90
Molecular Genetic Insights into Molecular Genetic Insights into Molecular Genetic Insights into Molecular Genetic Insights into Basal Basal Angiosperms: Angiosperms: Focused on Focused on Amborella Amborella and and M li M li Magnolia Magnolia Sangtae Sangtae Kim Kim

Molecular Genetic Insights intoMolecular Genetic Insights into

  • Upload
    others

  • View
    19

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Molecular Genetic Insights intoMolecular Genetic Insights into

Molecular Genetic Insights intoMolecular Genetic Insights intoMolecular Genetic Insights into Molecular Genetic Insights into Basal Basal Angiosperms:Angiosperms:g pg p

Focused on Focused on AmborellaAmborella and and M liM liMagnoliaMagnolia

SangtaeSangtae KimKim

Page 2: Molecular Genetic Insights intoMolecular Genetic Insights into
Page 3: Molecular Genetic Insights intoMolecular Genetic Insights into

Evolution of Basal AngiospermsEvolution of Basal Angiospermsg pg p

Page 4: Molecular Genetic Insights intoMolecular Genetic Insights into

I.I. BasalBasal--most angiosperm and most angiosperm and the Floral Genome Projectthe Floral Genome Projectthe Floral Genome Projectthe Floral Genome Project

IIII Floral gene expressionsFloral gene expressionsII.II. Floral gene expressions Floral gene expressions in basal angiospermsin basal angiosperms

IIIIII. . EvoEvo--devodevo in in MagnoliaceaeMagnoliaceae

Page 5: Molecular Genetic Insights intoMolecular Genetic Insights into

I.I. BasalBasal--most angiosperm and most angiosperm and the Floral Genome Projectthe Floral Genome Project

Page 6: Molecular Genetic Insights intoMolecular Genetic Insights into

??

Page 7: Molecular Genetic Insights intoMolecular Genetic Insights into

Darwin’s Abominable Mystery: explosive evolution andexplosive evolution and diversification of angiosperms

- Charles DarwinCharles Darwinletter to Joseph Dalton Hooker, 22 July 1879.

“…the rapid rise and early diversification of angiosperms is an abominable mystery…”

Page 8: Molecular Genetic Insights intoMolecular Genetic Insights into

*

?

Page 9: Molecular Genetic Insights intoMolecular Genetic Insights into

Early branching angiosperm(sister to all other angiosperms):

Ranalian complex?Ranalian complex?Ranalian complex?Ranalian complex?

Amentiferae?Amentiferae?

MagnoliaMagnolia??DrimysDrimys??

CeratophyllumCeratophyllum??yy

Page 10: Molecular Genetic Insights intoMolecular Genetic Insights into

Soltis et al 1999 Angiosperm

FagalesCucurbitalesRosalesFabalesZygophyllalesCelastrales

Walnuts, chestnutSquashApples, strawberriesLegumesCreosote plant

EudicotsCore-eudicots

Soltis et al., 1999. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402: 402-404.

OxalidalesMalpighialesSapindalesMalvalesBrassicalesCrossosomatalesMyrtales

Star fruitPassion fruitCitrus, cashewsCotton, cocoaArabidopsis, mustard

Pomegranate

- Selected 500 taxa- Multi-gene analyses:

rbcL+atpB+18S

yGernalialesSaxifragalesLamialesSolanalesGentianalesGarryalesAsteralesDi l

GooseberryAntirrhinum, oliveTomato, green pepperCoffee

SunflowerrbcL+atpB+18S DipsacalesApialesAquifolialesCornalesEricalesBerberidopsidalesSantalalesCaryophyllales

ElderberryDill, fennel

Blueberry, cranberry

B ck heat q inoaCaryophyllalesGunneralesBuxalesTrochodendralesProtealesSabiaceae

Buckwheat, quinoa

Macadamia nut

Ranunculales Poppy

Ceratophyllales

Monocots

MagnolialesLauralesPiperalesWinterales

Chloranthales

Illiciaceae

NutmegAvocadoBlack pepper

Star aniseSchisandraceaeAustrobaileyaceaeNymphaeaceaeAmborellaceae

Gymnosperms

Page 11: Molecular Genetic Insights intoMolecular Genetic Insights into

Amborella trichopoda

• Shrub, New Caledonia

U i l ll fl• Unisexual small flowers

• Spiral arrangement

• Moderate number of parts

• Undifferentiated perianth

Page 12: Molecular Genetic Insights intoMolecular Genetic Insights into

FagalesCucurbitalesRosalesFabalesZygophyllalesCelastrales

Walnuts, chestnutSquashApples, strawberriesLegumesCreosote plant

EudicotsCore-eudicots• End of debates?

Soltis et al., 1999. OxalidalesMalpighialesSapindalesMalvalesBrassicalesCrossosomatalesMyrtales

Star fruitPassion fruitCitrus, cashewsCotton, cocoaArabidopsis, mustard

Pomegranate

Mathews and Donoghue, 1999Qiu et al., 1999Soltis, …, Kim, 2000Savolainen et al 2000

yGernalialesSaxifragalesLamialesSolanalesGentianalesGarryalesAsteralesDi l

GooseberryAntirrhinum, oliveTomato, green pepperCoffee

SunflowerSavolainen et al., 2000Barkman et al., 2000Zanis et al., 2002Kuzoff and Gasser, 2000

DipsacalesApialesAquifolialesCornalesEricalesBerberidopsidalesSantalalesCaryophyllales

ElderberryDill, fennel

Blueberry, cranberry

B ck heat q inoaZanis et al., 2002Borsch et al., 2003Goremykin et al., 2003Hilu et al 2003

CaryophyllalesGunneralesBuxalesTrochodendralesProtealesSabiaceae

Buckwheat, quinoa

Macadamia nut

Ranunculales PoppyHilu et al., 2003Soltis and Soltis, 2004Soltis et al., 2004Kim et al., 2004 Ceratophyllales

Monocots

Martin et al., 2005Leebens-Mack et al., 2005 Goremykin et al., 2006Moore et al 2007

MagnolialesLauralesPiperalesWinterales

Chloranthales

Illiciaceae

NutmegAvocadoBlack pepper

Star aniseMoore et al., 2007Jansen et al., 2007…

SchisandraceaeAustrobaileyaceaeNymphaeaceaeAmborellaceae

Gymnosperms

Page 13: Molecular Genetic Insights intoMolecular Genetic Insights into

KIM, et al., (2004)

Phylogeny and diversificationPhylogeny and diversification of B-function MADS-box genes in angiosperms: evolutionary and functionalevolutionary and functional implications of a 260-million-year-old duplication.

American Journal of Botany21: 2102-2118.J lJournal cover

Page 14: Molecular Genetic Insights intoMolecular Genetic Insights into

AP3 familyKim et al. (2004)

NTDEF Nicotiana

STDEF.Solanum

NTDEF.Nicotiana

PI family

RfPI 1 Ranunculus

MfPI.Michelia

RfPI.1.Ranunculus

SmAP3.SagittariaEbAP3.1.Eupomatia

MfAP3 Mi h li

CUM26Cucumis

MfAP3.Michelia

*

##

**

Page 15: Molecular Genetic Insights intoMolecular Genetic Insights into

FagalesCucurbitalesRosalesFabalesZygophyllalesCelastrales

Walnuts, chestnutSquashApples, strawberriesLegumesCreosote plant

Eudicots

Current understanding of angiosperm phylogeny

monocots dicots

OxalidalesMalpighialesSapindalesMalvalesBrassicalesCrossosomatalesMyrtales

Star fruitPassion fruitCitrus, cashewsCotton, cocoaArabidopsis, mustard

Pomegranate

angiosperm phylogeny

Traditional view

yGernalialesSaxifragalesLamialesSolanalesGentianalesGarryalesAsteralesDi l

GooseberryAntirrhinum, oliveTomato, green pepperCoffee

Sunflower

75%

Traditional view DipsacalesApialesAquifolialesCornalesEricalesBerberidopsidalesSantalalesCaryophyllales

ElderberryDill, fennel

Blueberry, cranberry

B ck heat q inoaCaryophyllalesGunneralesBuxalesTrochodendralesProtealesSabiaceae

Buckwheat, quinoa

Macadamia nut

Ranunculales Poppy

monocots

eudicots

Ceratophyllales

Monocots 22%Grains, Palms

Recent view

MagnolialesLauralesPiperalesWinterales

Chloranthales

Illiciaceae

NutmegAvocadoBlack pepper

Star anise3%

Basal Angiosperms

Recent viewSchisandraceaeAustrobaileyaceaeNymphaeaceaeAmborellaceae

Gymnosperms

Page 16: Molecular Genetic Insights intoMolecular Genetic Insights into

Summary of Angiosperm Phylogeny

72% 25% 3%

Summary of Angiosperm Phylogeny (Soltis et al., 1999; Qiu et al., 1999; Soltis et al., 2000; Zanis et al., 2002; Hilu et al., 2003…)

ms

eudicots

e

monocots basal angiosperms

72% 25% 3%

Arabidopsis

orel

laph

aeac

eae

obai

leya

les

cots

anth

acea

e

les

olia

les

lale

sal

es

t gym

nosp

erm

eral

esod

endr

acea

e

ceae

alesceae

ncul

ales

alal

es

raga

les

ophy

llale

s

sds orel

laph

aeac

eae

roba

ileya

les

rant

hace

ae

ales

nolia

les

llale

sra

les

ArabidopsisAntirrhinum rice

Am

boN

ymp

Aus

tro

mon

oc

Chl

ora

Laur

aM

agno

Can

elPi

pera

exta

nt

Gun

neTr

och

Buxa

cP

rote

a

Sabi

a

Ran

un

San

ta

Saxi

fr

Car

yo

rosi

ds

aste

rid

Am

boN

ymp

Aus

tr

Chl

or

Laur

aM

agn

Can

ePi

per

Page 17: Molecular Genetic Insights intoMolecular Genetic Insights into

http://www.floralgenome.org/

Floral Genome Project: A Solution to Darwin’s Abominable Mystery?

• The Goal of the Floral Genome Project:- Provide an evolutionary genomic framework y g

for flowers- Address questions of q

. Origin and diversification of flowers.

. Evolution of plant reproduction. p p

• 2001~ 2007

Page 18: Molecular Genetic Insights intoMolecular Genetic Insights into

http://www.floralgenome.org/

Floral Genome Approaches

• PHYLO-EVO-DEVOTICS= Phylogenetics + Evolution + Developmental Biology + Genomics + Bioinformatics

• Compare expressed genes from early stages of flower development in diverse angiosperms (15 selected taxa)development in diverse angiosperms (15 selected taxa)

>100,000 ESTs

• Determine expression patterns during floral development in diverse species

RT PCR I it iRT-PCR, In situ, microarrays

Page 19: Molecular Genetic Insights intoMolecular Genetic Insights into

http://www.floralgenome.org/

Ski• Skim papers:

- Soltis et al (2002) Missing links: the genetic architecture- Soltis et al. (2002) Missing links: the genetic architectureof flower and floral diversification. TIPS 7: 22-31.

- Albert, … Kim, … et al. (2005). Floral gene resources from basal angiosperms for comparative genomics

h BMC Pl t Bi l 5 1 15research. BMC Plant Biology 5: 1-15.

Page 20: Molecular Genetic Insights intoMolecular Genetic Insights into

CYCLOIDEA Citerne et al., 2006. PNASCYCLOIDEA Citerne et al., 2006. PNAS

Lupinus

Cadia

Page 21: Molecular Genetic Insights intoMolecular Genetic Insights into

soc1 and ful : annual to perennial Siegbert et al. Nature Genet. 2008

Page 22: Molecular Genetic Insights intoMolecular Genetic Insights into

http://amborella.org

FGP II:FGP project is continued as the Amborella Genome Project

Page 23: Molecular Genetic Insights intoMolecular Genetic Insights into
Page 24: Molecular Genetic Insights intoMolecular Genetic Insights into
Page 25: Molecular Genetic Insights intoMolecular Genetic Insights into

Next Generation Sequencing (NGS)  TechnologiesNext Generation Sequencing (NGS)  Technologies

SolexaSolexa; Illumina

GSGS‐‐TitaniumTitanium; Roche 454

SOLiDSOLiD; ABI

SMRTSMRT; Pacific Bioscience HelicosHelicos; Helicos Bioscience

‐ Next (or Current) generation sequencing technologies have accelerated the speed 

of genome sequencing projects and have broaden application range of genomeof genome sequencing projects and have broaden application range of genome 

sequences.

