a Banach space, it follows that

CNJ(Mpq), CJ(Mp

q) ≤ 2 and CDW(Mpq) ≤ 4.

The question is: how large are the constants?

Note. The larger the constant, the lesser round the unit ball.

HG* (*ITB Bandung) Morrey Spaces 24 September 2019 11 / 29

Morrey Spaces

The following theorem12 tells us that the unit ball in Morrey spaces isvery far from round: it contains a square!

Theorem 2.1

If 1 ≤ p < q <∞, then CNJ(Mpq) = CJ(Mp

q) = 2 andCDW(Mp

q) = 4.

Note. For p = q, Mpq = Lq and their norms are identical. The

above theorem tells us that the case where q > p and the case wherep = q are substantially different. When q > p, the three constantsCJ(Mp

q), CNJ(Mpq), and CDW(Mp

q) take the extreme values, whichare the same values as those for L1 and L∞ spaces.

12G., E. Kikianty, Y. Sawano, and C. Schwanke, “Three geometricconstants for Morrey spaces”, to appear in Bull. Korean Math. Soc.

HG* (*ITB Bandung) Morrey Spaces 24 September 2019 12 / 29

Morrey Spaces

We prove the theorem constructively, that is, by finding two elementsin the space such that the associated expressions are equal to 2, 2,and 4, respectively.

Proof. Let 1 ≤ p < q <∞, and let f (x) := |x |−d/q(x ∈ Rd), where|x | denotes the Euclidean norm of x . Then f ∈Mp

q(Rd).

Next, defineg := χ(0,1)(| · |)f ,

h := f − g ,

andk := −f + 2g .

Note. Drawing their graphs might help.

HG* (*ITB Bandung) Morrey Spaces 24 September 2019 13 / 29

Morrey Spaces

By a change of variables, we see that

‖td/qg(t·)‖Mpq

= ‖g‖Mpq

and‖td/qh(t·)‖Mp

q= ‖h‖Mp

q

for all t > 0.

Sincetd/qg(tx) = χ(0,1)(t|x |)f (x)

andtd/qh(tx) = χ(0,1)(t|x |)f (x)− χ[1,∞)(t|x |)f (x)

for t > 0 and x ∈ Rd , by the Monotone Convergence Property wehave

‖f ‖Mpq

= ‖g‖Mpq

= ‖h‖Mpq

= ‖k‖Mpq∈ (0,∞).

HG* (*ITB Bandung) Morrey Spaces 24 September 2019 14 / 29

Morrey Spaces

This implies that

‖f + k‖2Mpq

+ ‖f − k‖2Mpq

= 4(‖f ‖2Mpq

+ ‖k‖2Mpq)

and

min{‖f + k‖Mpq, ‖f − k‖Mp

q} = min{‖2g‖Mp

q, ‖2h‖Mp

q}

= 2‖f ‖Mpq

= 2‖k‖Mpq.

By definition and the fact that both CNJ(Mpq), CJ(Mp

q) ≤ 2, weconclude that

CNJ(Mpq) = CJ(Mp

q) = 2,

as desired.

HG* (*ITB Bandung) Morrey Spaces 24 September 2019 15 / 29

Morrey Spaces

We now move to the Dunkl–Williams constant. We use the sametechniques as in Jimenez-Melado et al.13

Consider the previous function f and the function (1 + r)g + (1− r)hfor r ∈ (0, 1). We have

‖f ‖Mpq

+ ‖(1 + r)g + (1− r)h‖Mpq

‖f − (1 + r)g − (1− r)h‖Mpq

∥∥∥∥∥ f

‖f ‖Mpq

− (1 + r)g + (1− r)h

‖(1 + r)g + (1− r)h‖Mpq

∥∥∥∥∥Mp

q

=‖f ‖Mp

q+ (1 + r)‖f ‖Mp

q

r‖f ‖Mpq

∥∥∥∥∥ f

‖f ‖Mpq

− (1 + r)g + (1− r)h

(1 + r)‖f ‖Mpq

∥∥∥∥∥Mp

q

=‖f ‖Mp

q+ (1 + r)‖f ‖Mp

q

r‖f ‖Mpq

∥∥∥∥∥ 2rh

(1 + r)‖f ‖Mpq

∥∥∥∥∥Mp

q

=4 + 2r

1 + r.

Letting r ↓ 0, we obtain CDW(Mpq) = 4, as desired.

13A. Jimenez-Melado, E. Liorens-Fuster, and E.M. Mazcunan-Navarro,“The Dunkl–Williams constant, convexity, smoothness and normalstructure”, J. Math. Anal. Appl. 342, Issue 1 (2008), 298–310

HG* (*ITB Bandung) Morrey Spaces 24 September 2019 16 / 29

Morrey Spaces

Remarks

Let 1 ≤ p ≤ q <∞. The central Morrey space cMpq = cMp

q(Rd) isthe set of all the measurable functions f on Rd for which

‖f ‖cMpq

:= supB=B(0,r)

|B |1q− 1

p

(∫B

|f (y)|p dy) 1

p

<∞.

