moddeling of hydrocyclones

Embed Size (px)

Citation preview

  • 7/23/2019 moddeling of hydrocyclones

    1/17

    MODELLING OF HYDROCYCLONESMODELLING OF HYDROCYCLONES

    CFD Modelling Group

    Department of Mechanical Engineering

    University of British Columbia

    Process Simulations imited

  • 7/23/2019 moddeling of hydrocyclones

    2/17

    OBJECTIVES

    Feed

    Reject

    Accept

    HYDROCYCLONESHYDROCYCLONES

    Investigate the flow, particle, and fiberInvestigate the flow, particle, and fiber

    separation occurring in hydrocyclonesseparation occurring in hydrocyclones

    Use suitable turbulence models forUse suitable turbulence models forhigh swirl fluid flowshigh swirl fluid flows

    Develop mathematical models toDevelop mathematical models to

    compute fiber trajectories in complexcompute fiber trajectories in complex

    flowsflows Model separation and fractionationModel separation and fractionation

    according to properties in hydro-according to properties in hydro-

    cyclonescyclones

  • 7/23/2019 moddeling of hydrocyclones

    3/17

    HYDROCYCLONESHYDROCYCLONES

    3-D turbulent flow is solved in3-D turbulent flow is solved in

    hydrocyclones using k -hydrocyclones using k - turbulence modelturbulence model

    with curvature correctionwith curvature correction

    Lagrangian method for tracking sphericalLagrangian method for tracking spherical

    particles three-dimensionally inparticles three-dimensionally in

    hydrocyclones to obtain separation curveshydrocyclones to obtain separation curves

    Spherical particles are replaced inSpherical particles are replaced in

    lagrangian model with rigid fibre, able tolagrangian model with rigid fibre, able to

    swell, and ignoring fibre rotationswell, and ignoring fibre rotation

    MODEL CHARACTERISTICS

  • 7/23/2019 moddeling of hydrocyclones

    4/17

    HYDROCYCLONESHYDROCYCLONESNUMERICAL METHODSNUMERICAL METHODS

    Develop 3D method using cylindrical curvilinear gridDevelop 3D method using cylindrical curvilinear grid

    - combination of cylindrical co-ordinates and non-orthogonalgrids

    Take advantage of the cylindrical co-ordinates to calculateTake advantage of the cylindrical co-ordinates to calculatethe physical geometrical quantities and curvature sourcethe physical geometrical quantities and curvature source

    terms accuratelyterms accurately

    Circular co-ordinates are used to account for the curvedCircular co-ordinates are used to account for the curved

    surface of each control cell in the calculation of geometricalsurface of each control cell in the calculation of geometrical

    quantitiesquantities

    The centrifugal force is used to replace the curvature sourceThe centrifugal force is used to replace the curvature source

    term in the angular momentum equationterm in the angular momentum equation

  • 7/23/2019 moddeling of hydrocyclones

    5/17

    The standard k-The standard k-

    model fails to producemodel fails to produce

    reasonable solutionreasonable solution

    Use modified k-Use modified k- model proposed by Laundermodel proposed by Launder

    - model adds correction term in dissipation equation

    HYDROCYCLONESHYDROCYCLONES

    r

    ru

    r

    ukRi

    kRiCCkC

    t

    tC

    =

    !!

    !

    !

    !

    !

    ! "#$%"

    &it' (urbulent &ichardson number

    u ' tangential velocity

    r ' radial

    TURBULENCE MODEL

  • 7/23/2019 moddeling of hydrocyclones

    6/17

    HYDROCYCLONESHYDROCYCLONES

    Traced by numerical integration of the particleTraced by numerical integration of the particle

    velocity calculated from the fluid velocity andvelocity calculated from the fluid velocity and

    particle slip velocityparticle slip velocity Particle slip velocity is solved from the dynamicParticle slip velocity is solved from the dynamic

    force balance in radial, tangential & axial directionsforce balance in radial, tangential & axial directions

    u' tangential velocities

    Us ' settling velocities

    )p' particle volume

    *p' pro+ected area

    Particle Trajector

    pDrslpl

    l

    p

    p ACUVru

    ru !

    !!

    !$#%

    =

    pDxslplp ACUgV!

    !

    $#% =

  • 7/23/2019 moddeling of hydrocyclones

    7/17

    HYDROCYCLONESHYDROCYCLONES

    Turbulence model is proven to be criticalTurbulence model is proven to be critical

    Modified k-Modified k- model is identified as a goodmodel is identified as a good

    alternative for high swirl flowsalternative for high swirl flows Model is accurate for both flow simulationModel is accurate for both flow simulation

    and separation predictionand separation prediction

    Model can be used to analyse performanceModel can be used to analyse performanceof industrial hydrocyclonesof industrial hydrocyclones

    - design, separation, optimisation

  • 7/23/2019 moddeling of hydrocyclones

    8/17

    3 Different Hydrocyclones3 Different Hydrocyclones

    Di!e"#io"#

    $i" !!%

    Cclo"e & Cclo"e ' Cclo"e (

    Cclo"e Dia!eter )* )+ )+

    I"let Dia!eter '& '+ '+

    Cli"drical Le",t- +& )+ )+

    Vorte. Fi"der Dia!eter '* '+ ''

