56
Modeling and analysis of Gene Regulatory Networks Hamid Bolouri Division of Human Biology Fred Hutchinson Cancer Research Center http://labs.fhcrc.org/bolouri Woods Hole, October 2011

Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

Modeling and analysis of

Gene Regulatory Networks

Hamid Bolouri

Division of Human Biology

Fred Hutchinson Cancer Research Center

http://labs.fhcrc.org/bolouri

Woods Hole, October 2011

Page 2: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

Outline: (new approach proposed by Eric Davison)

- Take a specific set of biological observations

- Explore how various computational approaches can help develop insights

• Papers

– Laslo et al, Cell 2006, 126:755–766

– Spooner et al, Immunity 2009, 31:576–586

– Cherry and Adler, J. Theoretical Biology 2000, 203:117-133

– Saka & Smith, BMC Developmental Biology 2007, 7:47.

– Chickarmane, Enver & Peterson PLoS Computational Biology 2009 5(1): e1000268.

• Further reading

– The regulatory Genome (Eric Davidson 2006)

– An Introduction to Systems Biology (Uri Alon, 2006)

– Computational Modeling of Gene

Regulatory Networks – a Primer (Hamid Bolouri, 2008) – R in Action (Robert Kabacoff, 2011)

Page 3: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational
Page 4: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

Novershtern et al,

Page 5: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

Lab Exercises: See handout for instructions.

Search for tag “MBL”

Page 6: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

Stefan Materna & Paola Oliveri, Nature Protocols 3, -1876 - 1887 (2008)

Does network structure explain all observations?

Discovery

Analysis

Page 7: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

Novershtern et al,

Page 8: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

time1 0.082377 0.38766 0.61257 0.471963 -0.07442 -0.11739 0.51039 0.006912 0.011694 -0.14743

time2 0.710007 0.175795 0.035997 0.332428 0.499605 0.386174 0.171675 0.564456 0.500018 0.076234

time3 -1.0385 -0.83347 -0.92109 -0.81229 -1.35493 -1.01501 -0.74898 -0.6342 -0.69178 -0.9943

time4 -1.19125 -1.354 -0.73608 -1.03199 -1.15046 -0.81708 -1.22163 -0.88932 -0.41835 -0.5339

1 myData <- as.matrix(read.table(inFile,header=TRUE,sep=",",row.names=1)) 2 if (clusterBy=="genes") myData <- t(myData) 3 myData <- sweep(myData,1,apply(myData,1,mean),"-") 4 myData <- sweep(myData,1,apply(myData,1,sd),"/") 5 library(RColorBrewer) 6 library(gplots) 7 print(heatmap.2(myData[,dim(myData)[2]:1],col=brewer.pal(11,"RdYlGn"), trace="none", dendrogram="row", scale="column", Colv=FALSE,Rowv=TRUE,key=TRUE, margins=c(10,10)))

Search scripts & data for tag term “MBL” at CRdata.org

Page 9: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational
Page 10: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational
Page 11: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

Observations

• PU.1 & CEPBa expression levels are both low in progenitors

• Progenitors express low levels of both macrophage and neutrophil associated genes

• PU.1 expression is required for macrophage specification

• CEPBa is required for neutrophil specification

• Ratio of PU.1/ CEPBa determines cell fate

• In mature macrophages and neutorphils, PU.1 and CEBPa are both expressed at high

levels & co-regulate cell-type-specific genes

• Multiple cytokines (G-CSF etc) act upstream of PU.1 and CEBPa

• PU.1 upregulates Egr2 and Nab2 expression (which co-regulate macrophage genes)

• Egr2 and Nab2 co-repress Gfi1 expression while Gfi represses Egr2 transcription

• Not included in model

– PU.1 is autoregulatory in macrophages

– CEPBa regulates PU.1 expression

Page 12: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

PU.1

Myeloid cells

B cells

T cells

Hoogenkamp et al,

http://genomequebec.mcgill.ca/PReMod Blanchette lab, McGill

GATA

GATA

PAX

Bold ChIP Light EMSA

1

Leddin et al, Blood 2011, 117(10):2827-2838. Additional CRMs at -8Kbp & within introns.