Using the same arguments, we see that CNJ(cMpq) = CJ(cMp

q) = 2and CDW(cMp

q) = 4 whenever 1 ≤ p < q <∞.

With the values of these constants, we can confirm that Morreyspaces and central Morrey spaces are not reflexive.

HG* (*ITB Bandung) Morrey Spaces 24 September 2019 17 / 29

Small Morrey Spaces

Small Morrey Spaces

The small Morrey space mpq = mp

q(Rd) is defined to be the set of allmeasurable functions f such that

‖f ‖mpq

:= supa∈Rd ,R∈(0,1)

|B(a,R)|1q− 1

p

( ∫B(a,R)

|f (y)|pdy) 1

p

<∞.

Note:(1) Small Morrey spaces are also Banach spaces.(2) For each p and q, the small Morrey mp

q space properly containsthe Morrey space Mp

q.(3) For p = q, the space mq

q is identical with the Lquloc space.14

14Y. Sawano, “A thought on generalized Morrey spaces”,arXiv:1812.08394 [math.FA]

HG* (*ITB Bandung) Morrey Spaces 24 September 2019 18 / 29

Small Morrey Spaces

By using a similar idea (but not quite the same) as in the previouspart, we obtain the following theorem.15

Theorem 3.1

Let 1 ≤ p < q <∞. Then CNJ(mpq) = CJ(mp

q) = 2 andCDW(mp

q) = 4.

15A. Mu’tazili and G., “Von Neumann-Jordan constant, Jamesconstant, and Dunkl-Williams constant for small Morrey spaces”,submitted

HG* (*ITB Bandung) Morrey Spaces 24 September 2019 19 / 29

Small Morrey Spaces

Define f := | · |−dq , g := χ(0,ε)(| · |)f , h = f − g , k = −f + 2g and

l = (1 + δ)g + (1− δ)h with 0 < ε, δ < 1.

Here g , h and k depend on ε, while l depends on ε and δ.

Note that all functions are radial functions, f , g , l are radiallydecreasing, h ≤ f , and |k | = f . Hence, we have

‖f ‖mpq

= supR∈(0,1)

|B(0,R)|1q− 1

p

( ∫B(0,R)

|y |−dpq dy

) 1p

=(Cd

d

) 1q(

1−p

q

)− 1p,

HG* (*ITB Bandung) Morrey Spaces 24 September 2019 20 / 29

Small Morrey Spaces

Next, we compute

‖g‖mpq

= supR∈(0,1)

|B(0,R)|1q− 1

p

( ∫B(0,R)

|f (y)|pχ(0,ε)(|y |)dy) 1

p

= supR∈(0,ε)

|B(0,R)|1q− 1

p

( ∫B(0,R)

|y |−dpq dy

) 1p

=(Cd

d

) 1q(

1− p

q

)− 1p

= ‖f ‖mpq;

HG* (*ITB Bandung) Morrey Spaces 24 September 2019 21 / 29

Small Morrey Spaces

‖h‖mpq≥ sup

R∈(0,1)|B(0,R)|

1q− 1

p

( ∫B(0,R)

|f (y)(1− χ(0,ε)(|y |))|pdy) 1

p

= supR∈(0,1)

|B(0,R)|1q− 1

p

( ∫B(0,R)

|y |−dpq (1− χ(0,ε)(|y |))dy

) 1p

= supR∈(ε,1)

(Cd

d

) 1q− 1

pR

dq− d

p

(Cd

R∫ε

r−dpq+d−1dr

) 1p

= supR∈(ε,1)

(Cd

d

) 1q(

1− p

q

)− 1p(1− R

dpq−dε−

dpq+d)

1p

= ‖f ‖mpq(1− ε−

dpq+d)

1p ;

HG* (*ITB Bandung) Morrey Spaces 24 September 2019 22 / 29

Small Morrey Spaces

and . . .

‖k‖mpq

= supR∈(0,1)

|B(0,R)|1q− 1

p

( ∫B(0,R)

|f (y)(2χ(0,ε)(|y |)− 1)|pdy) 1

p

= supR∈(0,1)

|B(0,R)|1q− 1

p

( ∫B(0,R)

|f (y)|pdy) 1

p

= ‖f ‖mpq,

where Cd denotes the ‘area’ of the unit sphere in Rd .

