41
J¨ornZimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 1 / 37 Model reduction of wave propagation via phase-preconditioned rational Krylov subspaces Delft University of Technology and Schlumberger * V. Druskin * , R. Remis , M. Zaslavsky * , J¨ orn Zimmerling November 8, 2017

Model reduction of wave propagation - icerm.brown.edu · J orn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 1 / 37 Model reduction of wave propagation

Embed Size (px)

Citation preview

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 1 / 37

Model reduction of wave propagationvia phase-preconditioned rational Krylov subspacesDelft University of Technology† and Schlumberger∗

V. Druskin∗, R. Remis†, M. Zaslavsky∗, Jorn Zimmerling†

November 8, 2017

Motivation

• Second order wave equation withwave operator A

Au− s2u = −δ(x− xS)

• Assume N grid steps in everyspatial direction

• Scaling of surface seismic in 3D:

• # Grid points O(N3)

• # Sources O(N2)

• # Frequencies O(N)

• Overall O(N6)ψ(N3)

500 1000 1500

y-direction [m]

500

1000

1500

2000

2500

3000

x-d

irection [m

]

Receiver

Source

PML

1500

2000

2500

3000

3500

4000

4500

5000

5500

Wavespeed [m

/s]

(a) Section of wave speed profileof the Marmousi model.

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 2 / 37

Goal of this work

• Simulate and compress large scale wave fields in modern highperformance computing environment(parallel CPU and GPU environment)

• Use projection based model order reduction to• Approximate transfer function• reduce # of frequencies needed to solve• reduce # of sources to be considered• reduce # number of grid points needed

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 3 / 37

Introduction

• Simulating and compressing large scale wave fields

Au[l] − s2u[l] = −δ(x− x[l]S ), (1)

• With the wave operator given by A ≡ ν2∆, Laplace frequency s

• We consider a Multiple-Input Multiple-Output problem

• Define fields U = [u[1],u[2], . . . ,u[Ns]] and sources

B = [−δ(x− x[1]S ),−δ(x− x

[2]S ), . . . ,−δ(x− x

[Ns]S )]

• We are interested in the transfer function (Receivers and Sourcescoincide)

F(s) =

∫BHU(s)dx (2)

• Open Domains

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 4 / 37

Problem Formulation

• After finite difference discretization with PML

(A(s)− s2I)U = B

• Step sizes inside the PML hi = αi + βis

• Frequency dependent A(s) caused by absorbing boundary

Q(s)U = B with Q(s) ∈ CN×N

• Q(s) propterties• sparse• complex symmetric (reciprocity)• Schwarz reflection principle Q(s) = Q(s)• passive (nonlinear NR1 Re < 0)

1NR:W {A(s)} ={s ∈ C : xHA(s)x = 0 ∀x ∈ Ck\0

}

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 5 / 37

Problem Formulation

• Transfer function from sources to receivers

F(B, s) = BHQ(s)−1B

• Reduced order modeling of transfer function over frequency range

Fm(B, s) = VmBH(VHmQ(s)Vm)−1VH

mB with Vm ∈ CN×m

• valid in a range of s, and easy to store

Motivation• FD grid overdiscretized w.r.t. Nyquist

• approximation F(B, s) to noise level

• PML introduces losses

• limited I/O map

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 6 / 37

Outline

1 Problem formulation

2 Model order reduction – Rational Krylov subspaces

3 Phase-Preconditioning

4 Numerical Experiments

5 Conclusions

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 7 / 37

Structure preserving rational Krylov subspaces

• Preserve: symmetry (w.r.t. matrix, frequency), passivity

• Block rational Krylov subspace approach κ = s1, . . . , sm

Km(κ) = span{

Q(s1)−1B, . . . ,Q(sm)−1B}

K2mRe = span {Km(κ),Km(κ)}

• Let Vm be a (real) basis for KmRe then with reduced order model

(via Galerkin condition)

Rm(s) = VHmQ(s)Vm

we approximate

Fm(s) = (VHmB)HRm(s)−1VH

mB,

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 8 / 37

Structure preserving rational Krylov subspaces

• Numerical Range: W {Rm(s)} ⊆ W {Q(s)}Proof: xHmRm(s)xm = (Vmxm)HQ(s)(Vmxm)⇒ Rm(s) is passive