Runx1

IKAROS

-14Kb -10Kb -9Kb -1Kb

Zarnegar, Chen & Rothenberg,

Enhancer

PU.1 exor GFi (Spooner ’09)

Page 13: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

Logic simulation: need multiple value levels & memory

Chalk board discussion:

1. Do mutually repressing genes always result in 2 mutually excluded states?

2. How do the threshold parameters of a logic model relate to biochemistry?

http://gin.univ-mrs.fr/GINsim/

Page 14: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

distance traveled = current position – starting position = speed x (time)

speed = [(position at time t2) – (position at time t1)] / (t2 – t1)

speed = time1time2

position1position2

d(time)

)d(position

|(time2 - time1) 0

2

2

d(time)

(position)d

d(time)

d(speed)acceleration =

Using Ordinary Differential Equations (ODEs) to model dynamics

speed

time

t1 t2 t3 t4 t5

Chalk board discussion: Integration & differentiation

Page 15: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

Analysis of dynamic network behavior

Consider A

k1 k2

We can write

Which has a simple analytic solution:

(assuming [A](t=0) = 0)

[A]

t

)1()(.

2

1 2 tke

k

ktA

Akkdt

dA.2 1

2

1

k

k

initial slope=k1

[A] 0 max

2

1

k

k

0][

dt

Ad0

][

dt

Ad

Chalk board discussion: Stable and unstable steady states

Page 16: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

GFi

PU.1

C/EBPa

Egr

NAB2

Macrophage genes Neutrophil genes

GFi

PU.1

C/EBPa

Egr

NAB2

Macrophage genes Neutrophil genes

Laslo et al, Cell 2006, 126:755–766 GFi

PU.1

C/EBPa

Egr

NAB2

Macrophage genes Neutrophil genes

GfiEgrCEBP

CEBP

dt

Gfid

EgrGfiPU

PU

dt

Egrd

PUGfi

e

dt

PUd p

4

4

4

1

1.

1

.)(

1

1.

11

1.)(

11

)1(

a

a

Page 17: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

Steady states in feedback networks

stable steady state 1

stable steady state 2

unstable steady state 1

Chalk board:

mono vs bistability

stability, homeostasis

mediocristan

polarized/differentiated states,

extremestan

Page 18: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational
Page 19: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

Laslo et al, Cell 126, 755–766, August 25, 2006

developmental

trajectory for

macrophages

Page 20: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

Graph: a convenient graphing tool. Free at http://www.padowan.dk/graph/

GfiEgrCEBP

CEBP

dt

Gfid

EgrGfiPU

PU

dt

Egrd

PUGfi

e

dt

PUd p

4

4

4

1

1.

1

.)(

1

1.

11

1.)(

11

)1(

a

a

What do the fractional terms imply ?

Why are all Khalf=kd=1 ?

Page 21: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

Where do the production rate functions come from? 1. Do the fractions in the rates have biochemical meaning? 2. Why use (fraction1)*(fraction2) form for the rates? - a side-trip into modeling the regulation of transcription

Page 22: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

mRNA NTPs degradation

AAs Protein

Y

degradation

A simple 2-step ODE model of transcription and translation

dt

d[mRNA]

dt

d[P]

= kt.Y – kdm.mRNA kt is the maximal rate of transcription

= ks.mRNA – kdp.P ks is the protein synthesis rate/mRNA concentration unit

Y

mRNA

Protein

time

Pss = (ks/ kdp).(kt/kdm).Y

Pss ∝ Y (Y is usually set to the Fractional Saturation of TF complex on its DNA binding site)

At steady-state:

Page 23: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

Gene NTPs, AAs Protein

Y

An even simpler 1-step ODE model of gene expression

dt

d[mRNA]

dt

d[P]

= kt.Y – kdm.mRNA = 0

= ks. – kdp.P

If we assume rapid mRNA equilibrium, then:

Yk

kmRNA

dm

tss .

Yk

k

dm

t .

PkYk

kk

kkL

dg

gdm

ts

..

