23
Method of Finite Elements II Page 1 Solution of Equilibrium Equation in Dynamic Analysis Mode Superposition Dominik Hauswirth 21.11.07

Mode Superpositionwebarchiv.ethz.ch/ibk/emeritus/fa/education/FE_II/FEII... · 2015. 9. 4. · 1 Mode Superposition Effectivity of this methods Implicite methods (Houbolt, Wilson,

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Method of Finite Elements II Page 1

    Solution of Equilibrium Equation in Dynamic Analysis

    Mode Superposition

    Dominik Hauswirth

    21.11.07

  • Method of Finite Elements II Page 2

    Contents

    1. Mode Superposition: Idea and Equations

    2. Example 9.7

    3. Modes

    4. Include Damping

    5. Response contributions

  • Method of Finite Elements II Page 3

    Mode Superposition1Dynamic Equilibrium Equation

    RKUUCUM =++ &&&

    Solving methods:• Central difference

    • Houbolt

    • Wilson θ

    • Newmark

  • Method of Finite Elements II Page 4

    Mode Superposition1Effectivity of this methods

    Implicite methods(Houbolt, Wilson, Newmark)

    1.) Initial calculations (LDLT) -> Number of operations:

    2.) For each time step (Mult.) -> Number of operations

    2

    21

    kmno ⋅⋅=

    kmno ⋅⋅= 2

    Where: n : matrix size, mk: half bandwidth

    Number of operation is growing with bandwidth !

  • Method of Finite Elements II Page 5

    Mode Superposition1Reduction of bandwidth1.) Optimize mesh topology

    -> Limited effect

    2.) Transformation

    ⎥⎥⎥⎥

    ⎢⎢⎢⎢

    −−−

    −−−

    ⋅=

    11001210

    01210012

    kK

    ⎥⎥⎥⎥

    ⎢⎢⎢⎢

    −−−−

    −−

    ⋅=

    21011210

    01101002

    kK1

    2

    3

    4

    1

    4

    3

    2

  • Method of Finite Elements II Page 6

    Mode Superposition1Modal generalized displacements

    {R

    T

    K

    T

    C

    T

    M

    T RPXKPPXCPPXMPPRKPXXCPXMP

    RKUUCUM

    ~~~~=++

    =++

    =++

    321&

    321&&

    321

    &&&

    &&&

    Transformation with unknown P, such that mk smaller

    ( ) ( )tXPtU ⋅=Dynamic Equation in modal displacements

    In theory many different transformations possible –

    in practice only one transformation matrix established !

  • Method of Finite Elements II Page 7

    2D-Elements; linear1Transformation matrix

    02 =− φωφ MK

    Free-vibration equilibrium solutions with damping neglected:

    By inserting U we obtain a eigenproblem:

    ( )( )0sin0

    ttUKUUM

    −⋅⋅=

    =+

    ωφ

    &&

    Postulated solution

    with n solutions for eigenvector

    2iωeigenvalue

    Normalization:

    ⎩⎨⎧

    =≠

    =jiji

    M jTi 1

    0φφ 222

    21 ...0 nωωω ≤≤≤≤

    2iω

  • Method of Finite Elements II Page 8

    2D-Elements; linear1Transformation matrixDefinitions

    ],...,,[ 21 nφφφ=Φ

    ⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢

    =Ω

    2

    21

    21

    2

    ...

    ωω

    Since the eigenvectors are M - orthonormal2Ω=ΦΦ=ΦΦ KIM TT

    Eigenproblem for n equations

    02 =ΦΩ−Φ MK

    M and K diagonalized with TRANSFORMATION MATRIX Φ

    ],...,,[ 21 nφφφ=Φ )()( tXtU ⋅Φ=

  • Method of Finite Elements II Page 9

    2D-Elements; linear1Transformed equation, Damping neglectedMatrix equation

    RXX

    RXKXMKUUM

    T

    TT

    I

    T

    Φ=Ω+

    Φ=ΦΦ+ΦΦ

    =+

    2

    2

    0

    &&

    321&&

    321

    &&

    Single decoupled equation i( ) ( ) ( )( ) ( )tRtr

    nitrtxtxTii

    iii

    ⋅=

    ==⋅+

    φ

    ω ,....,2,12&&

    ( ) UMtx Tii 00 φ==Transforming the initial conditions

  • Method of Finite Elements II Page 10

    2D-Elements; linear1Solution of decoupled equation iDuhamel integral

    ( ) ( ) ( )( ) ( ) ( )ttdtrtx iiit

    iiii

    i ⋅⋅+⋅⋅+−⋅⋅= ∫ ωβωαττωτω cossinsin1

    0

    Transforming to real displacement base

    ( ) ( )∑=

    ⋅=n

    iii txtU

  • Method of Finite Elements II Page 11

    Example2Example 9.7; p. 789

  • Method of Finite Elements II Page 12

    Example2Exact solution with mode superposition

    Time history curve of exact solution

    -2

    -1

    0

    1

    2

    3

    4

    5

    6

    7

    0 5 10 15 20 25

    time [s]

