Weizmann October2008

Embed Size (px)

Citation preview

  • 8/13/2019 Weizmann October2008

    1/54

    Disorder and magnetic field tunedinsulating state in a-InO

    superconducting films

    1Department of Condensed Matter Physics, Weizmann Institute of Science

    2Department of Condensed Matter Physics, Geneva University

    Benjamin Sacp1,2, Maoz Ovadia1, Dan Shahar1

  • 8/13/2019 Weizmann October2008

    2/54

    Outline

    1. Introduction

    2. Linear transport

    3. Non-linear transport

    4. Electron overheating

  • 8/13/2019 Weizmann October2008

    3/54

    Outline

    1. Introduction

    2. Linear transport

    3. Non-linear transport

    4. Electron overheating

  • 8/13/2019 Weizmann October2008

    4/54

    1/T [K]

    Disorder-drivenSuperconductor-Insulator Transition

    0exp T

    RT

    I1 : T0= 0.25 K

    I2 : T0= 0.38 K

    I3 : T0 = 0.61 K

    Titanium nitride thin filmsd 5 nm

    T. I. Baturina, C. Strunk, M. R. Baklanov, and A. Satta

    PRL 98, 127003 (2007)

  • 8/13/2019 Weizmann October2008

    5/54

    V. F. Gantmakher et al., JETP 82, 951 (1996)

    Disorder-drivenSuperconductor-Insulator Transition

    Amorphous Indium Oxyde

    D. Shahar and Z. Ovadyahu, Phys. Rev. B 46, 10917, (1992)

  • 8/13/2019 Weizmann October2008

    6/54

    Magnetic field-tuned SIT

    TiNInOx

    G. Sambandamurthy, L.W. Engel, A. Johansson, E.

    Peled, D. Shahar, PRL 94, 017003, (2005)

    T. Baturina, C. Strunk, M. Baklanov,A. Satta,PRL 98, 127003, (2007)

  • 8/13/2019 Weizmann October2008

    7/54

    Magnetic field-tuned SIT

    Activated regime 10( ) exp T

    R T RT

    G. Sambandamurthy, L.W. Engel, A. Johansson, D.

    Shahar,PRL 92, 107005, (2004)

  • 8/13/2019 Weizmann October2008

    8/54

    Collective insulating state

    G. Sambandamurthy, L.W. Engel, A. Johansson, E.

    Peled, D. Shahar, PRL 94, 017003, (2005)

    Magnetic field-tuned insulating stateInOx

  • 8/13/2019 Weizmann October2008

    9/54

    Collective insulating state

    G. Sambandamurthy, L.W. Engel, A. Johansson, E.

    Peled, D. Shahar, PRL 94, 017003, (2005)

    T. Baturina, A. Mironov, V. Vinokur, M. Baklanov,

    C. Strunk,PRL 99, 257003, (2007)

    Magnetic field-tuned insulating stateInOxDisorder-tuned insulating stateTiN

    Strong instability occurs around T* ~ 0.1KZero conductive state ?

  • 8/13/2019 Weizmann October2008

    10/54

  • 8/13/2019 Weizmann October2008

    11/54

  • 8/13/2019 Weizmann October2008

    12/54

    Superconductor-Insulator Transition (SIT)

    Alternative answer :Joule overheating of electrons

    (B. Altshuler, V. Kravtsov, I. Lerner, I. Aleiner, cond-mat/0810.4312)

    Question :

    Origin of this instability in the I-V curves

    New phase transition at T*~0.1K ?

    Superinsulating state ?

  • 8/13/2019 Weizmann October2008

    13/54

    Outline

    1. Introduction

    2. Linear-transport

    3. Non-linear transport

    4. Electron overheating

  • 8/13/2019 Weizmann October2008

    14/54

    R(T)

    InO-I : Thickness = 30 nm, R(300K) ~ 2 k/

    InO-S: same sample after 4 days of annealing at 300K

    InO-I

    InO-S

    Amorphous Indium Oxide

  • 8/13/2019 Weizmann October2008

    15/54

    Magnetoresistance(2 probes measurements)

    InO-I InO-S

  • 8/13/2019 Weizmann October2008

    16/54

    Activated regime under magnetic field ?

    InO-I

    (note: perpendicular field)

    Before the MR peak:Over-activation ?

    After the MR peak:Sub-activation ?

  • 8/13/2019 Weizmann October2008

    17/54

    InO-S

    Activated regime only around the magnetoresistance peak !

    Activated regime under magnetic field ?

  • 8/13/2019 Weizmann October2008

    18/54

    Outline

    1. Introduction

    2. Linear transport

    3. Non-linear transport B-dependence of voltage threshold Low current branch

    4. Electron overheating

  • 8/13/2019 Weizmann October2008

    19/54

    I(V) curves at B=0T

    InO-I

  • 8/13/2019 Weizmann October2008

    20/54

    I(V) curves at B=8T

    InO-I

    VTchanges by 3 orders of magnitude !

  • 8/13/2019 Weizmann October2008

    21/54

    I(V) curves at B=12T

    InO-I T* < 30mK

    T* decrease at high field

  • 8/13/2019 Weizmann October2008

    22/54

    I(V) curves InO-S

    InO-S

  • 8/13/2019 Weizmann October2008

    23/54

    B-dependence of the voltage threshold

    VT(B=0) = 2 mV

    InO-SInO-I

  • 8/13/2019 Weizmann October2008

    24/54

    T cV B B

    VTchanges by 4 orders of magnitude

    VTfollows a power law with B

    2.1

    0.8

    B-dependence of the voltage threshold

  • 8/13/2019 Weizmann October2008

    25/54

    VTchanges by 4 orders of magnitude

    VTfollows a power law with B

    2.1

    0.8

    B-dependence of the voltage threshold

    Length scale L behind VT?

    eEL T

    16 1.2

    2 10

    T

    T

    nm for V V L

    mm for V V

    Answer : no !

