6
Molecular Polarity Guided Inquiry (Textbook 10.4) Essential Questions How do the bonds between atoms, as well as electron location, determine interactions between molecules? How do electronegativity and molecular shape determine the polarity of a molecule? How does Bond Polarity affect Molecular Polarity? Molecule Polarity – is a measure of how electrons are distributed in the outer regions of the molecule. It is similar to bond polarity in that it is a measure of how unequally electrons are shared. It is different than bond polarity because bond polarity is a measure of how unequally the electrons are shared in a bond, while molecular polarity is a measure of how unequally the electrons are distributed throughout the outer region of the entire molecule, not just a particular bond. Molecular polarity is the sum of all the bond polarities. A highly polar molecule will have an uneven distribution of electrons around the outer regions of the molecule, which will result in areas of positive and negative charges. The image on the left shows water, H 2 O, with two highly polar OH bonds. The negative ends of dipoles are pointing toward the oxygen. This coupled with the asymmetrical (bent) shape of the water molecule causes an uneven distribution of electrons throughout the outer regions of the molecule. The image on the right shows the electron density for water. Notice that the density is much higher on the oxygen side of the molecule than at either of the hydrogen sides. This results in a partial negative charge at the oxygen side and partial negative charges at the hydrogen sides. A nonpolar molecule has the electrons uniformly distributed around the outer edges. A non polar molecule can have polar bonds if the bonds are arranged symmetrically so the electrons are distributed uniformly throughout the outer regions of the molecule. Carbon tetrafluoride, CF 4 , is an example of a nonpolar molecule with 4 highly polar bonds. The image on the left shows CF 4 with four highly polar CF bonds. The image on the right shows the electron density of the CF 4 molecule. The electron density is uniform throughout the outer regions of the molecule. That’s because the 4 strong CF bond dipoles are arranged symmetrically in opposite directions. So they cancel each other out. The net result is that there are no areas of positive and negative partial charges in the outer region of the molecule.

Molecular Polarity Guided Inquiry - Annville-Cleona … · 1. Whatcombination)of)electronegativities)created)anonOpolar)molecule?) 2. Whatcombinations)of)electronegativities)created)amoderately)polar)molecule?)

Embed Size (px)

Citation preview

Page 1: Molecular Polarity Guided Inquiry - Annville-Cleona … · 1. Whatcombination)of)electronegativities)created)anonOpolar)molecule?) 2. Whatcombinations)of)electronegativities)created)amoderately)polar)molecule?)

Molecular  Polarity  Guided  Inquiry  (Textbook  10.4)  

Essential  Questions  • How  do  the  bonds  between  atoms,  as  well  as  electron  location,  determine  interactions  

between  molecules?  • How  do  electronegativity  and  molecular  shape  determine  the  polarity  of  a  molecule?  

How  does  Bond  Polarity  affect  Molecular  Polarity?  

Molecule  Polarity  –  is  a  measure  of  how  electrons  are  distributed  in  the  outer  regions  of  the  molecule.    It  is  similar  to  bond  polarity  in  that  it  is  a  measure  of  how  unequally  electrons  are  shared.    It  is  different  than  bond  polarity  because  bond  polarity  is  a  measure  of  how  unequally  the  electrons  are  shared  in  a  bond,  while  molecular  polarity  is  a  measure  of  how  unequally  the  electrons  are  distributed  throughout  the  outer  region  of  the  entire  molecule,  not  just  a  particular  bond.  Molecular  polarity  is  the  sum  of  all  the  bond  polarities.    A  highly  polar  molecule  will  have  an  uneven  distribution  of  electrons  around  the  outer  regions  of  the  molecule,  which  will  result  in  areas  of  positive  and  negative  charges.      

The  image  on  the  left  shows  water,  H2O,  with  two  highly  polar  O-­‐H  bonds.    The  negative  ends  of  dipoles  are  pointing  toward  the  oxygen.    This  coupled  with  the  asymmetrical  (bent)  shape  of  the  water  molecule  causes  an  uneven  distribution  of  electrons  throughout  the  outer  regions  of  the    molecule.    The  image  on  the  right  shows  the  electron  density  for  water.    Notice  that  the  density  is  much  higher  on  the  oxygen  side  of  the  molecule  than  at  either  of  the  hydrogen  sides.    This  results  in  a  partial  negative  charge  at  the  oxygen  side  and  partial  negative  charges  at  the  hydrogen  sides.          

A  non-­‐polar  molecule  has  the  electrons  uniformly  distributed  around  the  outer  edges.        A  non-­‐polar  molecule  can  have  polar  bonds  if  the  bonds  are  arranged  symmetrically  so  the  electrons  are  distributed  uniformly  throughout  the  outer  regions  of  the  molecule.    Carbon  tetrafluoride,  CF4,  is  an  example  of  a  non-­‐polar  molecule  with  4  highly  polar  bonds.  The  image  on  the  left  shows  CF4  with  four  highly  polar  C-­‐F  bonds.    The  image  on  the  right  shows  the  electron  density  of  the  CF4  molecule.    The  electron  density  is  uniform  throughout  the  outer  regions  of  the  molecule.    That’s  because  the  4  strong  C-­‐F  bond  dipoles  are  arranged  symmetrically  in  opposite  directions.    So  they  cancel  each  other  out.    The  net  result  is  that  there  are  no  areas  of  positive  and  negative  partial  charges  in  the  outer  region  of  the  molecule.        

 

Page 2: Molecular Polarity Guided Inquiry - Annville-Cleona … · 1. Whatcombination)of)electronegativities)created)anonOpolar)molecule?) 2. Whatcombinations)of)electronegativities)created)amoderately)polar)molecule?)