• Fm(s) is Hermite interpolant of F(s) on κ ∪ κQ(κ)−1B ∈ K2m

Re + uniqueness of Galerkin

• Schwarz reflection and symmetry hold aswell

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 9 / 37

RKS for a Resonant cavity

0 0.1 0.2 0.3 0.4 0.5

Normalized Frequency

0

1

2

3

4

5

6R

espo

nse

[a.u

]FDFD ResponseRKS Response m=60RKS Response m=20

20 40 60 80 100 120

y-direction

20

40

60

80

100

120

x-d

ire

ctio

n

Receiver

Source

PML

0

0.2

0.4

0.6

0.8

1

• RKS has excellent convergence if singular Hankel values ofsystem decay fast (few contributing eigenvectors)

• Fm(s) is a [2m − 1/2m] rational function

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 10 / 37

Problem of RKS in Geophysics - Nyquist Limit

0.05 0.1 0.15

Normalized Frequency

-0.3

-0.2

-0.1

0

0.1

0.2

Re

sp

on

se

[a

.u.]

• Long travel times ∗δ(t− T)F−→ exp(−sT)

• Nyquist sampling of ∆ω = πT

• F(s) =∫

BHQ(s)−1Bdx is oscillatory

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 11 / 37

Filion Quadrature

• Filion quadrature deals with oscillatory integral

F(s) =

∫exp(st) f(t)dt

quadrature requires s∆t � 1

F(s) ≈ ∆t∑n

an exp(s n∆t) f(n∆t)

• Filion quadrature makes an function of s∆t

F(s) ≈ ∆t∑n

an(s∆t) exp(s n∆t) f(n∆t)

• ⇒ Make projection basis s dependent

• ⇒ Frequency dependence from asymptotic s→ i∞ (WKB)

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 12 / 37

Phase-Preconditioning I - 1D

• We can overcome the Nyquist demand by splitting the wavefieldinto oscillatory and smooth part

u(sj) = exp(−sjTeik)cout(sj) + exp(sjTeik)cin(sj). (3)

• Oscillatory phase term obtained from high frequency asymptotics

• Eikonal equation |∇T[l ]eik|

2 = 1ν2

• Amplitudes cout/in are smooth

• Motivated by Filon quadrature• Handle oscillatory part analytically• Quadrature with smooth amplitudes

• Note: Splitting not unique

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 13 / 37

Phase-Preconditioning II

• Projection on frequency dependent Reduced Order Basis

K2mEIK(κ, s) = span{ exp(−sTeik) cout(s1), . . . , exp(−sTeik) cout(sm),

exp( sTeik) cin (ss), . . . , exp( sTeik) cin (sm)}

• Preserve Schwartz reflection principle

K4mEIK;R(κ, s) = span

{K2m

EIK(κ, s),K2mEIK(κ, s)

}(4)

• equivalent to changing Operator

• Coefficients from Galerkin condition

um(s) =m∑i=1

αi (s) exp(−sTeik) cout(si )+m∑i=1

βi (s) exp(sTeik) cin(si )+. . .

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 14 / 37

Phase-Preconditioning III

• Non-uniqueness of splitting resolved by one-way WEQ

cout(sj) =ν

2sjexp( sjTeik)

(sjνu(sj)−

∂|x − xS|u(sj)

), (5)

cin (sj) =ν

2sjexp(−sjTeik)

(sjνu(sj) +

∂|x − xS|u(sj)

). (6)

Effects of Phase preconditioning on

• Number of Interpolation points

• Size of the computational Grid

• MIMO problems

• Computational Scheme

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 15 / 37

Projection on frequency dependent space

• Let Vm;EIK(s) be a real basis of K4mEIK;R(κ, s)

• The reduced order model is given by

Rm;EIK(s) = VHm;EIK(s)Q(s)Vm;EIK(s).

• large inner products on GPU

• This preserves• symmetry• Schwarz reflection principle• passivity• Interpolation

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 16 / 37

Number of interpolation points needed

• Double interpolation of transfer function still holds

Fm(s) = Fm(s) andd

dsFm(s) =

d

dsF(s) with s ∈ κ ∪ κ. (7)

• Number of interpolation point needed dependent on complexitymedium, not latest arrival

• Proposition: Let a 1D problem have ` homogenous layers .Then there exist m ≤ `+ 1 non-coinciding interpolation points,such that the solution um;EIK(s) = u.