    disp

    lace

    men

    t

    u1_exaktu2_exakt

  • Method of Finite Elements II Page 13

    Example2Newmark methodTwo possibilities, leading to the same result

    1.) Integrate straight forward -> SLOW

    2.) Transform into modal displacements , integrate the decoupled equations , transforme back -> FAST

    RKUUM =+&&

    RKUUM =+&& RXX TΦ=Ω+ 2&&

  • Method of Finite Elements II Page 14

    Example2Newmark in MATLAB

    25.05.028.0

    ===∆

    αδ

    t

    Originally proposed as an unconditionally stablescheme by Newmark

  • Method of Finite Elements II Page 15

    Example2Newmark method

    exact solution vs. Newmark

    -2

    -1

    0

    1

    2

    3

    4

    5

    6

    7

    0 5 10 15 20 25

    time [s]

    disp

    lace

    men

    t

    u1_Newmarku2_Newmarku1_exaktu2_exakt

  • Method of Finite Elements II Page 16

    Example2Benchmark

    Time history curve

    -0.5

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    0 0.5 1 1.5 2 2.5 3 3.5 4

    time [s]

    disp

    lace

    men

    t

    Newmarkexakt

  • Method of Finite Elements II Page 17

    Modes3Number of modes in calculationFor n lumped masses in a system, n modes were found - but for

    a good approximation often only a few are needed!

    Choosing the right modes for calculationIn general the lowest frequencies and modes are approximated in

    the best way -> upper bounds for frequencies are found

    How many and which modes are taken for calculation depends on the problem:

    • Earthquake: In some cases only the 10 lowest modes

    • Shock: Many modes necessary, p > 2/3 n

  • Method of Finite Elements II Page 18

    Modes3Modes in Example 9.7

    modes

    -2

    -1

    0

    1

    2

    3

    4

    0 5 10 15 20 25

    time [s]

    disp

    lace

    men

    t

    1st mode u11st mode u22nd mode u12nd mode u2

  • Method of Finite Elements II Page 19

    Modes3Only first mode in Example 9.7 for displacement u1

    u1: first mode - exact solution

    -2

    -1

    0

    1

    2

    3

    4

    0 5 10 15 20 25

    time [s]

    disp

    lace

    men

    t

    exakt_u11st mode u1

  • Method of Finite Elements II Page 20

    Modes3Error MeasurementThe accuracy of a solution p < n can be measured…

    ..and made better by the so called static correction

    ( )( ) ( ) ( )[ ]

    ( )2

    2

    tR

    tKUtUMtRt

    ppp

    +−=

    &&ε

    ( ) ( )tRtUK

    MrRRp

    iii

    ∆=∆⋅

    −=∆ ∑=1

    )( φ

    Mode Superposition has more advantages then onlythe reduction of number of necessary operations!

  • Method of Finite Elements II Page 21

    Include damping4Include damping• Modal transformation was derived without damping

    • Transformation Matrix Φ diagonalizes M and K ….

    • …but not a „free“ chosen damping Matrix C. In this case theequations stay coupled and mode Superposition isn‘t possible

    Rayleigh damping• If C is a linear combination of M and K decoupling is possible, this

    is called Rayleigh damping

    KMC ⋅+⋅= βα

    • In this case, there are only two free parameter for fitting thedamping rate

  • Method of Finite Elements II Page 22

    Include damping4Decoupled equations in case of Rayleigh daamping

    ( ) ( ) ( )

    ii

    i

    iiiiii trtxtxtx

    βωωαζ

    ωζω

    +=

    =⋅++

    2

    )(2 2&&&

    If an accurate modelling of damping is necessary:

    • Direct integration

    • Caughey series

  • Method of Finite Elements II Page 23

    Response contributions5Response contributionsSolving a dynamic loaded, damped system, two response contributions

    can be observed:

    • Transient, damped out solution part

    • A permanent dynamic response, which is the static responsemultiplicated by a

    dynamic load factor