Page 26: Molecular Genetic Insights intoMolecular Genetic Insights into

13 Published Higher Plant Genomes from 10 Species13 Published Higher Plant Genomes from 10 Species

Species name Journal Method Size (Mb) # of contigs # of transcripts

Arabidopsis thaliana Nature, 2000 BAC +α 119.19 5 32,615

Data from Dr. Jongsun Park

Oryza sativa japonicaScience, 2002Nature, 2005

BAC +α 372.08 12 66,710

Oryza sativa indicaScience, 2002PL S Bi l 2005

WGS 426.32 10,267 49,710yPLoS Biology, 2005

, ,

Oryza sativa japonica (syngenta)

PLoS Biology, 2005 WGS 391.14 7,777 45,824

Populus trichocarpa Science, 2006 WGS 485.51 22,012 45,555opu us t c oca pa Sc e ce, 006 GS 85 5 ,0 5,555

Vitis vinifera Nature, 2007WGS, Complete

497.51 35 30,434

Carica papaya  Nature, 2008 WGS 369.69 17,677 28,589

Lotus japonicus DNA Research, 2008 WGS 323.24 110,945 26,700

Sorghum bicolor  Nature, 2009 WGS 738.54 3,304 36,338

Zea mays Science, 2009 BAC, WGS 2,061.02 11 53,764

Cucumis sativusNature genetics, 2009

WGS 243.57 47,488  26,682

Glycine max Nature 2010 WGS 996 90 4 262 62 199Glycine max  Nature, 2010 WGS 996.90 4,262  62,199

Brachypodiumdistachyon

Nature, 2010 WGS 273.27 197 32,255

Page 27: Molecular Genetic Insights intoMolecular Genetic Insights into

Unpublished 8 Higher Plant GenomesUnpublished 8 Higher Plant Genomes

Species name Method Size (Mb) # of contigs # of transcripts

Data from Dr. Jongsun Park

Arabidopsis lyrata WGS 206.67 695 32,670

Medicago truncatula BAC, WGS 278.69 9 38,334

Selaginella moellendorffii WGS 212.76 768  22,285

Lycopersicon esculentum WGS, BAC 794.60 7,409 49,389

Solanum phureja WGS 702.58 57,681 110,512

Ricinus communis WGS 362.47 28,518 38,613

Mimulus guttatus WGS 416.66 11,243 47,442

Manihot esculenta WGS 321.73 2,216 27,501

Page 28: Molecular Genetic Insights intoMolecular Genetic Insights into

7 Unicellular Plants Genomes7 Unicellular Plants Genomes

Species name Journal MethodSize (Mb)

# of ti

# of transcripts

Data from Dr. Jongsun Park

p(Mb) contigs

p

Chlamydomonas reinhardtii Science, 2007 WGS 112.31 88 16,709

Micromonas pusilla CCMP1545  Science, 2009 WGS 22.04 27 10,547

Micromonas sp. RCC299  Science, 2009 WGS 20.99 17 10,108

Ostreococcus lucimarinus CCE9901 PNAS 2007 WGS 13 2 21 7 488Ostreococcus lucimarinus CCE9901  PNAS, 2007 WGS 13.2 21 7,488

Ostreococcus sp. RCC809  Not published yet WGS 13.41 22 7,492

Ostreococcus tauri PNAS, 2007 WGS 12.58 118 7,725

Coccomyxa sp C169 Not published yet WGS 48 95 45 9 629Coccomyxa sp. C169  Not published yet WGS 48.95 45 9,629

Page 29: Molecular Genetic Insights intoMolecular Genetic Insights into

Distribution of 21 Plant Genome SizeDistribution of 21 Plant Genome Size

2500MbMb

Data from Dr. Jongsun Park

2000

2,061.02

1000

1500

794 6

996.9

500212.76 243.57

323.24 321.73369.69

497.51

273.27

119.19206.67

738.54

278.69362.47

485.51391.14 416.66

794.6

426.32372.08

702.58

0

119.19

Page 30: Molecular Genetic Insights intoMolecular Genetic Insights into

II.II. Floral gene expressions Floral gene expressions in basal angiospermsin basal angiosperms

Page 31: Molecular Genetic Insights intoMolecular Genetic Insights into

Flowers are central identifying structure for angiosperms

Page 32: Molecular Genetic Insights intoMolecular Genetic Insights into

ABC model (Coen and Meyeorowitz, 1991): Genetic Control of Floral Organ Identity in Model Plants

Our understanding of floral developmental genetics in “model” systems

Genetic Control of Floral Organ Identity in Model Plants

B

A C

A A+B B+C CASepal

A+BPetal

B+CStamen

CCarpel

CarpelPetal

Stamen

S lSepal

Page 33: Molecular Genetic Insights intoMolecular Genetic Insights into

ABC model (Coen and Meyeorowitz, 1991): Genetic Control of Floral Organ Identity in Model Plants

Our understanding of floral developmental genetics in “model” systems

Genetic Control of Floral Organ Identity in Model Plants

B

A CA C

ArabidopsisAP3/PI

AP1/AP2 AG

AP3/PI

AP1/AP2 AG

Sepal Petal Stamen Carpel

MADS box gene family:Transcription factorsp

Page 34: Molecular Genetic Insights intoMolecular Genetic Insights into

Extended ABC model (Theissen, 2001)

B

A CD

B

CD

A

EE

A B+C+E C+E D+EA+B+ESepal Stamen Carpel

Carpel

OvulePetal

Stamen

CarpelPetal

SepalOvule

Page 35: Molecular Genetic Insights intoMolecular Genetic Insights into

ABC model (Coen and Meyeorowitz, 1991): Genetic Control of Floral Organ Identity in Model Plants

Our understanding of floral developmental genetics in “model” systems

Genetic Control of Floral Organ Identity in Model Plants

ArabidopsisAP3/PI

AP1/AP2 AG

Sepal Petal Stamen Carpel

AP1/AP2 AG

Silky1/ZP1

ZAP1

P l L di l St C l

MaizeAmbrose et al.,2000 ZMM2

ZAG1

PaleaLemma

Lodicule Stamen Carpel

Page 36: Molecular Genetic Insights intoMolecular Genetic Insights into

Modified ABC model (van Tunen et al., 1993); Sliding border model

BB

Sepal Petal Stamen Carpel

A C

Tepal Tepal

TulipKanno et al., 2003

Sepal Petal Stamen CarpelTepal Tepal

Page 37: Molecular Genetic Insights intoMolecular Genetic Insights into

Questions in basal angiosperms

1. Are homologs of ABC B

genes found in basal angiosperms?

B

A C

2. Where are ABC homologs expressed?

ASepal

A+BPetal

B+CStamen

CCarpel

C l homologs expressed?

3. If expression implies Petal

Stamen

Carpel

function, does the ABC model hold for basal angiosperms? Sepal

Page 38: Molecular Genetic Insights intoMolecular Genetic Insights into

Persea americana

Asiminalongifolia

Eupomatiabennettii

Magnoliagrandiflora

Illiciumfloridanum

Nupharadvena

Amborellatrichopoda“MADS” search of

b l ibasal angiosperms

ms

eudicots monocots basal angiosperms

rella

ceae

haea

ceae

obai

leya

les

cots

anth

acea

e

es olia

les

lale

sal

es gym

nosp

erm

eral

esod

endr

acea

e

ceae

alesceae

ncul

ales

lale

s

agal

es

phyl

lale

s

ds

Am

bor

Nym

phA

ustro

mon

oc

Chl

ora

Laur

alM

agno

Can

ell

Pipe

ra

exta

nt

Gun

neTr

ocho

Buxa

cP

rote

a

Sabi

ac

Ran

un

San

tal

Sax

ifra

Car

yo

rosi

ds

aste

rid

Page 39: Molecular Genetic Insights intoMolecular Genetic Insights into

SK MagrAP3 MagnoliaMpMADS7

ltu016ms1e12, 0112ms3g02, 0116ms4a05SK_EubeAP3.1_EupomatiaSK_EubeAP3.2_EupomatiaSK AsloAP3 Asimina

eca015cs1g10, 0113cs3d12eca015cs3e07

SK_Pe.am.AP3_PerseaSK_Il.fl.AP31Jin1_Illicium

SK_Il.fl.AP32Jin3_IlliciumSK_Il.fl.AP33Jin2_Illicium

SK_Nu.va.AP3.1_Nuphar nad033cs2a08SK_Nu.va.AP3.2_Nuphar nad033ca2a08

SK AmtrAP3 2 AmborellaSK AmtrAP3 1 atr026ms2a12

silkyap3 pep37

25

24

26

2015

176

7331410

101

19

1148 14

2217

46

2215

41 2332

43 1619

42 4328

4739 46

DEF(AP3-like)

B class100

Phylogeny of the MADS-box genes ap3 pep

defa pepMpMADS12ggm2 pep

wmi01 9ms3 g01SK_Nu.ad.PI

SK_Nu.va.PI_NupharSK AmtrPI Amborella

SK_Il.fl.PI.Jin_Illiciumeca01 7ms1 d01

SK EubePI EupomatiaSK EulaPI Eupomatia

SK AsloPI AsiminaMpMADS8

pam018ms3h10, 0113ms3h04, 0112ms1b11, 019ms4b10glo peppi pep

osmads2 pepzmm18 pep

zmm17 pepaeap32 pep

118

50

4837 39 46

4251

61 2534

41

23

20

1017

27 32 614

3824

47

910

627 18

2314

38 4341

31 1929

43 29 6135 GGM13

GLO(PI-like)

B-class

8895

MADS box genes

aeap32 pepggm13 pep

ABS pepFBP24 pep

ap1 pepcal pep

squa pepagl8 pepSK EubeAP1MpMADS15

pam011ms3g02, 014ms1b11, 019ms3d08osmads15zap1 pep

atr0129ms1e07atr024ms2a10

SK NuadSQUA nad0320ms4a07ZMM27 Ze may

OsMADS8 Or satzmm6 pep

eca01 25ms1 b01lt 01 6 2 d07

5343 35

5354 71

61

35

3936

2421

33 7778

8281

6520 20

2530

94 1720

108 710

90

26

4723 6

1227

23 634

SQUA(AP1-like)

GGM1347

A-class98

95

56

Dltu01 6ms2 d07MpMADS13

agl9 pepatr02 12ms4 c09

SK AmtrAGL2 atr0123ms1h09, 027ms3b06MpMADS14

aam015ms3g09SK NuadAGL2 038cs2h04nad0330ms4a04agl4 pepagl2 pep

agl3 pepzmm3 pep

osmads1 pepMpMADS4

ltu0113ms4h04MpMADS3

agl13 pepagl6 pep

aam018ms3g07, 011ms4a11, 019ms3f05, 018ms3g04S G 6 022 4 02 029 1 01

110

3934

3228

1518

1221

23 4654

252858

2617

30 1616

7051 26

23

31

31

18 22 3

31

25 47 5430

2520

AGL2

AGL6

91

72

29

D-,E-class

g gSK AmtrAGL6 atr022ms4e02, 029ms1b01

SK NuadAGL6 nad0332msh09, 0332ms4d09osmads6 pep

zag3 pepggm11 pep

wmi014ms4e10ggm9 pep

CyAGggm3 pep

MpMADS11atr0213ms4b02

SK_Il.fl.AG_JinMpMADS2

SK atr0119ms1a12 AGeca0112ms1b11pam0112ms2d12

agl1 pepagl5 pep

ag pepnad0312ms2g12

70

45

31 11 2031

25 1321

36 28 3219

62

44

37

36

4026

416

40 2033

1825

11 2014

21

2644 9

746 15

1936 32

6339

AGL6

AG C-class

72

gagl11 pep

ZMM25 Ze mayzag1 pep

osmads3 peposmads13 pep

zmm1 pepOsmads26

MpMADS5agl12 pep

ggm10 pepZMM21 Ze may

bm1 pepAGL24

svp pepJOINTLESS

MpMADS1pam0111ms1g02

atr021ms4b09stmads11 pep

ggm12komplett pep1 1

29

49

38

44 39 3947

53 4525

49 2241

6251 26 44

3546

60

35

5945

3318

1125

31 32 5646

5822 37

3728

2051

5548

18

STMADS11

100

8866 gg p p p

agl151 bn pepagl152 bn pep

agl15 pepAGL18ZmMADS2CAD40993

AGL16agl17 pep

agl21 pepanr1 pep

AGL31At5g65060

MAF1 Ar thaFCL2 Ar thalflc1 Ar tha

flc peptm3 pep

soc1MpMADS9

MpMADS6

108

39 59

35

6561 24 18

2922

68

5532

23 36 2625

5129 35

2045

6220

11 1925

818

19 2624

35

3119

36 3214

23 2433

30

FLC

AGL17AGL15

RED: Homologs from

66100

100MpMADS6

At5g51870At5g51860

AGL42FDRMADS8

zmm5 pepAGL19agl14 pep

ggm1 pepwmi019ms3b07

tm8 pepERAF17MpMADS10

pam019ms3c05atr025ms3c01

wmi016ms1a12nad0314ms3a10, 0330ms4g02, 035cs4f08

ltu017ms1e07

50 changes

38

54

41

25 4043 30

4740

34 4538

38 2427

54 1521

6423

30 3534

25 3718

4454 54

5380

TM3

TM8Type I (outgroup)

RED: Homologs from basal angiosperms

79100

Page 40: Molecular Genetic Insights intoMolecular Genetic Insights into

Questions in basal angiosperms

1. Are homologs of ABC B

genes found in basal angiosperms?