.

dt

dP

then et

Page 24: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

G

A P

mRNA

mRNA transcription

synthesis P

Activator (A)

degradation

degradation

Fractional DNA occupancy by one activating factor

PkmRNAkdt

PdmRNAkYk

dt

mRNAd

as before:

AK

AYalently: or equiv

AK

AKY

DNAAKDNA

DNAAK

DNAADNA

DNAAYOccupancyDNAFractional

dpsdmAt

DAA

A

AA

A

AA

..)(

..)(

.1

.

..

..

]:[][

]:[

increasing KA

Page 25: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

G

R P

mRNA mRNA transcription

synthesis P

Repressor (R)

degradation

degradation

Transcriptional repression

mRNAkRK

kdt

mRNAd

RKDNARKDNA

DNAY

RK

RKY

dAR

t

ARARRnot

AR

ARR

..1

1.

)(

.1

1

..

.1

.

)(

Increasing KAR

(fraction of DNA occupied by R)

(1-YR) = fraction of DNA not occupied by R:

Page 26: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

DNA occupancy by 2 factors

D

DB DAB

DA ka

k-a

kba

k-ba

kab k-ab kb k-b D

A P

mRNA

B

At equilibrium:

bbaaabbbaaab

bbab

b

ba

ba

ba

bababa

aaba

a

ab

ab

ab

ababab

b

b

a

aaa

KKKKDBAKKDBAKK

DBAKKDBk

kA

k

kDBA

k

kDABDABkDBAk

dt

DABd

DBAKKDAk

kB

k

kDAB

k

kDABDABkDABk

dt

DABd

DBk

kDBDA

k

kDADAkDAk

dt

DAd

dt

DBd

dt

DAd

dt

DABd

..........

........].[.]0].[].[.)(

........].[.]0].[].[.)(

..]..]].[..)(

0)(

,0)(

,0)(

[

[

[ :l ikewise , [

Page 27: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

DNA occupancy by 2 factors

D

DB DAB

DA ka

k-a

kba

k-ba

kab k-ab kb k-b

D

A P

mRNA

B

In general: KA.KAB = KB.KBA = Kq.KA.KB

Where Kq = cooperativity factor

= 1 if A and B bind independently

DABkDABkdt

DABd

DAkDAkdt

DAd

abab

aa

...)(

...)(

Page 28: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

qBABA

qBABA

.[B].K.[A] .KK.[B] K .[A] K

.[B].K.[A] .KK.[B] K.[A] KY

1

ionsconfiguratDNA all of levels statesteady the of sum

states activating of level statesteady occupancy

DAB DB DA D

DAB DB DA Y

DBAKKKDAKBKDABKDABk

kDAB

DBKDBDAKDAk

kDA

BAqAABAB

ab

ab

BA

a

a

.............

).. :(likewise ....

If A & B activate independently:

Page 29: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

NNDA

N

NA

NA

AK

A Y or

.A)(K1

.A)(K Y

For 1 TF

multimer

qRARA

A

.[R].K.K .[A]K .[R]K .[A]K1

.[A]K

Y

homodimer) afor (Likewise

1 ,

[A]

[A] Y :lyequivalentor

.[A]1

.[A] Y : thenK.KLet

.[A].KK1

.[A].KK Y :sites ecooperativ- 2For

.[B].K.K .[A]K1

.[B].K.K .[A]K Y factors ecooperativhighly 2For

A

dA22

dA

2

22

A

22

A22

Aq

2

Aq

22

Aq

qBA

qBA

A

For 1 repressor, 1 activator

n=1

n=3

Chalk board: (1-occupancy) for a repressor multimer

Page 30: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

50%~AB Ygives which, /nucleusM) 6-(1.7x10 molecules 3000~B A, 510~RBKRAK

, 2M7E~ND 15L4E ~ volume nuclear sites, 1.6E8~ND

:are numbers typical ,purpuratus S. urchin sea the of cellsembryonic in example, For

