24
Modeling Neurobiological systems, a mathematical approach Weizmann Institute 2004, D. Holcman

Modeling Neurobiological systems, a mathematical approach Weizmann Institute 2004, D. Holcman

  • View
    216

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Modeling Neurobiological systems, a mathematical approach Weizmann Institute 2004, D. Holcman

Modeling Neurobiological systems, a mathematical

approach

Weizmann Institute 2004, D. Holcman

Page 2: Modeling Neurobiological systems, a mathematical approach Weizmann Institute 2004, D. Holcman

Examples

• Where are the mathematical problems?

• Synaptic plasticity: Receptors movements

• Sensor cells: Photo-transduction

• Dynamics of transient process

Page 3: Modeling Neurobiological systems, a mathematical approach Weizmann Institute 2004, D. Holcman

Synaptic plasticity:

Receptor trafficking

Page 4: Modeling Neurobiological systems, a mathematical approach Weizmann Institute 2004, D. Holcman

Synapse

Page 5: Modeling Neurobiological systems, a mathematical approach Weizmann Institute 2004, D. Holcman
Page 6: Modeling Neurobiological systems, a mathematical approach Weizmann Institute 2004, D. Holcman
Page 7: Modeling Neurobiological systems, a mathematical approach Weizmann Institute 2004, D. Holcman

Receptor trafficking

Page 8: Modeling Neurobiological systems, a mathematical approach Weizmann Institute 2004, D. Holcman

Mathematical Modeling

How long it takes to escape from micro-domains

How to compute a coarse-grained diffusion constant?

Answers:

Formulate a stochastic equation and solve the associated Partial Differential equations

Page 9: Modeling Neurobiological systems, a mathematical approach Weizmann Institute 2004, D. Holcman

Exit from a small opening

Page 10: Modeling Neurobiological systems, a mathematical approach Weizmann Institute 2004, D. Holcman

Photo-transduction

Page 11: Modeling Neurobiological systems, a mathematical approach Weizmann Institute 2004, D. Holcman

diffusion in a single cone

Page 12: Modeling Neurobiological systems, a mathematical approach Weizmann Institute 2004, D. Holcman

Geometry of the cone outer-segment

Page 13: Modeling Neurobiological systems, a mathematical approach Weizmann Institute 2004, D. Holcman

Response curves of photon detection

Page 14: Modeling Neurobiological systems, a mathematical approach Weizmann Institute 2004, D. Holcman

Dark noise in the outer-segment of photo receptor cells

Page 15: Modeling Neurobiological systems, a mathematical approach Weizmann Institute 2004, D. Holcman

Two dimensional random walk of a Rhodopsin molecules

Page 16: Modeling Neurobiological systems, a mathematical approach Weizmann Institute 2004, D. Holcman

Mathematical modeling

• How to model amplification:1-Photon change at the cellular level.2-Single photon response-curve

• Amplification, how to model 1-chemical reactions, diffusion

2-Noise 3- explain cone rods difference.

Page 17: Modeling Neurobiological systems, a mathematical approach Weizmann Institute 2004, D. Holcman

Mathematical tools

• What is a chemical reaction at a molecular level. Computation of chemical constant: forward a backward binding rate

• Reaction-Diffusion equations

• Analyze the role of the cell-geometry

Noise analysis: solve PDE and stochastic PDE

Page 18: Modeling Neurobiological systems, a mathematical approach Weizmann Institute 2004, D. Holcman

Dynamics in microstructures:

dendritic spines

Page 19: Modeling Neurobiological systems, a mathematical approach Weizmann Institute 2004, D. Holcman

Dendritic spines

Page 20: Modeling Neurobiological systems, a mathematical approach Weizmann Institute 2004, D. Holcman

Calcium dynamics in a spine

Page 21: Modeling Neurobiological systems, a mathematical approach Weizmann Institute 2004, D. Holcman

Model transient dynamics

• Model effect of few ions:

1-Chemical reactions

2-effect of the geometry

3-find coarse-grained approach

• Produce a simulation, based at a molecular level

Page 22: Modeling Neurobiological systems, a mathematical approach Weizmann Institute 2004, D. Holcman
Page 23: Modeling Neurobiological systems, a mathematical approach Weizmann Institute 2004, D. Holcman

Simulation of Ca dynamics in a dendritic spine

D.Holcman et.al, Biophysical J. 2004

Page 24: Modeling Neurobiological systems, a mathematical approach Weizmann Institute 2004, D. Holcman

Conclusion

Purpose of the class Describe microbiological systems and predict the function.

Organization of the class

• Stochastic, Brownian motion• Stochastic equations, Ito calculus.• PDE( elliptic and parabolic, linear and nonlinear) • Asymptotic analysis examples: compute Chemical reaction constants• Neurobiological examples