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 17 / 37

Illustration of Proposition

Source L1 L2 L3 L4 L5 L6 L70

0.5

1

Wavespeed

Source L1 L2 L3 L4 L5 L6 L7-10

0

10Real part field

Source L1 L2 L3 L4 L5 L6 L70

5

10Imag(C) outgooing

Source L1 L2 L3 L4 L5 L6 L70

2

4Imag(C) incoming

• Amplitudes are constants in layers + left and right of source

• Basis is complete after `+ 1 iterations

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 18 / 37

Phase-Preconditioning higherdimensions/MIMO

• Split with dimension specific function

u(sj)[l] = g(sjT

[l]eik)cout(sj)

[l] + g(−sjT[l]eik)cin(sj)

[l], (8)

• g(x) obtained from WKB approximation

• One way wave equations along ∇Teik used for decomposition

• In 2D is we use g(x) = K0 (x) for outgoing

• Multiple T[l]eik for multiple sources [l] account for multiple

direction

cin(sj) =sjT

sign(Im (sj))iπ

[K1 (sjT) u(sj) +K0 (sjT)

ν2

sj∇T · ∇u(sj)

]

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 19 / 37

Size of the computational Grid

500 1000 1500

y-direction [m]

500

1000

1500

2000

2500

3000

x-d

irection [m

]

Receiver

Source

PML

1500

2000

2500

3000

3500

4000

4500

5000

wa

ve

sp

ee

d [

m/s

]

(b) Section of the wave speed profile ofthe smoothed Marmousi model.

(c) Real part of thewavefield u[4].

(d) Real part of the

amplitude c[4]out.

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 20 / 37

Numerical Experiments - I

• Configurations (Neumann boundarycondition on top)

• Layered medium

• Travel time dominated

• 5 Sources and 5 Receivers∆x 4mComp. Size 829x480 pointsSize 3160 m x 1920mrange c 1500 - 5500 m/sRange Quadrature 0-40 Hz

500 1000 1500

y-direction [m]

500

1000

1500

2000

2500

3000

x-d

ire

ctio

n [

m]

Receiver

Source

PML

1500

2000

2500

3000

3500

4000

4500

5000

wavespeed [m

/s]

(e) Section of the wave speedprofile of the smoothed Marmousimodel.

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 21 / 37

Numerical Experiments

0 0.05 0.1 0.15

normalized frequency

-0.6

-0.4

-0.2

0

0.2

0.4

response [a.u

.]

Full Response

RKS m=20

PPRKS m=20

Interpolation points

(f) Real part of the frequency-domain transfer function

• Source 1 toReceiver 5

• PPRKS clearlyoutperformsRKS

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 22 / 37

Numerical Experiments I• Time-domain convergence of the RKS and the PPRKS

0 50 100 150 200

number of interpolation frequencies m

-6

-5

-4

-3

-2

-1

0

1

10 log o

f err

or

RKS

PPRKS

(g)

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 23 / 37

Computational Grid

• Amplitudes cin/out are much smoother than the wavefield

• ROM can extrapolate to high frequencies⇒ oscillatory part is handled analytically

• Two-grid approach:

• Amplitudes can be computed on coarse grid Uc = Qcourse(s)−1Bc

• Interpolate amplitudes to fine grid

• Projection of operator and evaluation are performed on fine grid

Fc;m(s) = BH{

[Vc;m(s)]HQfine(s)Vc;m(s)}−1

B

• Solution gets gauged to the fine grid(no interpolation anymore)

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 24 / 37

Phase-Preconditioning SVD• Amplitudes are smooth in space and can become redundant• Reduce amplitudes via SVD of [cout cin]⇒ c jSVD• Amplitudes have no source information

0 100 200 300 400 500index singular value

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

10

log

no

rma

lize

d s

ing

ula

r va

lue

s

RKSContracted amplitude basis

(h) Singular values of normalized (cout cin)

# singular values larger than 0.01

versus # sources with m = 40

Nsrc 12 24 48 96

[cout, cin] 69 72 73 73u 457 833 1369 1741m · Nsrc 480 960 1920 3840

⇒ Reduction of sources

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 25 / 37

Phase-Preconditioning SVD

• Assume s ∈ iR then we obtain

u[l ]m (s) =

Nsrc∑r=1

MSVD∑j=1

[a

[l ]rj

α[l ]rj

]T [g(sT

[r ]eik)c jSVD

g(−sT [r ]eik)c jSVD

](9)

where MSVD � 2mNsrc.