B

A C

yes.A

SepalA+BPetal

B+CStamen

CCarpel

C l 1. Where are ABC homologs expressed?

PetalStamen

Carpel

3. If expression implies function does the ABCfunction, does the ABC model hold for basal angiosperms?

Sepal

angiosperms?

Page 41: Molecular Genetic Insights intoMolecular Genetic Insights into

Questions in basal angiosperms

1. Are homologs of ABC B

genes found in basal angiosperms?

B

A C

2. Where are ABC homologs expressed?

ASepal

A+BPetal

B+CStamen

CCarpel

C l homologs expressed?

3. If expression implies Petal

Stamen

Carpel

function, does the ABC model hold for basal angiosperms? Sepal

Page 42: Molecular Genetic Insights intoMolecular Genetic Insights into

Expression Studies Relative Quantitative RT-PCR Real-time PCR In situ Hybridization

Page 43: Molecular Genetic Insights intoMolecular Genetic Insights into

Relative-quantitative-RT PCR Control: organs from Antirrhinum majusorgans from Antirrhinum majus

Whorl 1 2 3 4 n ol

B

A C

peta

lst

amen

carp

elea

f

root

-con

tro

sepa

l

Organs Sepal Petal Stamen Carpel

p s c l r -s

18SDEF(AP3)

18SGLO(PI)

Expression as expected from B-class genes of the ABC model.

Page 44: Molecular Genetic Insights intoMolecular Genetic Insights into

• B-class genes expressed throughout all floral organs in Amborella

STAMEN1. 21.2

STAMENRQ RT-PCR

female

0 . 6

0 . 8

1

0.6

0.8

1

TEPAL0 . 2

0 . 4

0.2

0.4

male0

1 2 3 4 50

1 2 3 4 5

male

TEPALCARPELTE STST CA LEAF TE ST LEAFSD CASDSD

18S

PIAP3

B

A C

Whorl 1 2 3 4

STAMINODE

A C

Organs Sepal Petal Stamen Carpel female

Page 45: Molecular Genetic Insights intoMolecular Genetic Insights into

• B-class genes expressed throughout all floral organs in Amborella

In situ hybridization

PIAP3

Page 46: Molecular Genetic Insights intoMolecular Genetic Insights into

Amborella trichopoda (Amborellaceae)

• Broad expression of B-class genes

female

Tepals Stamens Carpels Leaves

B-classAm.tr.GLO +++ +++ +++ +Am tr DEF 1 +++ +++ ++

1st 2nd 3rd 4th

Am.tr.DEF.1 +++ +++ ++ -Am.tr.DEF.2 +++ +++ - -

C-classAm.tr.AG - +++ +++ -

E-class

BB

E-classAm.tr.AGL2 +++ +++ +++ -

BA C

E

BA C

E

Page 47: Molecular Genetic Insights intoMolecular Genetic Insights into

N h d (N h )

• A-class gene expression in carpels and leaves rather than perianth

Nuphar advena (Nympheaceae)

Tepals Stamens Carpels Leaves

A-classNu.ad.SQUA - - - +++ +++

1st 2nd 3rd 4th

B-classNu.ad.GLO +++ +++ +++ +++ -Nu.ad.DEF +++ +++ +++ +++ -

C-classNu ad AG - - +++ +++ -

B

Nu.ad.AG - - +++ +++ -

E-classNu.ad.AGL2 +++ +++ +++ +++ -

BBA C

E

BA C

E

Page 48: Molecular Genetic Insights intoMolecular Genetic Insights into

Possible A-function gene in basal angiosperms:

AGL6-like gene?showed tepal specific expression

epal

s

tam

ens

Car

pels

eeds

eave

s

cont

rol

path

aceo

usra

cts

- showed tepal-specific expression

18SMa.gr.AGL6

T S C S L e -S br

Outer tepal Inner tepal Stamen Carpel LeavesOuter tepal Inner tepal Stamen Carpel LeavesMa.gr.AGL6 (Magnolia) +++ +++ - - -Li.tu.AGL6 (Liriodendron) +++ +++ - + -Pe.am.AGL6 (Persea) +++ +++ - + -Am tr AGL6 (Amborella) +++ +++ ++ ++Am.tr.AGL6 (Amborella) +++ +++ ++ ++ -

BC

E

DB? C

E

D

Page 49: Molecular Genetic Insights intoMolecular Genetic Insights into

Antirrhinum m AmSEP3bAmSEP3B100Antirrhinum m DEFH200AmSEP3A9562DEFH72AmSEP3C81Antirrhinum m DEFH7293

100

Syringa v SvSEP3SvSEP310091

Petunia h FBP2PhSEP386Lycopersicon e LeMADS5LeSEP38455

Nicotiana s NsMADS378

TDR599

92

Chrysanthemum m CDM44

63

Populus t PTM6Betula p MADS148Vitis v VvMADS4

124

Pisum s MTF1MTF1100Gossypium h GhMADS1

3224

Arabidopsis t AGL9SEP3100Sinapis a SaMADSd

10043

Silene l SlSEP346

Chrysanthemum m CDM77Helianthus a HAM13796Gerbera h GRCD1

10049

Ma.gr.AGL2.1Magnolia p MpMADS13100Chl th C SEP3

542740

DNA MIKCML t Magnolia p MpMADS13Chloranthus s CsSEP3Eu.be.AGL2Ltu01 06ms2 d0710027

Pe.am.AGL2.2Pe.am.AGL2.110062

Eca01 25ms1 b11PapnSEP394Akebia t AktSEP3 1

7639

Houttuynia c HcSEP160

40

Lolium p LpMADS8Triticum a TaMADS70Dendrocalamus l MADS5

62Oryza s OsMADS8OsMADS810040

Zea m M27100

Hordeum v HvAGL9Lolium p LpMADS5100Zea m M6

56Oryza s OsMADS7

100100

Asparagus o AOM4Asparagus o AOM110020

Lilium l LMADS3Aranda d OM145

13

TvSEP323

Dendrobium g OTG741

44

Malus d MdMADS1Malus d MdMADS9100Fragaria a RIN

97Cucumis s CAGL2CAGL210030

Vitis v MADS2VvMADS2100Heuchera a HeaSEP1HeaSEP110072

18

Arabidopsis t AGL2SEP1100Brassica o SEP1a

100Arabidopsis t AGL4SEP2100100

Populus t MAGL440

67

Silene l SlSEP1

60

Lycopersicon e TM29LeSEP1100Petunia h PMADS12

91Petunia h FBP5100100

5279

1

67

AG

L2

ML tree326 genesPHYML program

96Petunia h FBP5PhSEP1100Antirrhinum m DEFH49

52SvSEP1

64Gerbera hybrida GRCD2

80Eca01 05cs3 b03

1

Capsicum a MADS1Lycopersicon e LeMADS1100Petunia h FBP23

100Petunia h FBP9Nicotiana t NtMADS4100100

Malus d MADS7MdMADS3100Malus d MADS6

100Eucalyptus g EGM3EGM310096

90

Lycopersicon e MADS RINPetunia h FBP488Capsicum a PepMADS

100Brassica o AGL3aArabidopsis t AGL310068

Dianthus c CMB113

Daucus c MADS547

14

Pachysandra t PatSEP1PatSEP1100Malus d MdMADS4

16

14

34

Houttuynia c HcSEP3Houttuynia c HcSEP2100Ma.gr.AGL2.2

41Nad03 08cs2 h04Am.tr.AGL2.141

Am.tr.AGL2.265

5

Ac.am.AGL239

10

Dendrobium g DOMADS3

32

Chasmanthium latifolium LHS1Danthonia spicata LHS125Aristida longiseta LHS1

14Eleusine coracana LHS1

35Panicum miliaceum LHS1Setaria italica LHS173

Pennisetum glaucum LHS198

47

Sorghum bicolor LHS1Zea m ZMM14100Zea m ZMM8

9072

Lithachne humilis LHS1Dendrocalamus l MADS139649

17

96

A 96

90 AG

L2 E-classDendrocalamus l MADS13Leersia virginica LHS1Oryza s OsMADS1100

Ehrharta erecta LHS1100

Hordeum v BM7Avena sativa LHS197Lolium p LpMADS9

98100

Dendrocalamus l MADS16Zea m ZMM342Lolium p LpMADS6

56Oryza s OsMADS5

100

100

Zea m M31Zea m M24100Oryza s RMADS217

62Triticum a AGLG1Lolium p LpMADS7100100

63

Lilium l LMADS4

75

L6.Li.tu.AGL6.ltu0113ms4h04L6.MpMADS4.Magnolia.AB050646100L6.MfAGL6B.Michelia.AY306158

100L6.Il.pa.AGL6.IlliciumL6.Pe.am.AGL6.2.Persea2562

L6.Ma.gr.AGL6.MagnoliaL6.MfAGL6A.Michelia.AY306157100L6.MpMADS3.Magnolia.AB050645100

57

L6.Pe.am.AGL6.1.Persea65

L6.Es.ca.AGL6.EschscholziaL6.RbAGL6.Ranunculus.AY3061846636

L6.HcAGL6.Houttuynia.AB08916036

L6.Am.tr.AGL6.Amborella27

L6.Nu.ad.AGL6.Nuphar32

L6.HoAGL6.Hyacinthus.AY591333L6.AOM3.Asparagus.AY38355951L6.ApMADS3.Agapanthus.AB079261

99L6.NADS2.Musa.AY941799

9822

L6.Ac.am.AGL6.Acorus50

L6.VvMADS3.Vitis.AF373602Poptr.AGL6.Populus62L6.Ri.sa.AGL6.Ribes

66L6.MdMADS11.Malus.AJ000763

62L6.SvAGL6.Syringa.AY306188L6.pMADS4.Petunia.AB0310357433

L6.grcd3.Gerbera.AJ784157L6.CDM104.Chrysan.AY17306210027

L6 BoAGL6a Brassica AJ508055L6 B AGL6b B i AJ50840910010043

76

53

90

L6

99

AG

L6

L6.BoAGL6a.Brassica.AJ508055L6.BoAGL6b.Brassica.AJ508409100L6.AGL6.Arabidopsis.M55554

100L6.AGL13.Arabidopsis.U20183

100L6.Cu.sa.AGL6.Cucumis.csa013msL6.PaMADS1.Poa.AF372840L6.LpMADS4.Lolium.AY19832978

L6.HvAGL6.Hordeum.AY541067L6.TaMADS12.Triticum.AB007505100100L6.MADS18.Dendro.AY599755

98L6.ZAG3.Zea.L46397L6.ZAG5.Zea.L46398100

48

L6.OsMADS6.Oryza.U7878299

L6.TaeMADS12.Triticum.AJ57737576

L6.OsMADS17.Oryza.AF109153L6.nmads3.Oryza.AF095646100100

93

L6.PrMADS1.Pinus.Y09611PrMADS1100L6.PrMADS2.Pinus.U42400PradMADS2100100

L6.We.mi.AGL6.Welwitschia59

L6.GbMADS8.Ginkgo.AB02947065

L6.GGM11.Gnetum.AJ132217GGM1110072

L6.PrMADS3.Pinus.U76726PrADMADS3100L6.DAL1.Picea.X80902DAL1100100

L6.GbMADS1.Ginkgo.AB029463100

L6.GpMADS3.Gnetum.AB022665GpMADS398L6.GGM9.Gnetum.AJ132215100

82

100

99

FBP26PhFUL100CaMADS6LeFUL24766

NsMADS1NAP1.110097

SCM1POTM1.153LeFUL1

100PFG

8947

AmFUL67

TDR490

SLM5PaFUL91

49

5012

AG

L

98

100 SQU

A

A-classPaFULMdMADS2BpMADS550

HeaFULCsFUL5763

PisFUL42

EAP1AP2L8114

12

PhFLCcFL100HeaFL

100BpMADS4

57PaFL2PaFL110087

RbFL3PapnFL2100RbFL4

100PapsFL2PapnFL1100

CmFL291

9152

PapsFL1CmFL19920

PatFL2PatFL17621

RbFL2RbFL1100RaFL1

10029

7

NsMADS2NAP1.2100NtMADS5

100LeMADS MCLeAP1100100

SQUA SvAP199PeaM4.f

198

PsMDS2CsAP177HeaAP1

92PtMADSBpMADS33925MdMADS5

20

41

DcMADS1

54

SaMADSCBoAP137AP1

100BrCAL100100

48

47

6

26

100

QU

A

100 STM

3

BrCALBoCAL100CAL

100AsAP1 WgAsAP1 As100

HaM75100

GSQUA175

47

SLM4PaAP198

71

DEFH2820

SaMADSBFUL100Ma.gr.SQUAMfFL63

MpMADS15100

Eu.be.SQUA100

Pe.am.SQUA92

Nu.ad.SQUA13

PcFL2PcFL13120

18

ZmMADS3ZAP1100LtMADS2HvMADS810070

OsMADS15100

SbMADS281

TaMADS11HvMADS5100LtMADS1

100OsMADS14

100100

TvFL2TvFL195TvFL3

100DoMADS2

6026

OsMADS28OsMADS18100HvMADS3

100TvFL4

61

25

6

AlFL

25

AtFL

98

TM3.0.1714.FBP27.PetuniaTM3.0.1714.TOBMADS1.Nicotiana64TM3.0.1714.FBP20.Petunia

99TM3.0.1714.TDR3.Lycoper

96TM3 0 1615 PTM5 PopulTM3 0 1615 P t AGL20 P l10026

2589

SQ

T

0.1

TM3.0.1615.PTM5.PopulTM3.0.1615.Poptr.AGL20.Popul100TM3.0.1721.MADS1.Pimpinella

26TM3.0.1713.DEFH68.Antirrhinum

89

TM3.0.1103.MpMADS9.MagnoliaTM3.0.1103.MpMADS6.Magnolia9748

TM3.0.1621.CfAGL20.CardamineTM3.0.1621.AGL20.Arabidop99TM3.0.1621.SaMADSA.Sinapis