  • 8/13/2019 Weizmann October2008

    26/54

    Outline

    1. Introduction

    2. Linear transport

    3. Non-linear transport B-dependence of voltage threshold Low current branch

    4. Electron overheating

  • 8/13/2019 Weizmann October2008

    27/54

    Current below VT?

    InO-I

  • 8/13/2019 Weizmann October2008

    28/54

    Current below VT?

    InO-I InO-S

  • 8/13/2019 Weizmann October2008

    29/54

    Low-current branch

    I-V is linear at low voltage !

    InO-S

  • 8/13/2019 Weizmann October2008

    30/54

    I-V is exponential at higher bias

    Low-current branch

  • 8/13/2019 Weizmann October2008

    31/54

    Extrapolation of the linear resistance

    Possible fit :

    linear for V

  • 8/13/2019 Weizmann October2008

    32/54

    Extrapolation of the linear resistance

    Possible fit :

    linear for V

  • 8/13/2019 Weizmann October2008

    33/54

    00

    exp 1V

    I V IV

    Extrapolation of the linear resistance

  • 8/13/2019 Weizmann October2008

    34/54

    Extrapolation of R(T)

    Sub-activation seems confirmed at high field

    InO-S

  • 8/13/2019 Weizmann October2008

    35/54

    Superinsulator ?

    Question: is there a superinsulator state in InOx ?

    Answer: No !

  • 8/13/2019 Weizmann October2008

    36/54

    Current jump in YxSi1-x

    Activated regime(T0~ 0.5K)for both thin (40nm) and thick(7m) films

    Absence of superconductingcorrelations

  • 8/13/2019 Weizmann October2008

    37/54

    Outline

    1. Introduction

    2. Linear-transport

    3. Non-linear transport

    4. Electron overheating

  • 8/13/2019 Weizmann October2008

    38/54

    Overheating of electrons

    cond-mat / 0810.4312

    2

    6 6

    ( ) el ph

    el

    Vc T T A

    R T

    Heat balance equation (dirty metal) :

    0

    0

    ( ) expR T RT

    Insulating behaviour :

  • 8/13/2019 Weizmann October2008

    39/54

    Overheating of electrons

    cond-mat / 0810.4312

    2

    6 6

    ( ) el ph

    el

    Vc T T

    R T

    Heat balance equation (dirty metal) :

  • 8/13/2019 Weizmann October2008

    40/54

    Electronic temperature

    B. Altshuler et al.

    cond-mat / 0810.4312

  • 8/13/2019 Weizmann October2008

    41/54

    Electronic temperature

    ( , ) ( , )ph phdI

    G V T V T dV

    1( ) ( 0, )ph ph elR T G V T T

    ( , )el phT V T

    B. Altshuler et al.

    cond-mat / 0810.4312

  • 8/13/2019 Weizmann October2008

    42/54

    Electronic temperature

    ( , )el ph

    T V T

    B. Altshuler et al.

    cond-mat / 0810.4312

  • 8/13/2019 Weizmann October2008

    43/54

    Electron overheating

    2

    2 6 6( , )

    ( ) ph el ph

    el

    VV G V T c T T

    R T Heat balance equation :

    [W]

  • 8/13/2019 Weizmann October2008

    44/54

    Electron overheating

    2

    2 6 6( , )

    ( ) ph el ph

    el

    VV G V T c T T

    R T Heat balance equation :

    [W]

  • 8/13/2019 Weizmann October2008

    45/54

    Summary

    Voltage threshold : changes by 4 orders of magnitude

    follows a power law with field

    Low-current branch : Linear at low bias

    Exponential at higher bias

    give an extrapolation of R(T)

    Electron overheating : Give an alternative description

    Justify the extrapolation of R(T) from the I-V cuvres

  • 8/13/2019 Weizmann October2008

    46/54

    Thank you for your attention

  • 8/13/2019 Weizmann October2008

    47/54

    Electron overheating

    2

    2 6 6( , )

    ( ) ph el ph

    el

    VV G V T c T T

    R T Heat balance equation :

    C =.V => = 1 nW/m3/K6

    ( In a metal : ~ 1 nW/m3/K5 )

    Application: heating Tel= 90mK and Tph=20mK

    Metal P=V2/R ~ 6e-7 nW/m3

    Dirty metal P=V2/R ~ 5e-6 nW/m3

  • 8/13/2019 Weizmann October2008

    48/54

  • 8/13/2019 Weizmann October2008

    49/54

    Extrapolation of R(T)

    InO-SActivated ? Efros-Shklovskii ?

  • 8/13/2019 Weizmann October2008

    50/54

    Four probes measurments

    Anisotropy

  • 8/13/2019 Weizmann October2008

    51/54

    Anisotropy

    Perpendicular Field

    Parallel Field

    B dependence of the voltage

  • 8/13/2019 Weizmann October2008

    52/54

    B-dependence of the voltagethreshold

    Fluctuations of VTstop at the maximum of VT(B)

  • 8/13/2019 Weizmann October2008

    53/54

    Electron overheating

    2

    2 6 6( , )

    ( ) ph el ph

    el

    V V G V T c T T R T

    Heat balance equation :

  • 8/13/2019 Weizmann October2008

    54/54

    I(V) curves at B=12T

    InO-I T* < 30mK

    T* decrease at high field