• Coefficients from Galerkin condition

• c jSVD is no longer source dependent

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 26 / 37

Computational Scheme - Coarse Grid - CPU

ROM Construction phase

EmbarrassinglyParallel

ROM Evaluation Phase

Initialize Simulation

Compute T[l ]eik

Solve coarse problemsingle shot/frequency

Qcoarse(κi )u[l ](κi ) = b[l ]

Compute SVD of

c[l ]out and c

[l ]in

Evaluate ROM single Frequency se

Hm;EIK = Vm;EIK(se)HQfineVm;EIK(se)

Fc,m = BHs Vm;EIK(se)H−1

m;EIKVm;EIK(se)HBs

Compute inverseFourier Transform

Fm;c(t) = F−1Fm;c(iω)

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 27 / 37

Computational Scheme - Fine Grid - GPU

ROM Evaluation Phase

Compute SVD of

c[l ]out and c

[l ]in

Evaluate ROM single Frequency se

Rm;EIK = Vm;EIK(se)HQfineVm;EIK(se)

Fc,m = BHs Vm;EIK(se)R−1

m;EIKVm;EIK(se)HBs

Compute inverseFourier Transform

Fm;c(t) = F−1Fm;c(iω)

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 28 / 37

Numerical Experiments - Grid Coarsening• Coarsen the computation mesh by factor 16 (4 in each direction)• Interpolation points until 5.5 ppw (m = 40,Nsrc = 12,M = 100)

0 0.02 0.04 0.06 0.08

normalized frequency

0

0.02

0.04

0.06

0.08

FD

err

or

ave

rag

ed

ove

r a

ll tr

ace

s

RKS m=40 stepsize=0.5 uniform shifts

FDFD m=500 stepsize=0.6

PP-RKS m=40 stepsize=4.0

shifts used in PP-RKS

(i) Relative error erraverage

500 1000 1500

y-direction [m]

500

1000

1500

2000

2500

3000

x-d

irection [m

]

1500

2000

2500

3000

3500

4000

4500

5000

Speed [m

/s]

(j) Configuration

Figure: Smooth Marmousi test configuration with grid coarsening.

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 29 / 37

Numerical Experiments - Grid Coarsening• Projection of fine operator gauges the ROM• Direct evaluation of coarse operator not accurate

10 20 30 40 50points per wavelength

10-3

10-2

10-1

100

FD

err

or

avera

ged

ove

r all

trace

s

Direct evaluation of 500 frequency points

PPRKS with m=40 shifts

(k) erraverageROM;coarse versus erraverageFD;coarse

Figure: Smooth Marmousi test configuration with grid coarsening.

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 30 / 37

Numerical Experiments - Grid Coarsening• Ricker Wavelet with cut-off frequency of 2.7 ppw on coarse grid

0 1000 2000 3000 4000 5000 6000 7000

normalized time

-8

-6

-4

-2

0

2

4

6

response [a.u

.]

×10-6

Comparison

ROM

2000 2500 3000 3500 4000 4500 5000

(l) Time domain trace from the left most source to the right mostreceiver after m = 40 interpolation points.

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 31 / 37

Numerical Experiment III

• Resonant Borehole in smoothGeology

• Resonant behavior causeslong runtimes

• 6 Surface- and 8 BHsource-receiver pairs

200 600 1000

y-direction [m]

500

1000

1500

2000

2500

x-d

ire

ctio

n [

m]

Reiceiver

Source

PML

1500

2000

2500

3000

3500

4000

4500

5000

wavespeed [m

/s]

1

2

3

4

5

6

7

8

9 14

(m) Simulated configuration.

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 32 / 37

Numerical Experiments III

200 600 1000

y-direction [m]

500

1000

1500

2000

2500

x-di

rect

ion

[m]

ReiceiverSourcePML

1000

2000

3000

4000

5000

Spe

ed [m

/s]

(n) Isosurfaces Teik.

200 600 1000

y-direction [m]

500

1000

1500

2000

2500

x-di

rect

ion

[m]

ReiceiverSourcePML

1000

2000

3000

4000

5000

Spe

ed [m

/s]

(o) Isosurf. Teik;CM.

u[l ](sj) = g(sjT[l ]eik)c

[l ]out;eik(sj)

+ g(−sjT[l ]eik)c

[l ]in;eik(sj),

u[l ](sj) = g(sjT[l ]eik;CM)c

[l ]out;CM(sj)

+ g(−sjT[l ]eik;CM)c

[l ]in;CM(sj).