10067

TM3.0.1621.AGL19.ArabidopTM3.0.1621.AGL14.Arabidop100TM3.0.1615.Poptr.AGL19.PopulTM3.0.1615.Poptr.AGL14.Popul10072

42

TM3.0.1303.RAGL20.OryzaTM3.0.1303.FDRMADS8.Oryza100

TM3.0.1603.ETL.Eucalyptus43

14

TM3.0.1621.AGL72.ArabidopTM3.0.1621.AGL71.Arabidop100TM3.0.1621.AGL42.Arabidop

7091

TM3.0.0000.PrMADS6.PinusTM3.0.0000.PrMADS8.Pinus91TM3.0.0000.PrMADS7.Pinus

63TM3.0.0000.PrMADS4.Pinus

96TM3.0.0000.DAL3.Picea

48TM3.0.0000.PrMADS9.Pinus

39TM3.0.0000.PrMADS5.Pinus

100TM3.0.0000.We.mi.TM3.WelwitscTM3.0.0000.GGM1.Gnetum

10089 TM3

Kim et al., in prep.

Page 50: Molecular Genetic Insights intoMolecular Genetic Insights into

Questions in basal angiosperms1. Are homologs of ABC

genes found in basalB genes found in basal angiosperms?

B

A C

2 Where are ABC homologsASepal

A+BPetal

B+CStamen

CCarpel

C l

2. Where are ABC homologs expressed?

PetalStamen

CarpelBroader “B” expressionDifferent “A” expression

3. If expression implies function does the ABC

Sepalfunction, does the ABC model hold for basal angiosperms?angiosperms?

Page 51: Molecular Genetic Insights intoMolecular Genetic Insights into

Questions in basal angiosperms

1. Are homologs of ABC B

genes found in basal angiosperms?

B

A C

2. Where are ABC homologs expressed?

ASepal

A+BPetal

B+CStamen

CCarpel

C l homologs expressed?

3. If expression implies Petal

Stamen

Carpel

function, does the ABC model hold for basal angiosperms? Sepal

Page 52: Molecular Genetic Insights intoMolecular Genetic Insights into

Questions in basal angiosperms1. Are homologs of ABC

genes found in basalB genes found in basal angiosperms?

B

A C

2 Where are ABC homologsASepal

A+BPetal

B+CStamen

CCarpel

C l

2. Where are ABC homologs expressed?

PetalStamen

Carpel3. If expression implies

function does the ABCfunction, does the ABC model hold for basal angiosperms?

Sepalangiosperms? Not entirely.

Page 53: Molecular Genetic Insights intoMolecular Genetic Insights into

AsAP1AsAP1

HaM75GSQUA1

DcMADS1SvAP1SQUA

BoAP1SaMADSCAP1 1

A-classBA C

DE

Taxa Gene Name Sepals Petals Stamens Carpels Other(Tepals)

1st 2nd 3rd 4th

euAP1 genes

AP1BoCAL

BrCALCALPeaM4

NAP1.2NsMADS2

NtMADS5LeAP1

LeMADSPaAP1

SLM4CsAP1HeaAP1PsMDS2BpMADS3

MdMADS5PtMADSf

AtFL

euA

P1E

1st 2nd 3rd 4th OV

Arabidopsis AP1 +++ +++ - -Arabidopsis CAL + + - -Antirrhinum SQUA +++ +++ - + BractPisum PEAM4 +++ +++ - -Silene SLM4 +++ +++ - - Infl., Bract

PaFL1PaFL2DEFH28

CcFLPhFL

HeaFLBpMADS4PapnFL1

PapsFL2CmFL2

PapnFL2RbFL3RbFL4

RbFL1RbFL2RaFL1

PatFL2PatFL1

CmFL1 Eudi

cots

euFUL genesArabidopsis FUL - - - +++ Inf.Antirrhinum DEFH28 - - - +++ Inf., BractSilene SLM5 ++ ++ - +++ Inf., Bract

Monocots

CmFL1PapsFL1

LeFUL2CaMADS6

PhFULFBP26

NAP1.1NsMADS1

LeFUL1TDR4

POTM1.1SCM1

PFGFULSaMADSB

PisFULPaFULSLM5

AmFULCsFUL

H FUL

euFU

LMonocotsOryza RAP1a Lemma, palea - - lodiculesLolium LtMADS1 Glume, lemma ++ ++ Veg. meri.Lolium LtMADS2 Glume, lemma - - Veg. meri.

Basal angiosperm genes

Cs UHeaFULAP2L

BpMADS5EAP1

MdMADS2MfFL

MpMADS15Ma.gr.SQUAEu.be.SQUAPe.am.SQUA

PcFL1PcFL2

HvMADS8LtMADS2OsMADS15

SbMADS2ZmMADS3ZAP1

HvMADS5T MADS11 gi

ospe

rms

cots

Persea Pe.am.SQUA +++ ++ - Leaves +++Eupomatia Eu.be.SQUA + +++ Leaves +++Magnolia Ma.gr.SQUA + ++ ++ Leaves +++ Nuphar Nu.ad.SQUA - - +++ Leaves +++

TaMADS11LtMADS1OsMADS14

TvFL1TvFL2

TvFL3DoMADS2

AlFLOsMADS18OsMADS28

HvMADS3TvFL4Nu.ad.SQUA

AmSEP3CDEFH72AmSEP3B

AmSEP3ASvSEP3

LeSEP3PhSEP3

Bas

al a

ng

Mon

o

AGL2 and AGL6(outgroup)

PhSEP3TDR5

MTF1SEP3

PapnSEP3TvSEP3

OsMADS8LeSEP1PhSEP1

SvSEP1HeaSEP1

SEP1SEP2

CAGL2VvMADS2

EGM3MdMADS3

PatSEP1DAL1

P ADMADS3 (outgroup)PrADMADS3GpMADS3

GGM11PradMADS2PrMADS1

AGL6SvAGL6

RbAGL6MpMADS4

MfAGL6BMfAGL6A

10 changes

Page 54: Molecular Genetic Insights intoMolecular Genetic Insights into

T G N S l P t l St C l Oth

B-class (DEF-lineage)32.LeAP3.Lycopersicon

32.STDEF.Solanum32.NTDEF.Nicotiana

32.PMADS1.Petunia32 SvAP3 Syringia 3

BA C

DE Taxa Gene Name Sepals Petals Stamens Carpels Other

(Tepals)1st 2nd 3rd 4th

Core eudicots: EuAP3 genesArabidopsis AP3 - +++ +++ -

32.SvAP3.Syringia32.DEF.1.Antirrhinum

31.RsAP3.1.Ribes31.RsAP3.2.Ribes31.NMH7.Medicago

32.HmAP3.Hydrangea31.AP3.Arabidopsis

31.BobAP3.Brassica31.Boi1AP3.Brassica31.Boi2AP3.Brassica

32.HPDEF1.Hieracium32.HPDEF2.Hieracium

32 GDEF2 G b

euA

P3E

1st 2nd 3rd 4th OV

pAntirrhinum DEF - +++ +++ -Petunia PMADS1 - +++ +++ -Nicotiana NTDEF - +++ +++ -Silene SLM3 - +++ +++ -Gerbera GDEF2 - +++ +++ - leaves, bracts

32.GDEF2.Gerbera30.RAD1.Rumex

30.RAD2.Rumex30.SLM3.Silene

31.JrAP3.Juglans32.DcMADS3.Daucus

32.TM6.Lycopersicon32.PhTM6.Petunia

32.HmTM6.Hydrangea32.GDEF1.Gerbera

31.MdTM6.Malus31.MdMADS13.Malus TM

3

Eudi

cots

Core eudicots: TM6 genesLycopersicon TM6 - +++ +++ +++Polulus PTD - +++ +++ -Gerbera GDEF1 - + + -Dianthus CMB2 - +++ - -

31.MASAKO.B3.Rosa30.CMB2.Dianthus

31.PTD.Populus30.GtAP3.3.Gunnera30.GtAP3.5.Gunnera

30.GtAP3.2.Gunnera30.GtAP3.1.Gunnera30.GtAP3.4.Gunnera

03.PhAP3.Peperomia20.PcAP3.Papaver

20.PnAP3.1.Papaver20.RbAP3.1.Ranunculus

T

Basal eudicotsDicentra DeAP3 - - +++ -Papaver PnAP3-2 - - +++ -

Monocots

20.RfAP3.1.Ranunculus20.RbAP3.2.Ranunculus

20.RfAP3.2.Ranunculus20.PnAP3.2.Papaver

20.ScAP3.Sanguinaria20.DeAP3.Dicentra

20.PtAP3.1.Pachysandra20.PtAP3.2.Pachysandra

02.MpMADS7.Magnolia02.MfAP3.Michelia

MgAP3.Magnolia02 LtAP3 Liriodendron s

Zea SILKY Lodicules +++ -Oryza OsMADS16 Lodicules +++ -

Basal angiospermsPersea Pe.am.DEF +++ + -Magnolia Ma gr DEF +++ +++

02.LtAP3.LiriodendronAlAP3.Asimina

EbAP3.1.EupomatiaEbAP3.2.Eupomatia

01.CfAP3.2.CalycanthusPaAP3.Persea

01.CfAP3.1.Calycanthus11.OSMADS16.Oryza11.SILKY1.Zea11.TaMADS51.Triticum

10.LRDEF.Lilium10.LMADS1.Lilium

10 SmAP3 Sagittaria angi

ospe

rms

Mon

ocot

s

Magnolia Ma.gr.DEF +++ +++ -Eupomatia Eu.be.DEF +++ +++Asimina As.lo.DEF - +++ +++ -Illicium Il.fl.DEF.1 - +++ +++ -Illicium Il.fl.DEF.2 + +++ ++ -Illicium Il.fl.DEF.3 - +++ - -

10.SmAP3.Sagittaria10.HhMADS1.Hemerocallis10.TcAP3.Tacca

00.CsAP3.Chloranthus03.AeAP3.1.Asarum

Nu.ad.DEF_nad03_19m_e2400.NvAP3.2.Nuphar

00.NvAP3.1.Nuphar00 AtAP3 Amborella

00.IlAP3.IlliciumIl.fl.AP3-1----Jin1

Il.fl.AP3-2----Jin3Il.fl.AP3-3----Jin2

Bas

al a M

Nuphar Nu.ad.DEF +++ +++ +++Amborella Am.tr.AP3-1 +++ +++ ++Amborella Am.tr.AP3-2 +++ +++ +++

00.AtAP3.AmborellaAm.tr.AP3-2

00.NvPI.NupharNu.ad.GLO.2_nad03_27m_o16

00.NaPI.NupharNu.ad.GLO.1_nad03_30ms2_a10

Il.fl.PI.Jin00.AtPI.Amborella

10 changes

GLO-like(outgroup)

Page 55: Molecular Genetic Insights intoMolecular Genetic Insights into

ots

31.RsPI.Ribes31.CUM26Cucumis

31.MdPI.Malus31.MASAKO.BP.Rosa

32.HmPI.Hydrangea32.SvPI.Syringia ot

s

B-class (GLO-lineage)BA C

DE

Taxa Gene Name Sepals Petals Stamens Carpels Other(Tepals)