HG* (*ITB Bandung) Morrey Spaces 24 September 2019 23 / 29

Small Morrey Spaces

We observe that

CNJ(mpq) ≥

‖f + k‖2mp

q+ ‖f − k‖2

mpq

2(‖f ‖2mp

q+ ‖k‖2

mpq)

=‖2g‖2

mpq

+ ‖2h‖2mp

q

2(‖f ‖2mp

q+ ‖k‖2

mpq)

=4‖g‖2

mpq

+ 4‖h‖2mp

q

2(‖f ‖2mp

q+ ‖k‖2

mpq)

≥2(‖f ‖2

mpq

+ ‖f ‖2mp

q(1− ε−

dpq+d)

2p)

‖f ‖2mp

q+ ‖f ‖2

mpq

= 1 + (1− ε−dpq+d)

2p ,

which holds for any 0 < ε < 1.

Since ε can be arbitrarily small, we obtain CNJ(mpq) ≥ 2. But

CNJ(mpq) ≤ 2, and we conclude that CNJ(mp

q) = 2.

HG* (*ITB Bandung) Morrey Spaces 24 September 2019 24 / 29

Small Morrey Spaces

Next, for James constant, we observe that

min{‖f + k‖mpq, ‖f − k‖mp

q} = min{‖2g‖mp

q, ‖2h‖mp

q}

≥ 2 min{‖f ‖mpq, ‖f ‖mp

q(1− ε−

dpq+d)

1p }

= 2‖f ‖mpq(1− ε−

dpq+d)

1p .

Dividing both sides by ‖f ‖mpq

(= ‖k‖mpq), we get

CJ(mpq) ≥ min

{∥∥∥∥ f

‖f ‖mpq

+k

‖k‖mpq

∥∥∥∥mp

q

,

∥∥∥∥ f

‖f ‖mpq

− k

‖k‖mpq

∥∥∥∥mp

q

}= 2(1− ε−

dpq+d)

1p ,

and this also holds for any 0 < ε < 1.

Using similar arguments as before, we conclude that CJ(mpq) = 2.

HG* (*ITB Bandung) Morrey Spaces 24 September 2019 25 / 29

Small Morrey Spaces

Finally, we compute the Dunkl-Williams constant. Observe that

‖l‖mpq

= supR∈(0,1)

|B(0,R)|1q− 1

p

( ∫B(0,R)

|(1 + δ)g(y) + (1− δ)h(y)|pdy) 1

p

= supR∈(0,1)

|B(0,R)|1q− 1

p

( ∫B(0,R)

|f (y)(1 + δ(2χ(0,ε)(|y |)− 1))|pdy) 1

p

= supR∈(0,1)

(Cd

d

) 1q− 1

pR

dq− d

p

(Cd

R∫0

r−dpq+d−1(1 + δ(2χ(0,ε)(r)− 1))pdr

) 1p

= supR∈(ε,1)

(Cd

d

) 1qd

1pR

dq− d

p

((1 + δ)p

ε∫0

r−dpq+d−1dr+

+ (1− δ)pR∫ε

r−dpq+d−1dr

) 1p

(1 + δ)‖f ‖mpq.

HG* (*ITB Bandung) Morrey Spaces 24 September 2019 26 / 29

Small Morrey Spaces

It follows that

CDW(mpq) ≥

‖f ‖mpq

+ ‖l‖mpq

‖f − l‖mpq

∥∥∥∥ f

‖f ‖mpq

− l

‖l‖mpq

∥∥∥∥mp

q

=‖f ‖mp

q+ (1 + δ)‖f ‖mp

q

‖f − ((1 + δ)g + (1− δ)h)‖mpq

∥∥∥∥ f

‖f ‖mpq

(1 + δ)g + (1− δ)h

(1 + δ)‖f ‖mpq

∥∥∥∥mp

q

=(2 + δ)‖f ‖mp

q

‖δk‖mpq

∥∥∥∥ 2δh

(1 + δ)‖f ‖mpq

∥∥∥∥mp

q

≥(2 + δ)‖f ‖mp

q

δ‖f ‖mpq

2δ‖f ‖mpq(1− ε−

dpq+d)

1p

(1 + δ)‖f ‖mpq

=(4 + 2δ)

1 + δ(1− ε−

dpq+d)

1p ,

which holds for any 0 < δ, ε < 1.HG* (*ITB Bandung) Morrey Spaces 24 September 2019 27 / 29

Small Morrey Spaces

As δ and ε can be arbitrarily small, we must have CDW(mpq) ≥ 4.

Using the same arguments as before, we conclude that CDW(mpq) = 4.

Remarks. With the values of these constants, we can also tell thatsmall Morrey spaces are not reflexive.

HG* (*ITB Bandung) Morrey Spaces 24 September 2019 28 / 29

Acknowledgement

Acknowledgement. The work on Morrey spaces is joint with E.Kikianty, Y. Sawano, and C. Schwanke; while that on small Morreyspaces is joint with A. Mu’tazili.

We acknowledge the financial support from ITB through the 2019Research and Innovation Program.

THANK YOU FOR YOUR ATTENTION.

HG* (*ITB Bandung) Morrey Spaces 24 September 2019 29 / 29