• m = 40, Nsrc = 14,MSVD = 30

• cin/out;eik/CM

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 33 / 37

Numerical Experiments III• Ricker Wavelet with cut-off frequency of 2.7 ppw on coarse grid

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

normalized time

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1re

sponse [a.u

.]×10

-4

Comparison

ROM

8000 8500 9000 9500

(p) Time-domain trace of the coinciding source receiver pair number 1 afterm = 40 interpolation points, together with the comparison solution.

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 34 / 37

Numerical Experiments III• Ricker Wavelet with cut-off frequency of 2.7 ppw on coarse grid

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

normalized time

-1

-0.5

0

0.5

1

response [a.u

.]

×10-6

3500 4000 4500 5000 5500 6000

(q) Time-domain trace from source number 7 inside the borehole to therightmost surface receiver number 14 after m = 40 interpolation points.

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 35 / 37

Conclusions

• All three challenges (Grid size, Nr of Sources, Nr of interpolationpoints) can be reduced with phase preconditioning

• Projection on frequency dependent basis allows ROM beyond theNyquist limit

• Can be used for other oscillatory PDEs that have asymptoticsolutions

• Work shifted from solvers to inner products

• Significantly compressed the ROM into coarse amplitudes

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 36 / 37

Paper

V. Druskin, R. Remis, M. Zaslavsky and J. Zimmerling,Compressing Large-Scale Wave Propagation Models viaPhase-Preconditioned Rational Krylov Subspaces, arXiv:1711.00942

Thanks2

2STW (project 14222, Good Vibrations) and Schlumberger Doll-Research

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 37 / 37

Numerical Experiments IIII• Coarsen the computation mesh by factor 16 (4 in each direction)• Interpolation points until 5.5 ppw (m = 40,Nsrc = 12,M = 150)

0 0.05 0.1 0.15

normalized frequency

0

0.2

0.4

0.6

0.8

1

FD

err

or

avera

ged o

ver

all

traces

RKS m=40 step size=1.0

FDFD m=500 step size=4.0

FDFD m=500 step size=1.2

PP-RKS m=40 step size=4.0

(g) Relative error erraverage

500 1000 1500

y-direction [m]

500

1000

1500

2000

2500

3000

x-d

ire

ctio

n [

m]

Receiver

Source

PML

1500

2000

2500

3000

3500

4000

4500

5000

5500

Wa

ve

sp

ee

d [

m/s

]

(h) Configuration

Figure: Marmousi test configuration with grid coarsening.

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 1 / 4

Numerical Experiments IIII• Ricker Wavelet with cut-off frequency of 2.7 ppw on coarse grid

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

normalized time

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1re

sp

on

se

[a

.u.]

×10-5

Comparison

ROM

2000 2500 3000 3500 4000 4500 5000

(a) Time domain trace from the left most source to the right mostreceiver after m = 40 interpolation points.

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 2 / 4

Computational Complexity

• Cost of the basis computation and evaluation of the ROM

• Basis Computation on CPU3, Evaluation GPU4

Basis Computation comparison Computation Time

Block solve fine grid Qfine(si )−1B 10.3s

Single solve fine grid Qfine(si )−1b 4.1s

Block solve coarse grid Qcoarse(si )−1B 0.6s

Single solve coarse grid Qcoarse(si )−1b 0.2s

Evaluation Step Computation Time Scaling

Computing phase functions exp(iωTeik) 0.00546s NsrcNf

Hadamard Products exp(iωTeik) cSVD 0.01496s MSVDNsrcNf

Galerkin inner product Vm;EIK(se)H · QfineVm;EIK(se) 1.752s NfM2SVDN

2src

3Solved using UMFPACK v 5.4.0 on a 4-Core Intel i5-4670 [email protected] GHzwith parallel BLAS level-3 routines

4Double precision python implementation on an Nvidia GTX 1080 Ti

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 3 / 4

Dispersion Correction

• At 5.5 ppw with a second order scheme we dispersion

• analytical travel time does not correspond to numerical

• use ν ′[l ] in decomposition to cancel highest s2 term

exp(

2sT[l ]eik

) k∑i=1

|Dxi exp(−sT

[l ]eik

)|2 =

s2

ν ′[l ]2

(10)

Jorn Zimmerling (TU Delft) Model reduction of wave propagation November 8, 2017 4 / 4