1st 2nd 3rd 4th

Core eudicotsCor

e eu

dico32.GLO.Antirrhinum

32.NTGLO.Nicotiana32.FBP1.Petunia

32.PMADS2.Petunia31.EGM2.Eucalyptus

31.PI.Arabidopsis30.SLM2.Silene

03.PhPI.Peperomia03.PmPI.1.Piper

Eudi

coE

1st 2nd 3rd 4th OV

Arabidopsis PI - +++ +++ -Antirrhinum GLO - +++ +++ -Petunia FBP1 - +++ +++ -Gerbera GGLO1 - +++ +++ -Nicotiana NTGLO - +++ +++ -Silene SLM2 - +++ +++ -oc

ots

p03.PmPI.2.Piper

32.GGLO1.Gerbera11.OSMADS2.Oryza

11.nmads1.Oryza11.ZMM16.Zea

11.ZMM18.Zea11.ZMM29.Zea

11.OSMADS4.Oryza10.LRGLOA.Lilium Silene SLM2 - +++ +++ -

Basal eudicotsDicentra DePI - - +++ -Papaver PnPI-1 - - +++ -

Mon

ots

10.LRGLOA.Lilium10.LRGLOB.Lilium

10.TcPI.Tacca10.OrcPI.Orchis10.HPI1.Hyacinthus10.HPI2.Hyacinthus10.SmPI.Sagittaria

20.CpPI.Caltha20.RbPI.1.Ranunculus20 RfPI 1 Ranunculus Monocots

Oryza OsMADS2 Lodicules +++ -

Basal angiospermsPersea Pe.am.GLO.1 +++ +++ +Persea Pe.am.GLO.2 +++ +++ -s

Eudi

co20.RfPI.1.Ranunculus20.RbPI.2.Ranunculus20.RfPI.2.Ranunculus

20.DaPI.Delphinium20.PnPI.1.Papaver

20.PnPI.2.Papaver20.ScPI.Sanguinaria

20.DePI.DicentraEbPI.Eupomatia02 ElPI E ti

Magnolia Ma.gr.GLO +++ +++ -Eupomatia Eu.be.GLO +++ ++Asimina As.lo.GLO - +++ +++ -Illicium Il.fl.GLO ++ +++ ++ -Nuphar Nu.ad.GLO +++ +++ +++Amborella Am tr GLO +++ +++ +++an

gios

perm

s02.ElPI.EupomatiaAlPI.Asimina

MpMADS8.Magnolia02.MfPI.Michelia

02.LtPI.Liriodendron03.AePI.Asarum

00.CsPI.Chloranthus01.CfPI.1.Calycanthus

PaPI.PerseaCf C Amborella Am.tr.GLO +++ +++ +++

Bas

al a01.CfPI.2.Calycanthus

Il.fl.PI.Jin00.NvPI.Nuphar

00.NaPI.NupharNu.ad.GLO.1_nad03_30ms2_a10Nu.ad.GLO.2_nad03_27m_o16

00.AtPI.Amborella00.AtAP3.Amborella

Am.tr.AP3-2

DEF-like(outgroup)

Nu.ad.DEF_nad03_19m_e2400.NvAP3.1.Nuphar

00.IlAP3.IlliciumIl.fl.AP3-1----Jin1

Il.fl.AP3-2----Jin3Il.fl.AP3-3----Jin2

10 changes

Page 56: Molecular Genetic Insights intoMolecular Genetic Insights into

HAM45CDM37

GAGA1GAGA2

SLM1PhaAG1

RAP1TAG1

NAG1pMADS3Farinelli

GAG2 G

C-classBA C

DE Taxa Gene Name Sepals Petals Stamens Carpels

1st 2nd 3rd 4th

euAG genesArabidopsis AG +++ +++

DcMADS4AG

SxcAG1CaMADS1

BpMADS6JrAG

STAGMASAKOC1

MdMADS15PTAG1PTAG2

AY083173CAG2

euAGE

1st 2nd 3rd 4th OV

Arabidopsis AG - - +++ +++Antirrhinum FAR - - +++ +++Nicotiana NAG1 - - +++ +++Petunia PMADS3 - - +++ +++

PLE genes

CAG3AGL1

BnSHP1AGL5

LAGVvMADS1

FBP6NTPLE36

PLEMASAKOD1

MdMADS14HoAG1a

HoAG1bRfAG1

PLE

Antirrhinum PLE - - +++ +++Arabidopsis SHP1 - - - +++Arabidopsis SHP2 - - - +++Petunia FBP6 - - +++ +++

Basal eudicots

RfAG1AqaAG1

ThdAG1CiAG1

AqaAG2ThdAG2

RfAG2CiAG2

EST_Es.ca.AGScAG

BgAGAkqAG

MdAG1ZMM2 ot

s

eudi

cots

neag

e

Basal eudicotsEschscholzia Es.ca.AG

Monocot genesZea AGL1 - - +++ +++Oryza OSMADS3 - - +++ +++

ZMM2ZMM23

OSMADS3AHvAG2WAG

ZAG1HvAG1

PeMADS1HAG1

aam0118ms1e03 AGNymAG2

SK_Nu.ad.AGNymAG1

HtcAG

mon

oco

rms

C-li

Basal angiospermsMagnolia Ma.gr.AG.1 - +++ +++Persea Pe.am.AG ++ ++ +++Illicium Il.f..AG - +++ +++ +Nuphar Nu.ad.AG - +++ +++

HtcAGSK_Pe.am.1AG

EST_Pe.am.2AGSK_Il.fl.AG_Jin

MpMADS2SrhAGCsAG1

SK_Am.tr.AGMcAGCAG1

GHMADS2AGL11

MdMADS10FBP11 ag

e

asal

ang

iosp

e

pAmborella Am.tr.AG.1 - +++ +++

FBP11TAG11

FBP7PhaAG2

VvMADS5SxcAG2

ZAG2ZMM1

OsMADS13Kr4_P0408G07.14ZMM25

CsAG2ApMADS2

MdAG2

D-li

neaBa

MpMADS11NymAG3

atr0213ms4b02 AGSAG1DAL2AF023615

GGM3CyAG

GBM5

10 changes

Gymnosperms(outgroup)

Page 57: Molecular Genetic Insights intoMolecular Genetic Insights into

SlSEP1Fragaria

MdMADS9MdMADS8

CAGL2MAGL4AGL2/SEP2

SEP1aAGL4/SEP4

MADS2TAGL2TM29

BA C

DE TM29

FBP5PMADS12

DEFH49LeMADS1MADS1

FBP23NtMADS4

FBP9MdMADS3MADS7

MADS6EGM3

Eca01 05cs3 b03MADS RIN

PepMADSE-class

E

1st 2nd 3rd 4th OV

Taxa Gene Name Sepals Petals Stamens Carpels Leaves(Tepals)

1st 2nd 3rd 4th

PepMADSFBP4

MADS5AGL3AGL3a

MdMADS4PatSEP1

HcSEP3HcSEP2

Ma.gr.AGL2.2Am.tr.AGL2

Nad03 08cs2 h04ZMM14

ZMM8MADS1

L MADS9

inea

ge

1 2 3 4

SEP1,2 lineageArabidopsis SEP2 - +++ +++ +++ -Arabidopsis SEP3 - +++ +++ +++ -Magnolia Ma.gr.AGL2.2 +++ +++ +++ ++

LpMADS9BM7

MADS13Dendrocalamus l MADS16

LpMADS6OsMADS5

ZMM3LMADS4

BAA81882RMADS217

LpMADS7AGLG1

ZmM24ZmM31

DOMADS3

SE

P1,

2 l

Nuphar Nu.ad.AGL2 +++ +++ +++ -Amborella Am.tr.AGL2 +++ +++ +++ -

SEP3 lineage Arabidopsis SEP1 - +++ +++ +++Magnolia Ma gr AGL2 1 +++ +++ +++

DEFH72AmSEP3b

DEFH200SvSEP3

CDM44NsMADS3FBP2LeMADS5

SaMADSdAGL9/SEP3

MTF1GhMADS1

PTM6MADS1

VvMADS4 age

Magnolia Ma.gr.AGL2.1 - +++ +++ +++ -Eupomatia Eu.be.AGL2 +++ +++ -

VvMADS4HAM137

GRCD1CDM77

Eca01 25ms1 b11MpMADS13Ma.gr.AGL2.1

Ltu01 06ms2 d07Eu.be.AGL2Pe.am.AGL2.1

Pe.am.AGL2.2OsMADS7FDRMADS1

OsMADS45LpMADS5

BM9

SE

P3

linea

BM9ZmM6

DMADS5TaMADS

OsMADS8ZmM27

AOM1DOM1

LMADS3AdOM1

CsSEP3HcHcSEP1

nes

AG

L6-li

ke g

en(o

utgr

oup)

Page 58: Molecular Genetic Insights intoMolecular Genetic Insights into

r

m a na olia

ncul

us

core eudicots

eudicots

aria

m

magnoliids

dops

is

hinu

m

a rarella r

monocots

agus

Nup

har

Illic

ium

Per

sea

Asi

min

Mag

no

Ran

un

Sag

itta

Tulip

a

Ory

za

Zea

Asa

rum

Sile

ne

Ara

bid

Ant

irrh

Pet

unia

Ger

ber

Am

bor

Nup

har

PI

AP1

Asp

ara

AP3

AG

• Evolution of gene expression patterns of floral• Evolution of gene expression patterns of floral MADS-box genes in angiosperms.

Color-filled floral part: strongly expressedAP1 A p g y pEmpty floral part: not expressed/weakly expressedDashed organs: equivocal or uncertainAP3

PI

AG

B

C

Page 59: Molecular Genetic Insights intoMolecular Genetic Insights into

ConclusionsCo c us o s

In basal angiospermsIn basal angiosperms,• A-class genes are primarily expressed in carpels and

vegetative organs rather than perianth.g g ppossible A-class candidate is AGL6.

• B-class genes are more broadly expressed than in eudicots

Thi b d tt f i i “ t l”This broader pattern of expression is “ancestral”; the localized patterns in Arabidopsis and other eudicots is derivedeudicots is derived

Page 60: Molecular Genetic Insights intoMolecular Genetic Insights into

III. III. EvoEvo--devodevo in in MagnoliaceaeMagnoliaceae

Page 61: Molecular Genetic Insights intoMolecular Genetic Insights into

FagalesCucurbitalesRosalesFabalesZygophyllalesCelastrales

Walnuts, chestnutSquashApples, strawberriesLegumesCreosote plant

Current understanding of Current understanding of angiosperm angiosperm relationships relationships

OxalidalesMalpighialesSapindalesMalvalesBrassicalesCrossosomatalesMyrtales

Star fruitPassion fruitCitrus, cashewsCotton, cocoaArabidopsis, mustard

Pomegranate

g pg p pp(Moore et al., 2007; (Moore et al., 2007; SoltisSoltis et al., 2004)et al., 2004)

yGernalialesSaxifragalesLamialesSolanalesGentianalesGarryalesAsteralesDi l

GooseberryAntirrhinum, oliveTomato, green pepperCoffee

Sunflower eudicotsDipsacalesApialesAquifolialesCornalesEricalesBerberidopsidalesSantalalesCaryophyllales

ElderberryDill, fennel

Blueberry, cranberry

B ck heat q inoa

eudicots

Ceratophyllales

CaryophyllalesGunneralesBuxalesTrochodendralesProtealesSabiaceae

Buckwheat, quinoa

Macadamia nut

Ranunculales PoppyCeratophyllales

Magnoliales

Monocots

li t li t

Grains, Palms MonocotsMagnolialesLauralesPiperalesWinteralesChloranthalesIlliciaceae

magnolia, tulip treeAvocadoBlack pepper

Star anise BasalSchisandraceaeAustrobaileyaceaeNymphaeaceaeAmborellaceae

Gymnosperms

Basalangiosperms

Page 62: Molecular Genetic Insights intoMolecular Genetic Insights into

OneOne of wellof well--recognized characters in magnolia: recognized characters in magnolia: tepalstepals(undifferentiated(undifferentiated perianthperianth))(undifferentiated (undifferentiated perianthperianth))

Magnolia grandiflora

Page 63: Molecular Genetic Insights intoMolecular Genetic Insights into

SepaloidSepaloid--tepalstepals are only found in the are only found in the YulaniaYulania cladeclade in the in the MagnoliaceaeMagnoliaceae

Magnolia salicifolia

Page 64: Molecular Genetic Insights intoMolecular Genetic Insights into

Sepal or sepal-like structure is evolved multiple times in the evolutionary history of angiospermsy y g p

?

Page 65: Molecular Genetic Insights intoMolecular Genetic Insights into

Magnolia stellata

Page 66: Molecular Genetic Insights intoMolecular Genetic Insights into

Magnolia lilliflora

Page 67: Molecular Genetic Insights intoMolecular Genetic Insights into

Magnolia biondii

Page 68: Molecular Genetic Insights intoMolecular Genetic Insights into

Phylogeny ofPhylogeny of Magnoliaceae:11 subgroups are recognized in the family(Kim et al., 2001)

Page 69: Molecular Genetic Insights intoMolecular Genetic Insights into

Phylogeny of Magnoliaceaebased on 10 chloroplast

Michelia cavalerieiM. pealiana

Michelia bailloniiMichelia champ

Michelia odoraMichelia figo

1.00

1.00

1.00

1.00 1.00

79

89

64

9398MICHELIA

Mi

MicheliaElmerrillia

sect. Maingolasect Alcimandra

pregions (Kim et al., in prep.)