.K.B.KA.K.DB.K.DA.KB.DA.DD

.K.B.KA.KY

:gives bottom and top the from D cancelling

D

.K.B.KA.K.DB.K.DA.KB.DA.DD

D

.K.B.KA.K

Y

DNA) boundly specifical-non andDNA naked for terms includes rdenominato (note

D

.K.B.KA.K

D

B.K

D

A.K

D

B

D

A1

D

.K.B.KA.K

Y

:B andby A binding ecooperativ For

state)steady at ionsconfiguratDNA possible all of n(proportio

jointly B &by A occupied regions bindingDNA of proportionY

then sites, bindingspecific their of B &by A occupancy joint YLet

D

K.KKK

D

1K ,

D

1K

[A] ][AD

][A].[D

][ADK

then B,& Afactors for sites bindingDNA specific of number D Let

B & A facors for sites binding DNAspecific -non of number D Let

K

KK Let

qRBRANRBNRANN2N

qRBRAAB

2N

2N

qRBRANRBNRANN2N

2N

qRBRA

AB

2N

qRBRA

N

RB

N

RA

NN

2N

qRBRA

AB

AB

AB

N

RAm_NAequilibriuRAm_SAequilibriu

Nm_NBequilibriu

Nm_NAequilibriu

N

N

Nm_NAequilibriu

S

N

ficm_nonspeciequilibriu

m_specificequilibriuR

Calculating promoter occupancy as a function of

specific and non-specific DNA binding rates for two factors

Page 31: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

50%~AB Ygives which, /nucleusM) 6-(1.7x10 molecules 3000~B A, 510~RBKRAK

, 2M7E~ND 15L4E ~ volume nuclear sites, 1.6E8~ND

:are numbers typical ,purpuratus S. urchin sea the of cellsembryonic in example, For

.K.B.KA.K.DB.K.DA.KB.DA.DD

.K.B.KA.KY

:gives bottom and top the from D cancelling

D

.K.B.KA.K.DB.K.DA.KB.DA.DD

D

.K.B.KA.K

Y

DNA) boundly specifical-non andDNA naked for terms includes rdenominato (note

D

.K.B.KA.K

D

B.K

D

A.K

D

B

D

A1

D

.K.B.KA.K

Y

:B andby A binding ecooperativ For

qRBRANRBNRANN2N

qRBRAAB

2N

2N

qRBRANRBNRANN2N

2N

qRBRA

AB

2N

qRBRA

N

RB

N

RA

NN

2N

qRBRA

AB

Page 32: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

Bolouri H & Davidson EH, PNAS, 5 August 2003, 100(16):9371-9376.

Example model fit to sea urchin data – with added transcription initiation step

Page 33: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

22

2

1

22

11

1

2

11

22

12

22

11

21

11

1

1

1

1

.1

1

.1

1

.G) - k

K

G

.( k dt

dG

.G) - k

K

G

.( k dt

dG

.G) - kG K

.( k dt

dG

.G) - kGK

.( k dt

dG

d

NDiss

Nt

d

NDiss

Nt

dNNA

t

dNNA

t

:as writere

Reducing the number of unknown parameters – a technique to simplify model exploration

22

1

22

11

2

11

1

1

1

1

.G) - kG

.( k dt

dG

.G) - kG

.( k dt

dG

KG

dNt

dNt

Diss

then , of units in measure weIf

Mutual repression

Page 34: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

gene 2 expression

gen

e 1

exp

ress

ion

22

1

22

11

2

11

1

1

1

1

.G) - kG

.( k dt

dG

.G) - kG

.( k dt

dG

dNt

dNt

Mutual repression

1

1

d

t

k

k

cooperativity factor = 2

cooperativity factor = 3

cooperativity factor = 4

2

2

d

t

k

k

Page 35: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

For exploratory exercises, see the Lab Notes handout

Chalk board discussion: - change-direction arrows - how inputs set the state

Page 36: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

x1=off,x2=on

Inputs=0

x1=on,x2=off

Inputs=0

Controlling the state of a mutual repression switch with 2 independent activating inputs

x1=off,x2=on

Input1=0, Input2=0.5

x1=high, x2=low

Input1=0.75, Input2=0.5

k1,k2=5

Page 37: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

Cf. Memory term in our earlier logic model But what feature of the system creates the memory?