Molecule  Polarity  Simulation  w/  3  Atoms  

Run  the  Molecule  Polarity  simulation  from  the  PhET  web  site:  http://phet.colorado.edu/en/simulation/molecule-­‐polarity.  Select  the  “Three  Atom”  tab  at  the  top  of  the  screen.    Set  the  View  parameters  to  show  the  bond  dipole,  molecular  dipole  and  partial  charges.    Turn  the  electric  field  off.    Run  the  simulation  with  different  combinations  of  electronegativities  for  atoms  A,  B  and  C  as  specified  in  the  data  table  below.    Watch  what  happens  to  the  size  and  direction    

of  the  bond  dipoles,  molecular  dipoles  and  partial  charges.    Record  your  observations  in  the  data  table.    Use  your  results  to  answer  the  questions.  Use  the  key  below  to  help  you  run  the  simulation.    

• Electronegativity  Settings:  less,  middle  and  more  • Bond  Dipole  &  Molecular  Dipole  Strength:  zero,  medium  and  strong  • Direction:  north,  south,  east,  west,  northeast,  northwest,  southeast  and  southwest  

Electronegativity  Settings   A  –  B  Bond  Dipole   C  –  B  Bond  Dipole   Molecular  Dipole  Atom  A   Atom  B   Atom  C   Strength   Direction   Strength   Direction   Strength   Direction  Less   Less   Less              

Less   Less   Middle              

Less   Less   More              

Less   Middle   Less              

Less   Middle   Middle              

Less   Middle   More              

Middle   Less   Less              

Middle   Less   Middle              

Middle   Less   More              

Middle   Middle   Less              

Middle   Middle   Middle              

Middle   Middle   More              

Middle   More   Less              

Middle   More   Middle              

Middle   More   More              

More   Middle   Less              

More   Middle   Middle              

More   Middle   More              

Page 3: Molecular Polarity Guided Inquiry - Annville-Cleona … · 1. Whatcombination)of)electronegativities)created)anonOpolar)molecule?) 2. Whatcombinations)of)electronegativities)created)amoderately)polar)molecule?)

1. What  combination  of  electronegativities  created  a  non-­‐polar  molecule?  

2. What  combinations  of  electronegativities  created  a  moderately  polar  molecule?  

3. What  combinations  of  electronegativities  created  a  highly  polar  molecule?  

4. How  do  changes  in  the  strength  of  the  individual  bond  dipoles  affect  the  strength  and  direction  of  the  molecular  dipole?  

5. How  do  changes  in  the  direction  of  the  individual  bond  dipoles  affect  the  strength  and  direction  of  the  molecular  dipole?  

6. What  is  the  relationship  between  the  molecular  dipole  and  the  individual  bond  dipoles?      

Page 4: Molecular Polarity Guided Inquiry - Annville-Cleona … · 1. Whatcombination)of)electronegativities)created)anonOpolar)molecule?) 2. Whatcombinations)of)electronegativities)created)amoderately)polar)molecule?)

Molecule  Polarity  Simulation  w/  Real  Molecules  

http://phet.colorado.edu/en/simulation/molecule-­‐polarity  

In  the  previous  simulation  with  3  atoms  the  molecular  symmetry  was  always  the  same,  bent.    In  the  real  molecule  simulation  we  will  be  able  to  see  how  molecular  shape  affects  molecular  dipole.      Select  the  “Real  Molecules”  tab  at  the  top  of  the  screen.    Pick  5  molecules  from  the  list  that  have  the  following  shapes:  linear,  bent,  trigonal  planar,  trigonal  pyramidal  and  tetrahedral.    Complete  the  information  below  for  each  of  the  molecules.    Molecular  Formula   Electron-­‐Dot  Notation  

Molecular  Shape  

Sketch  the  Molecule  with  Bond  Dipoles  and  Molecular  Dipoles  

   

Linear  

 

   

Bent  

 

   

Trigonal  planar  

 

   

Trigonal  pyramidal  

 

Page 5: Molecular Polarity Guided Inquiry - Annville-Cleona … · 1. Whatcombination)of)electronegativities)created)anonOpolar)molecule?) 2. Whatcombinations)of)electronegativities)created)amoderately)polar)molecule?)

Molecular  Formula   Electron-­‐Dot  Notation  

Molecular  Shape  

Sketch  the  Molecule  with  Bond  Dipoles  and  Molecular  Dipoles  

   

tetrahedral  

 

Pick  5  other  molecules  from  the  simulation  list  that  represent  the  5  molecular  shapes,  but  do  not  run  their  simulations.    Draw  their  electron-­‐dot  notation,  predict  their  shape,  use  the  electronegativity  periodic  table  to  determine  their  bond  polarity  and  then  sketch  the  molecule  showing  the  correct  shape,  bond  dipoles  and  molecular  dipole.    Then  run  the  simulation  to  check  your  answers.  

Molecular  Formula   Electron-­‐Dot  Notation  

Molecular  Shape  

Sketch  the  Molecule  with  Bond  Dipoles  and  Molecular  Dipoles  

   

 

 

   

 

 

   

 

 

Page 6: Molecular Polarity Guided Inquiry - Annville-Cleona … · 1. Whatcombination)of)electronegativities)created)anonOpolar)molecule?) 2. Whatcombinations)of)electronegativities)created)amoderately)polar)molecule?)

Molecular  Formula   Electron-­‐Dot  Notation  

Molecular  Shape  

Sketch  the  Molecule  with  Bond  Dipoles  and  Molecular  Dipoles  

   

 

 

   

 

 

 7. Is  it  possible  to  have  a  polar  molecule  that  is  made  up  of  non-­‐polar  bonds?  Explain  why.  

8. Is  it  possible  to  have  a  non-­‐polar  molecule  that  is  made  up  of  polar  bonds?  Explain  why.