Michelia figoE.ovalis

Michelia cathcartiiM. elegans

M. biondiiM. kobus

M. dawsoniana

1.000.98

1.00

1 001 00

8277

100

0 70

Al

Ar

Bu

Bu

Yu

sect. Alcimandrasect. Aromadendron

M. campbelliiM. denudataM. cylindrica

M. acuminataM. sinica

Pachylarnax praecalva

1.00

1.00

1.001.00

1.00

1.00

100100

9797

700.70

80

YULANIA

GYNOPODIUM

Yu

Yu

Cy

Tu

Mt

subgen. Yulania

sect. ManglietiastrumPachylarnax

Posterior probability

Bootsrtapvalue

M. nitidaM. panamensis

M. virginianaM. tamaulipanaM. grandiflora

M. guatemalensisK i d

1.00

1 00

1.00

0.99

100

60

10063

Gy

THEORHODON

Th

Ma

Th

Th

Th

sect. Gynopodium

sect. Theorhodon s.s.sect. Magnolia

Kmeria duperreanaKmeria septentrionalis

Manglietia grandManglietia aroma

Manglietia coniferaManglietia glauca

M officinalis

1.00

1.001.00

100

86

100

KMERIA

MANGLIETIA

R

Manglietia

Kmeria

M. officinalisM. tripetala

M. sieboldiiM. wilsonii

M. fraseri var. fraseriM. fraseri var. pyramidata

M macrophylla

1.00

1.001.00

1.00

1 00

100

9298

100 FRASERIRy

Ry

Ry

RYTIDOSPERMUM

Ry

Ry

Oy

Oy

sect. Rytidospermum s.s.sect. Oyama

M macrophyllaM. fraseri

M. macrophyllaM. dealbata

M. cocoM. gigantifolia

M. henryiM. pterocarpaM. liliifera

1.00

1.00

1.00

0.99100

100

75

85

1001.00

MACROPHYLLA

GWILLIMIA

Gw

Bl

Gw

Li

Bl

Ry

Ry

M. macrophyllaM. dealbata

sect. Gwillimiasect. Lirianthesect. Blumiana

M. splendensM. mexicana

M. dodecapetalaLiriodendron chinense

Liriodendron tulipifera0.001 substitutions/site

1.001.00100

100

Bl

TALAUMASp

Ta

Ta

sect. Talaumasect. Splendentes

Page 70: Molecular Genetic Insights intoMolecular Genetic Insights into

Mich. cvcalerieiMich. forveolataMich. ingrataMich. macclureiMich. maudiaeMich. chapensisMich. martiniiM. pealiana

1

1

1

59 d1Phylogeny of MagnoliaceaeBased on ndhF sequences M. pealiana

Mich. balanse

Mich. champacaMich. lacei

Mich. masticata

Mich. montanaMich. velutina

Mich. baillonii

Mich. shiluensisMich. odora

Mich. wilsoniiMich figo

1

11

1

2

42

11

11

1

57 d1

61 d1

57 d161 d1

42 d1

64 d1

Based on ndhF sequences(Kim et al., 2001)

Mich. figoMich. doltsopaMich. hypolampra

Mich. floribundaE. ovalis

M. cathcartiiM. amoena

M. zenii

M. biondiiM. kobus

M. stellataM dawsoniana

21

22

14

1

522

1

67 d2

61 d1

41 d1

61 d1

M. dawsonianaM. sargentianaM. campbelliiM. sprengeri

M. denudataM. cylindricaM. lilliflora

M. salicifoliaM. acuminata var. acuminata

M. acuminata var. subcordataP. praecalvaM sinica

2

2

1 61

11

1

27 1

1

57 d1

67 d1

77 d1 100 d6

100 d6

62 d1

64 d1

Yulania clade

M. sinicaM. nitida var. lotungensis

M. nitidaMang. duclouxii

Mang. szechuanicaMang. grandisMang. hebecarpa

Mang. aromaticaMang. conifera

Mang. insignisMang. dolichogyna

Mang fordiana

61

4

1

1

1 1

1

2

21

99 d6

58 d1

49 d1

58 d1

161 d1

73 d1

Mang. fordianaMang. glauca

Mang. megaphylla

Mang. motoM. championii

M. cocoM. henryi

M. pterocarpaM. lilliferaAromadendron sp.

M d l i

1

11

3

1

2 1

52

111

5

33 d1

93 d4

71 d2

46 d1

78 d2M. albosericea

pM. delavayi

M. obovataM. officinalis

M. tripetalaM. rostrata

M. sieboldii var. sinensisM. sieboldii var. sieboldii

M. wilsoniiM. globosa

M. virginianaM t l i

M. sharpii

32

5

2

11

2 11

1

23

43

1

11

63 d2

60 d165 d1

90 d2

72 d2100 >d6 92 d4

M. guatemalensisp

M. tamaulipanaM. grandiflora

K. duperreanaK. septentrionalis

M. fraseri var. pyramidataM. macrophylla var. macrophylla

M. macrophylla var. asheiM. dealvata

L. chinensisL. tulipifera

1

73

56

71

1

88

68 d164 d1

90 d5

100 d668 d1

Page 71: Molecular Genetic Insights intoMolecular Genetic Insights into

M amoena5 M. amoena

M. biondiiM. kobus

M. stellata

12

261 d1

M. zenii

M. dawsonianaM. sargentiana

1 6

1

162 d1

M. campbelliiM. sprengeri

M. denudata

1 6 1

1

1

77 d1 100 d6

M. cylindricaM. lilliflora

M. salicifoliaM acuminata var acuminata

2 1

267 d1 64 d1

M. acuminata var. acuminata

M. acuminata var. subcordata7

1100 d6

Thi t i ld 15 Y l i t t f b t 30- This tree incldes 15 Yulania taxa out of about 30. - Sepaloid-tepal is not a synapomorphy in some clade.- It seems that sepaloid-tepals are evolved several times in the evolution of Yulania group

Page 72: Molecular Genetic Insights intoMolecular Genetic Insights into

For some representatives Magnoliasalicifolia

Magnoliastellata

pof magnolia having sepaloid-tepals,

We

(1) isolated homologues of A-, B-, C-, and E-class genes

(2) examined the expression patterns of these floral genes in each floral organin each floral organ

(3) compared their expression patterns with those of ( ) p p pMagnolia grandiflora, which is previously studied taxon having tepals.

Magnoliagrandiflora

Page 73: Molecular Genetic Insights intoMolecular Genetic Insights into

ZMM27OsMADS8

ZMM6AGL9

Ma.gr.AGL2.2 (M. grandiflora)Eu.be.AGL9

Am.tr.AGL2

Ma.gr.AGL2.1 (M. grandiflora)AGL4

AGL2E

clas

9899

82

10093Ma.st.AGL2.1 (M. stellata)

Ma.sa.AGL2.1 (M. salicifolia)MpMADS14 (M. kobus)

100

Ma.st.AGL2.2 (M. stellata)Ma.sa.AGL2.2 (M. salicifolia)

MpMADS13 (M. kobus)

100

99100100Identification of new sequences

- Selective representatives of each major clade of MADS-box genes AGL4

AGL2Nu.ad.AGL2

AGL3ZMM3

OsMADS1AP1

CALSQUA

AGL8

Ma.gr.AP1 (M. grandiflora)Eu.be.AP1Pe.am.AP1

OsMADS15ZAP1Nu ad AP1

SQUA (AP1)

A classss100516893

100

98 67

70

5888 99

8287 MpMADS15 (M. kobus)

Ma.sa.AP1 (M. salicifolia)Ma.st.AP1 (M. stellata)100

9999

g(sequences from Becker and Theissen (2003)

+ sequences from basal angiosperms (Kim et al., 2005)+ new sequences from M. salicifolia and M. stellata (red)

- Strict consensus tree of amino acid MP analysisNu.ad.AP1

OsMADS6ZAG3

Ma.gr.AGL6Am.tr.AGL6

AGL13AGL6

GGM11GGM9

Pe.am.AG

AGL6

AG

s

100

54

100

62

70

Ma.gr.AG.1 (M. grandiflora)Ma.st.AG.1 (M. stellata)

Ma.sa.AG.1 (M. salicifolia)MpMADS11 (M. kobus)

100

Ma.st.AG.2 (M. stellata)Ma.sa.AG.2 (M. salicifolia)

MpMADS2 (M. kobus)100

98

100

C (and

Nu.ad.AGIl.fl.AG

Am.tr.AGZAG1

OsMADS3AGAGL1AGL5

AGL11ZMM25

OsMADS13ZMM1

OsMADS26AGL12

TM8ERAF17

GGM10OsMADS2

AGL12TM8

100100

100

100

100

97

Ma.gr.AG.2 (M. grandiflora) D)class

OsMADS2ZMM18

GLOPI

Pe.am.PI.2Eu.be.PI

Eu.la.PIAs.lo.PI

Pe.am.PI.1Il.fl.PI

Am.tr.PINu.ad.PI

GLO (PI) B clas

100

71

98 52

72

70

99 Ma.gr.PI (M. grandiflora)

MpMADS8 (M. kobus)Ma.sa.PI (M. salicifolia)

Ma.st.PI (M. stellata)100100

100

Ma.sa.AG.1 (M. salicifolia)MpMADS7 (M. kobus)

100

As.lo.AP3Eu.be.AP3

Pe.am.AP3Il.fl.AP3.1

AP3DEFA

SILKYIl.fl.AP3.2

Il.fl.AP3.3Nu.ad.AP3.2

Nu.ad.AP3.1Am.tr.AP3GGM2

ABSFBP24

ZMM17AeAP3.2

GGM13

DEF (AP3)

GGM13

ss

72

100

100

100 94

59

95 91

Ma.gr.AG.1 (M. grandiflora)Ma.st.AG.1 (M. stellata)

( )98

70

GGM13ZmMADS2CAD40993

AGL16AGL17

AGL21ANR1

At5g51870At5g51860

AGL42FDRMADS8

ZMM5AGL19AGL14

TM3SOC1

GGM1AGL151

AGL152AGL15

AGL18

TM3

AGL17

AGL15

98 50

100 98

100 96

98

100 7678 75

100 51

62AGL18

AGL31At5g65060

MAF1FCL2

FCL1FLC

ZMM21BM1

SVPJOINTLESS

StMADS11AGL24

GGM12

50 changes

FLC

AGL15

STMADS11

100 89

91 96

86

8691

83

Page 74: Molecular Genetic Insights intoMolecular Genetic Insights into

ZMM27OsMADS8

ZMM6AGL9

Ma.gr.AGL2.2 (M. grandiflora)Eu.be.AGL9

Am.tr.AGL2

Ma.gr.AGL2.1 (M. grandiflora)AGL4

AGL2E

clas

9899

82

10093Ma.st.AGL2.1 (M. stellata)

Ma.sa.AGL2.1 (M. salicifolia)MpMADS14 (M. kobus)

100

Ma.st.AGL2.2 (M. stellata)Ma.sa.AGL2.2 (M. salicifolia)

MpMADS13 (M. kobus)

100

99100100Identification of new sequences

- Selective representatives of each major clade of MADS-box genes AGL4

AGL2Nu.ad.AGL2

AGL3ZMM3

OsMADS1AP1

CALSQUA

AGL8

Ma.gr.AP1 (M. grandiflora)Eu.be.AP1Pe.am.AP1

OsMADS15ZAP1Nu ad AP1

SQUA (AP1)

A classss100516893

100

98 67

70

5888 99

8287 MpMADS15 (M. kobus)

Ma.sa.AP1 (M. salicifolia)Ma.st.AP1 (M. stellata)100

9999

g(sequences from Becker and Theissen (2003)

+ sequences from basal angiosperms (Kim et al., 2005)+ new sequences from M. salicifolia and M. stellata (red)

- Strict consensus tree of amino acid MP analysisNu.ad.AP1

OsMADS6ZAG3

Ma.gr.AGL6Am.tr.AGL6

AGL13AGL6

GGM11GGM9

Pe.am.AG

AGL6

AG

s

100

54

100

62

70

Ma.gr.AG.1 (M. grandiflora)Ma.st.AG.1 (M. stellata)

Ma.sa.AG.1 (M. salicifolia)MpMADS11 (M. kobus)

100

Ma.st.AG.2 (M. stellata)Ma.sa.AG.2 (M. salicifolia)

MpMADS2 (M. kobus)100

98

100

C (and

Nu.ad.AGIl.fl.AG

Am.tr.AGZAG1

OsMADS3AGAGL1AGL5

AGL11ZMM25

OsMADS13ZMM1

OsMADS26AGL12

TM8ERAF17

GGM10OsMADS2

AGL12TM8

100100

100

100

100

97

Ma.gr.AG.2 (M. grandiflora) D)class

E classOsMADS2

ZMM18GLO

PIPe.am.PI.2

Eu.be.PIEu.la.PI

As.lo.PI

Pe.am.PI.1Il.fl.PI

Am.tr.PINu.ad.PI

GLO (PI) B clas

100

71

98 52

72

70

99 Ma.gr.PI (M. grandiflora)

MpMADS8 (M. kobus)Ma.sa.PI (M. salicifolia)