Hysteresis

Page 38: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

Two autoregulatory positive feedback loops maintain PU.1

Page 39: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

Steady states in feedback networks

gene G conceptual model: .Gk

GK

G.k

dt

dGdt

rate of clearance

rate of production

rate of clearance > rate of production G will decrease over time

rate of production > rate of clearance G will increase over time

At Steady state,

production rate = clearance rate G

rate

stable steady state

Page 40: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

Steady states in feedback networks

gene G

conceptual model: .GkGK

G.k

dt

dGdNN

N

t

1 2 3 4

0.25

0.5

0.75

1

1.25

G

rate

rate of clearance

rate of production

rate of clearance > rate of production G will decrease over time

rate of production > rate of clearance G will increase over time

stable steady states

unstable steady state

stable steady state 1

stable steady state 2

unstable steady state 1

At Steady states,

production rate = clearance rate

Page 41: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

gene G

Two ways of providing input:

.GkiK

i.k

GK

G.k

dt

dGdnn

i

n

t2NNG

N

t1

gene G

independent

activating

input

Input is (or acts on) the

same protein as feedback

(1) (2)

add a second occupancy term:

.Gki)GK

i)(G.k

dt

dGdNN

N

t

(

add to G in the occupancy term:

rate of clearance

rate of production

Page 42: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

input

mRNASS or PSS Auto-regulation: hysteresis &

bistable lock-on switches

increasing KDiss

G

rate

reducing input

Page 43: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

And:

Page 44: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

PU

.1 a

t st

ead

y st

ate

Gata1 at steady state

Where might the nonlinearities come from?

Additional feedback loops:

Page 45: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

Where might the nonlinearities come from?

Facilitation by ‘pioneer’ factors

Simple model:

where D=DNA, T= transcription factor,

at steady state:

DTTTDTTD

2

1

2

1

2

1

2

2

1

2

11

].[

][][1

].[

][

].[

]].[[

.

]].[[ ,

]].[[

DqD

Dq

DqDqD

KK

T

K

T

KK

T

DTTDTD

DTTY

KK

TD

KK

TDTDTT

K

TDDT

sigmoid DNA

occupancy curve:

Y

T

Page 46: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

At steady state:

=

R RP

S

If 1, 21 T

m

T

m

R

K

R

K

9.0, 21 T

m

T

m

R

K

R

K

1.0, 11 T

m

T

m

R

K

R

K

R RP

S

response is sigmoidal

RPP

r rP

S

R RP

Other cases:

Where might the nonlinearities come from? Se

e al

so h

ttp

://e

n.w

ikip

edia

.org

/wik

i/G

old

bet

er-K

osh

lan

d_k

inet

ics

Page 47: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational
Page 48: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational
Page 49: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

steady state locus of A

steady state locus of B

A

B

Time (A.U.)

Portrait of the state space

Page 50: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

2x2 patch of activated cells at time

zero

Activity dies out

Simulation of 100X100 array of cells with autocrine signaling pathway.

Page 51: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

10X10 patch of activated cells at time

zero

Activity restricted to one patch

Simulation of 100X100 array of cells with autocrine signaling pathway.

Page 52: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

There is a minimum cluster-size

requirement for activation

Activity stabilizes

Activity dies out

Page 53: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

Randomly distributed 1% of cells

activated at time zero

Activity dies out

Simulation of 100X100 array of cells with autocrine signaling pathway.

Page 54: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

Randomly distributed 10% of cells

activated at time zero

Activity spreads

Simulation of 100X100 array of cells with autocrine signaling pathway.

Page 55: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational
Page 56: Modeling and analysis of Gene Regulatory Networks · 2021. 2. 1. · – The regulatory Genome (Eric Davidson 2006) – An Introduction to Systems Biology (Uri Alon, 2006) – Computational

GFi

PU.1

Ikaros

Egr

NAB2

Macrophage genes B cell genes

Spooner et al, Immunity 2009, 31:576–586

Ids

E2A

Early activator