Ma.st.PI (M. stellata)100100

100

Ma.sa.AG.1 (M. salicifolia)MpMADS7 (M. kobus)

100

As.lo.AP3Eu.be.AP3

Pe.am.AP3Il.fl.AP3.1

AP3DEFA

SILKYIl.fl.AP3.2

Il.fl.AP3.3Nu.ad.AP3.2

Nu.ad.AP3.1Am.tr.AP3GGM2

ABSFBP24

ZMM17AeAP3.2

GGM13

DEF (AP3)

GGM13

ss

72

100

100

100 94

59

95 91

Ma.gr.AG.1 (M. grandiflora)Ma.st.AG.1 (M. stellata)

( )98

GGM13ZmMADS2CAD40993

AGL16AGL17

AGL21ANR1

At5g51870At5g51860

AGL42FDRMADS8

ZMM5AGL19AGL14

TM3SOC1

GGM1AGL151

AGL152AGL15

AGL18

TM3

AGL17

AGL15

98 50

100 98

100 96

98

100 7678 75

100 51

62AGL18

AGL31At5g65060

MAF1FCL2

FCL1FLC

ZMM21BM1

SVPJOINTLESS

StMADS11AGL24

GGM12

50 changes

FLC

AGL15

STMADS11

100 89

91 96

86

8691

83

Page 75: Molecular Genetic Insights intoMolecular Genetic Insights into

ZMM27OsMADS8

ZMM6AGL9

Ma.gr.AGL2.2 (M. grandiflora)Eu.be.AGL9

Am.tr.AGL2

Ma.gr.AGL2.1 (M. grandiflora)AGL4

AGL2E

clas

9899

82

10093Ma.st.AGL2.1 (M. stellata)

Ma.sa.AGL2.1 (M. salicifolia)MpMADS14 (M. kobus)

100

Ma.st.AGL2.2 (M. stellata)Ma.sa.AGL2.2 (M. salicifolia)

MpMADS13 (M. kobus)

100

99100100Identification of new sequences

- Selective representatives of each major clade of MADS-box genes AGL4

AGL2Nu.ad.AGL2

AGL3ZMM3

OsMADS1AP1

CALSQUA

AGL8

Ma.gr.AP1 (M. grandiflora)Eu.be.AP1Pe.am.AP1

OsMADS15ZAP1Nu ad AP1

SQUA (AP1)

A classss100516893

100

98 67

70

5888 99

8287 MpMADS15 (M. kobus)

Ma.sa.AP1 (M. salicifolia)Ma.st.AP1 (M. stellata)100

9999

g(sequences from Becker and Theissen (2003)

+ sequences from basal angiosperms (Kim et al., 2005)+ new sequences from M. salicifolia and M. stellata (red)

- Strict consensus tree of amino acid MP analysisNu.ad.AP1

OsMADS6ZAG3

Ma.gr.AGL6Am.tr.AGL6

AGL13AGL6

GGM11GGM9

Pe.am.AG

AGL6

AG

s

100

54

100

62

70

Ma.gr.AG.1 (M. grandiflora)Ma.st.AG.1 (M. stellata)

Ma.sa.AG.1 (M. salicifolia)MpMADS11 (M. kobus)

100

Ma.st.AG.2 (M. stellata)Ma.sa.AG.2 (M. salicifolia)

MpMADS2 (M. kobus)100

98

100

C (and

Nu.ad.AGIl.fl.AG

Am.tr.AGZAG1

OsMADS3AGAGL1AGL5

AGL11ZMM25

OsMADS13ZMM1

OsMADS26AGL12

TM8ERAF17

GGM10OsMADS2

AGL12TM8

100100

100

100

100

97

Ma.gr.AG.2 (M. grandiflora) D)class

A l OsMADS2ZMM18

GLOPI

Pe.am.PI.2Eu.be.PI

Eu.la.PIAs.lo.PI

Pe.am.PI.1Il.fl.PI

Am.tr.PINu.ad.PI

GLO (PI) B clas

100

71

98 52

72

70

99 Ma.gr.PI (M. grandiflora)

MpMADS8 (M. kobus)Ma.sa.PI (M. salicifolia)

Ma.st.PI (M. stellata)100100

100

Ma.sa.AG.1 (M. salicifolia)MpMADS7 (M. kobus)

100

A classAs.lo.AP3

Eu.be.AP3Pe.am.AP3

Il.fl.AP3.1AP3

DEFASILKY

Il.fl.AP3.2Il.fl.AP3.3

Nu.ad.AP3.2Nu.ad.AP3.1

Am.tr.AP3GGM2ABS

FBP24ZMM17

AeAP3.2GGM13

DEF (AP3)

GGM13

ss

72

100

100

100 94

59

95 91

Ma.gr.AG.1 (M. grandiflora)Ma.st.AG.1 (M. stellata)

( )98

GGM13ZmMADS2CAD40993

AGL16AGL17

AGL21ANR1

At5g51870At5g51860

AGL42FDRMADS8

ZMM5AGL19AGL14

TM3SOC1

GGM1AGL151

AGL152AGL15

AGL18

TM3

AGL17

AGL15

98 50

100 98

100 96

98

100 7678 75

100 51

62AGL18

AGL31At5g65060

MAF1FCL2

FCL1FLC

ZMM21BM1

SVPJOINTLESS

StMADS11AGL24

GGM12

50 changes

FLC

AGL15

STMADS11

100 89

91 96

86

8691

83

Page 76: Molecular Genetic Insights intoMolecular Genetic Insights into

ZMM27OsMADS8

ZMM6AGL9

Ma.gr.AGL2.2 (M. grandiflora)Eu.be.AGL9

Am.tr.AGL2

Ma.gr.AGL2.1 (M. grandiflora)AGL4

AGL2E

clas

9899

82

10093Ma.st.AGL2.1 (M. stellata)

Ma.sa.AGL2.1 (M. salicifolia)MpMADS14 (M. kobus)

100

Ma.st.AGL2.2 (M. stellata)Ma.sa.AGL2.2 (M. salicifolia)

MpMADS13 (M. kobus)

100

99100100Identification of new sequences

- Selective representatives of each major clade of MADS-box genes AGL4

AGL2Nu.ad.AGL2

AGL3ZMM3

OsMADS1AP1

CALSQUA

AGL8

Ma.gr.AP1 (M. grandiflora)Eu.be.AP1Pe.am.AP1

OsMADS15ZAP1Nu ad AP1

SQUA (AP1)

A classss100516893

100

98 67

70

5888 99

8287 MpMADS15 (M. kobus)

Ma.sa.AP1 (M. salicifolia)Ma.st.AP1 (M. stellata)100

9999

g(sequences from Becker and Theissen (2003)

+ sequences from basal angiosperms (Kim et al., 2005)+ new sequences from M. salicifolia and M. stellata (red)

- Strict consensus tree of amino acid MP analysisNu.ad.AP1

OsMADS6ZAG3

Ma.gr.AGL6Am.tr.AGL6

AGL13AGL6

GGM11GGM9

Pe.am.AG

AGL6

AG

s

100

54

100

62

70

Ma.gr.AG.1 (M. grandiflora)Ma.st.AG.1 (M. stellata)

Ma.sa.AG.1 (M. salicifolia)MpMADS11 (M. kobus)

100

Ma.st.AG.2 (M. stellata)Ma.sa.AG.2 (M. salicifolia)

MpMADS2 (M. kobus)100

98

100

C (and

Nu.ad.AGIl.fl.AG

Am.tr.AGZAG1

OsMADS3AGAGL1AGL5

AGL11ZMM25

OsMADS13ZMM1

OsMADS26AGL12

TM8ERAF17

GGM10OsMADS2

AGL12TM8

100100

100

100

100

97

Ma.gr.AG.2 (M. grandiflora) D)class

OsMADS2ZMM18

GLOPI

Pe.am.PI.2Eu.be.PI

Eu.la.PIAs.lo.PI

Pe.am.PI.1Il.fl.PI

Am.tr.PINu.ad.PI

GLO (PI) B clas

100

71

98 52

72

70

99 Ma.gr.PI (M. grandiflora)

MpMADS8 (M. kobus)Ma.sa.PI (M. salicifolia)

Ma.st.PI (M. stellata)100100

100

Ma.sa.AG.1 (M. salicifolia)MpMADS7 (M. kobus)

100

As.lo.AP3Eu.be.AP3

Pe.am.AP3Il.fl.AP3.1

AP3DEFA

SILKYIl.fl.AP3.2

Il.fl.AP3.3Nu.ad.AP3.2

Nu.ad.AP3.1Am.tr.AP3GGM2

ABSFBP24

ZMM17AeAP3.2

GGM13

DEF (AP3)

GGM13

ss

72

100

100

100 94

59

95 91

Ma.gr.AG.1 (M. grandiflora)Ma.st.AG.1 (M. stellata)

( )98

C (and D) classGGM13

ZmMADS2CAD40993

AGL16AGL17

AGL21ANR1

At5g51870At5g51860

AGL42FDRMADS8

ZMM5AGL19AGL14

TM3SOC1

GGM1AGL151

AGL152AGL15

AGL18

TM3

AGL17

AGL15

98 50

100 98

100 96

98

100 7678 75

100 51

62AGL18

AGL31At5g65060

MAF1FCL2

FCL1FLC

ZMM21BM1

SVPJOINTLESS

StMADS11AGL24

GGM12

50 changes

FLC

AGL15

STMADS11

100 89

91 96

86

8691

83

Page 77: Molecular Genetic Insights intoMolecular Genetic Insights into

Identification of new sequences- Selective representatives of each major clade of MADS-

box genes

ZMM27OsMADS8

ZMM6AGL9

Ma.gr.AGL2.2 (M. grandiflora)Eu.be.AGL9

Am.tr.AGL2

Ma.gr.AGL2.1 (M. grandiflora)AGL4

AGL2E

clas

9899

82

10093Ma.st.AGL2.1 (M. stellata)

Ma.sa.AGL2.1 (M. salicifolia)MpMADS14 (M. kobus)

100

Ma.st.AGL2.2 (M. stellata)Ma.sa.AGL2.2 (M. salicifolia)

MpMADS13 (M. kobus)

100

99100100

B class (PI)g(sequences from Becker and Theissen (2003)

+ sequences from basal angiosperms (Kim et al., 2005)+ new sequences from M. salicifolia and M. stellata (red)

- Strict consensus tree of amino acid MP analysis

AGL4AGL2

Nu.ad.AGL2AGL3

ZMM3OsMADS1

AP1CAL

SQUAAGL8

Ma.gr.AP1 (M. grandiflora)Eu.be.AP1Pe.am.AP1

OsMADS15ZAP1Nu ad AP1

SQUA (AP1)

A classss100516893

100

98 67

70

5888 99

8287 MpMADS15 (M. kobus)

Ma.sa.AP1 (M. salicifolia)Ma.st.AP1 (M. stellata)100

9999

( )

Nu.ad.AP1OsMADS6

ZAG3Ma.gr.AGL6Am.tr.AGL6

AGL13AGL6

GGM11GGM9

Pe.am.AG

AGL6

AG

s

100

54

100

62

70

Ma.gr.AG.1 (M. grandiflora)Ma.st.AG.1 (M. stellata)

Ma.sa.AG.1 (M. salicifolia)MpMADS11 (M. kobus)

100

Ma.st.AG.2 (M. stellata)Ma.sa.AG.2 (M. salicifolia)

MpMADS2 (M. kobus)100

98

100

C (and

Nu.ad.AGIl.fl.AG

Am.tr.AGZAG1

OsMADS3AGAGL1AGL5

AGL11ZMM25

OsMADS13ZMM1

OsMADS26AGL12

TM8ERAF17

GGM10OsMADS2

AGL12TM8

100100

100

100

100

97

Ma.gr.AG.2 (M. grandiflora) D)class

OsMADS2ZMM18

GLOPI

Pe.am.PI.2Eu.be.PI

Eu.la.PIAs.lo.PI

Pe.am.PI.1Il.fl.PI

Am.tr.PINu.ad.PI

GLO (PI) B clas

100

71

98 52

72

70

99 Ma.gr.PI (M. grandiflora)

MpMADS8 (M. kobus)Ma.sa.PI (M. salicifolia)

Ma.st.PI (M. stellata)100100

100

Ma.sa.AG.1 (M. salicifolia)MpMADS7 (M. kobus)

100

As.lo.AP3Eu.be.AP3

Pe.am.AP3Il.fl.AP3.1

AP3DEFA

SILKYIl.fl.AP3.2

Il.fl.AP3.3Nu.ad.AP3.2

Nu.ad.AP3.1Am.tr.AP3GGM2

ABSFBP24

ZMM17AeAP3.2

GGM13

DEF (AP3)

GGM13

ss

72

100

100

100 94

59

95 91

Ma.gr.AG.1 (M. grandiflora)Ma.st.AG.1 (M. stellata)

( )98

70

GGM13ZmMADS2CAD40993

AGL16AGL17

AGL21ANR1

At5g51870At5g51860

AGL42FDRMADS8

ZMM5AGL19AGL14

TM3SOC1

GGM1AGL151

AGL152AGL15

AGL18

TM3

AGL17

AGL15

98 50

100 98

100 96

98

100 7678 75

100 51

62AGL18

AGL31At5g65060

MAF1FCL2

FCL1FLC

ZMM21BM1

SVPJOINTLESS

StMADS11AGL24

GGM12

50 changes

FLC

AGL15

STMADS11

100 89

91 96

86

8691

83

Page 78: Molecular Genetic Insights intoMolecular Genetic Insights into

Identification of new sequences- Selective representatives of each major clade of MADS-

box genes

ZMM27OsMADS8

ZMM6AGL9

Ma.gr.AGL2.2 (M. grandiflora)Eu.be.AGL9

Am.tr.AGL2

Ma.gr.AGL2.1 (M. grandiflora)AGL4

AGL2E

clas

9899

82

10093Ma.st.AGL2.1 (M. stellata)

Ma.sa.AGL2.1 (M. salicifolia)MpMADS14 (M. kobus)

100

Ma.st.AGL2.2 (M. stellata)Ma.sa.AGL2.2 (M. salicifolia)

MpMADS13 (M. kobus)

100

99100100

B class (AP3)g(sequences from Becker and Theissen (2003)

+ sequences from basal angiosperms (Kim et al., 2005)+ new sequences from M. salicifolia and M. stellata (red)

- Strict consensus tree of amino acid MP analysis

AGL4AGL2

Nu.ad.AGL2AGL3

ZMM3OsMADS1

AP1CAL

SQUAAGL8

Ma.gr.AP1 (M. grandiflora)Eu.be.AP1Pe.am.AP1

OsMADS15ZAP1Nu ad AP1

SQUA (AP1)

A classss100516893

100

98 67

70

5888 99

8287 MpMADS15 (M. kobus)

Ma.sa.AP1 (M. salicifolia)Ma.st.AP1 (M. stellata)100

9999

B class (AP3)

Nu.ad.AP1OsMADS6

ZAG3Ma.gr.AGL6Am.tr.AGL6

AGL13AGL6

GGM11GGM9

Pe.am.AG

AGL6

AG

s

100

54

100

62

70

Ma.gr.AG.1 (M. grandiflora)Ma.st.AG.1 (M. stellata)

Ma.sa.AG.1 (M. salicifolia)MpMADS11 (M. kobus)

100

Ma.st.AG.2 (M. stellata)Ma.sa.AG.2 (M. salicifolia)

MpMADS2 (M. kobus)100

98

100

C (and

Nu.ad.AGIl.fl.AG

Am.tr.AGZAG1

OsMADS3AGAGL1AGL5

AGL11ZMM25

OsMADS13ZMM1

OsMADS26AGL12

TM8ERAF17

GGM10OsMADS2

AGL12TM8

100100

100

100

100

97

Ma.gr.AG.2 (M. grandiflora) D)class

OsMADS2ZMM18

GLOPI

Pe.am.PI.2Eu.be.PI

Eu.la.PIAs.lo.PI

Pe.am.PI.1Il.fl.PI

Am.tr.PINu.ad.PI

GLO (PI) B clas

100

71

98 52

72

70

99 Ma.gr.PI (M. grandiflora)

MpMADS8 (M. kobus)Ma.sa.PI (M. salicifolia)

Ma.st.PI (M. stellata)100100

100

Ma.sa.AG.1 (M. salicifolia)MpMADS7 (M. kobus)

100

As.lo.AP3Eu.be.AP3

Pe.am.AP3Il.fl.AP3.1

AP3DEFA

SILKYIl.fl.AP3.2

Il.fl.AP3.3Nu.ad.AP3.2

Nu.ad.AP3.1Am.tr.AP3GGM2

ABSFBP24

ZMM17AeAP3.2

GGM13

DEF (AP3)

GGM13

ss

72

100

100

100 94

59

95 91

Ma.gr.AG.1 (M. grandiflora)Ma.st.AG.1 (M. stellata)

( )98

70

GGM13ZmMADS2CAD40993

AGL16AGL17

AGL21ANR1

At5g51870At5g51860

AGL42FDRMADS8

ZMM5AGL19AGL14

TM3SOC1

GGM1AGL151

AGL152AGL15

AGL18

TM3

AGL17

AGL15

98 50

100 98

100 96

98

100 7678 75

100 51

62AGL18

AGL31At5g65060

MAF1FCL2

FCL1FLC

ZMM21BM1

SVPJOINTLESS

StMADS11AGL24

GGM12

50 changes

FLC

AGL15

STMADS11

100 89

91 96

86

8691

83

Page 79: Molecular Genetic Insights intoMolecular Genetic Insights into

MADS-box gene expression in M. grandiflora (Kim et al., 2005a, b)

T1 T2T1 T2

T2T3

T3

T1T2 T3

T3T3

Spathaceous Tepals Stamens Carpels Leaves

T1

T2

T lSpathaceous Tepals Stamens Carpels Leavesbract (T1, T2, T3)

A-classMa.gr.AP1 +++ + ++ ++ +++

B-classMa gr PI - +++ +++ - -

Tepals(T1, T2, T3)1st 2nd 3rd 4th

Ma.gr.PI - +++ +++ - -Ma.gr.AP3 + +++ +++ - -

C-classMa.gr.AG.1 - - +++ +++ -

D-classD classMa.gr.AG.2 - - - +++ -

E-classMa.gr.AGL2.1 - +++ +++ +++ -Ma.gr.AGL2.2 +++ +++ +++ +++ ++

BA C

E

DBA C

E

DB

E

Page 80: Molecular Genetic Insights intoMolecular Genetic Insights into

Relative-quantitative RT-PCR

Ma.sa.AP1

PER STE TE STN CAR

A class

qin M. salicifolia

Ma.sa.PI

Ma.sa.AP3

B classMa.sa.PI

Ma.sa.AG.1C class

Ma sa AGL2 1

Ma.sa.AG.2

C c ass

Ma.sa.AGL2.1

Ma.sa.AGL2.2

E class

ACTINE

Page 81: Molecular Genetic Insights intoMolecular Genetic Insights into

Real-time PCR in M. salicifolia

Ma.sa.AP1 Ma.sa.PIMa.sa.AP3

0 35

0.40

0.45

0.50

0 35

0.40

0.45

0.50

0 35

0.40

0.45

0.50

0.25

0.30

0.35

0 R E E N R

0.25

0.30

0.35

0 R E E N R

0.25

0.30

0.35

0 R E E N R

0.05

0.100.150

PER

STE

TE STN

CAR

0.05

0.100.150

PER

STE

TE STN

CAR

0.05

0.100.150

PER

STE

TE STN

CAR

0.50 0.50 0.50 0.50Ma.sa.AGL2.1 Ma.sa.AGL2.2Ma.sa.AG.1 Ma.sa.AG.2

0.30

0.35

0.40

0.45

0.30

0.35

0.40

0.45

0.30

0.35

0.40

0.45

0.30

0.35

0.40

0.45

0 05

0.100.15

0.25

0

PER

STE TE STN

CA

R

0 05

0.100.15

0.25

0

PER

STE TE STN

CA

R

0 05

0.100.15

0.25

0

PER

STE TE STN

CA

R0 05

0.100.15

0.25

0

PER

STE TE STN

CA

R

0.05 0.05 0.05 0.05

Page 82: Molecular Genetic Insights intoMolecular Genetic Insights into

Relative-quantitative RT-PCR

Ma.sa.AP1

PE STE TE ST CA

A class

qin M. salicifolia

Ma.sa.PI

Ma.sa.AP3

B classMa.sa.PI

Ma.sa.AG.1C class

Ma sa AGL2 1

Ma.sa.AG.2

C c ass

Ma.sa.AGL2.1

Ma.sa.AGL2.2

E class

ACTINE

Page 83: Molecular Genetic Insights intoMolecular Genetic Insights into

The ‘quartet model” of floral organ specification in Arabidopsis (modified from Theissen, 2001)

B

A C

AP3, PI

AP1 AP2 AGA C

E

D

AP1, AP2 AG

SEP1/SEP2/SEP3/SEP4

STK/SHP1/SHP2Stamens

AP3 PI ?Petals

AP3 PI

AG SEPPI AP3

?

AP1 SEPCarpels

SEP AG

AGL2.1 AGL2.2

SepalsAG SEP ?

AP1 SEP

SEP AP1Ovules

SEP STK

? AP3

AGL2.2?SEP SHP

?

Page 84: Molecular Genetic Insights intoMolecular Genetic Insights into

ConclusionThi t d t l t th t th• This study strongly suggests that the genetic control of sepal (sepaloid-tepal) and petal (tepal) identities in Magnolia are different from those in eudocots.different from those in eudocots.

• Candidate genes of sepaloid-tepal and t l id tit d li t d B ltepal identity are duplicated B class genes (PI and AP3) and E class genes (AGL2.1and AGL2.2) in Magnolia.

Page 85: Molecular Genetic Insights intoMolecular Genetic Insights into

Further researchFurther research

• Dimer and tetramer formation of proteins of these genes using Y2H.g g

• Gene silencing experiments using VIGS systemsystem.

Page 86: Molecular Genetic Insights intoMolecular Genetic Insights into

Ongoing projectsOngoing projects::

-- Proteomics:Proteomics: ProteinProtein--protein interaction of MADSprotein interaction of MADS--box box genes in genes in Amborella trichopodaAmborella trichopoda..gg pp

-- Genetics:Genetics: Phenotype recovery experiments using Phenotype recovery experiments using A bid iA bid i t t t dd f ti l h l i ft t t dd f ti l h l i fArabidopsis Arabidopsis mutants to address functional homologies of mutants to address functional homologies of floral genes between floral genes between ArabidopsisArabidopsis and and AmborellaAmborella by by introducingintroducing AmborellaAmborella genes intogenes into ArabidopsisArabidopsis ABCABCintroducing introducing AmborellaAmborella genes into genes into ArabidopsisArabidopsis ABC ABC mutants. mutants.

-- PhylogeneticsPhylogenetics:: Phylogenetic analyses of MADSPhylogenetic analyses of MADS--box genes box genes (about 3000 sequences) (about 3000 sequences)

-- Genomics:Genomics: AmborellaAmborella Genome project (genome + Genome project (genome + transcriptometranscriptome sequencing usingsequencing using NGS)NGS) MagnoliaMagnolia GenomeGenometranscriptometranscriptome sequencing using sequencing using NGS), NGS), MagnoliaMagnolia GenomeGenomeprojectproject

Page 87: Molecular Genetic Insights intoMolecular Genetic Insights into

General take home message

The “Abominable mystery” is far from solved, butis far from solved, but progress is being made!

Charles DarwinCharles DarwinBritish Naturalist

1809 -1882

Page 88: Molecular Genetic Insights intoMolecular Genetic Insights into

Many thanks to:Many thanks to:

Douglas SoltisS

-- Postdoc advisorsPostdoc advisorsDouglas SoltisPamela SoltisDouglas SoltisDouglas Soltis

Pamela SoltisPamela Soltis

-- Colleagues in Soltis labColleagues in Soltis labAndre ChanderbaliAndre ChanderbaliAndre ChanderbaliAndre ChanderbaliMatyas BuzgoMatyas BuzgoMatt GitzendannerMatt GitzendannerMatt GitzendannerMatt Gitzendanner……

-- The The Floral Genome Project Floral Genome Project groupgroupS hiS hi U i itU i it-- SungshinSungshin UniversityUniversity

Page 89: Molecular Genetic Insights intoMolecular Genetic Insights into

Yeast two-hybridization system

Bait Prey

BD DNA-binding ActivationAD

Yeast

BD gdomain plasmidTRP1

domain plasmid

AD

LEU2

Medium:-Trp/-Leu

ADADBD

ADE2, HIS3, lacZ, MEL1

Page 90: Molecular Genetic Insights intoMolecular Genetic Insights into

Yeast two-hybridization system

Bait PreyBaitX

PreyY

Yeast

BD DNA-binding ActivationAD

X Y

DNA bi diBD

X

A ti tiAD

Y

Medium:-Trp/-Leu

BD gdomain plasmidTRP1

domain plasmid

AD

LEU2

DNA-binding domain plasmid

BD Activationdomain plasmid

AD/-His/-Ade

TRP1 LEU2

RNAX

TranscriptionADYInteraction

RNApolymeraseBD

Transcription

ADE2, HIS3, lacZ, MEL1

AD