    Vorte. Fi"der Le",t- (/ +/ +/

    Spi,ot Dia!eter &' &+ &&

    Co"e A",le && '/ '/

  • 7/23/2019 moddeling of hydrocyclones

    9/17

    COMARISON !ARTICLES"COMARISON !ARTICLES"

  • 7/23/2019 moddeling of hydrocyclones

    10/17

    FI#ER FRACTIONATIONFI#ER FRACTIONATION

    x

    r

    0 0.1 0.2 0.3 0.40

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    0.035

    0.04

    (a)

    x

    r

    0 0.1 0.2 0.3 0.40

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    0.035

    0.04

    p1.52431E+07

    1.42361E+071.32292E+071.22222E+071.12153E+071.02083E+07

    9.20135E+068.1944E+06

    7.18745E+066.1805E+065.17355E+064.1666E+063.15965E+062.1527E+06

    1.14575E+06

    (b)

    x

    r

    0 0.1 0.2 0.3 0.40

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    0.035

    0.04

    sw

    2.845312.65563

    2.465942.27625

    2.086561.89688

    1.707191.5175

    1.327811.13813

    0.9484380.75875

    0.569063

    0.379375

    0.189688

    (c)

    $a% Velocit 0ector#1 $2% pre##3re co"to3r#1 a"d $c% #4irl 0elocit co"to3r# i"a -drocclo"e

  • 7/23/2019 moddeling of hydrocyclones

    11/17

    FI#ER FRACTIONATIONFI#ER FRACTIONATION

    10

    20

    30

    40

    50

    60

    70

    0

    20

    40

    60

    80

    100

    carriedover(%)

    5

    0

    20

    40

    60

    80

    100

    carriedover(%)

    5

    10

    20

    30

    40

    50

    60

    70

    cov

    89.625

    77.675

    65.725

    53.775

    41.825

    29.875

    17.925

    5.975

    densityrel=1.04

    densityrel=1.14

    densityrel=1.42

    densityrel

    carriedover(%)

    1

    1

    1.1

    1.1

    1.2

    1.2

    1.3

    1.3

    1.4

    1.4

    0 0

    10 10

    20 20

    30 30

    40 40

    50 50

    60 60

    70 70

    80 80

    90 90

    100 100

    Adensityrel

    Bdensityrel

    *

    *

    FiberB

    FiberA

    I"5l3e"ce o5 t-e particle de"#it o"

    5ractio"atio"

    Separatio" o" dia!eter a"d le",t- a# 53"ctio" o5 t-e

    particle de"#it

  • 7/23/2019 moddeling of hydrocyclones

    12/17

    FI#ER FRACTIONATIONFI#ER FRACTIONATION

    diameter(microns)

    carriedover(%)

    10

    10

    20

    20

    30

    30

    40

    40

    50

    50

    60

    60

    70

    70

    0 0

    10 10

    20 20

    30 30

    40 40

    50 50

    60 60

    70 70

    80 80

    90 90

    100 100

    AdiameterBdiameter

    FiberA

    *

    *

    FiberB

    20

    40

    60

    0

    50

    100

    carriedover(%)

    1.2

    1.4

    0

    50

    100

    carriedover

    (%)

    1.2

    1.4

    20

    40

    60

    cov

    22.2

    20.3857

    18.5714

    16.7571

    14.9429

    13.1286

    11.3143

    9.5

    7.68571

    5.87143

    4.05714

    2.24286

    0.428571

    -1.38571

    -3.2

    10 20 30 40 50 60 70

    diameter(microns)

    10 20 30 40 50 60 70

    diameter(microns)

    1.1

    1.2

    1.3

    1.4

    density

    rel

    1.1

    1.2

    1.3

    1.4

    density

    rel

    1.1

    1.2

    1.3

    1.4

    density

    rel

    10 20 30 40 50 60 70

    diameter(microns)

    T-e di55ere"ce 2et4ee" particle# carried o0er at t 6 '/7C a"d t

    6 8+7C9 T-e ello4 ,rid repre#e"t# particle# carried o0er at t 6

    '/7C

    I"5l3e"ce o5 t-e particle dia!eter o"

    5ractio"atio"

  • 7/23/2019 moddeling of hydrocyclones

    13/17

    FI#ER FRACTIONATIONFI#ER FRACTIONATION

    T-e co!2i"ed i"5l3e"ce o5 coar#e"e## a"d #peci5ic #3r5ace o"

    #eparatio"

    I"5l3e"ce o5 t-e particle coar#e"e##

    o" #eparatio" 2a#ed o" #peci5ic

    #3r5ace

    0

    10

    20

    30

    40

    50

    60

    00.1

    0.20.3

    0.4200

    400

    600

    800

    1000

    57.7

    54.3

    50.8

    47.444.0

    40.6

    37.1

    33.7

    30.3

    26.9

    23.4

    20.0

    16.613.2

    9.8

    CoarsenessandSpecificsurfaceinfluenceonseparation

    coarseness(mg/m)

    specificsurface(m2/kg)

    carriedover(%)carriedover(%)

    specificsurface(m2/kg)

    carriedover(%)

    200 400 600 800 10000

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    coarseness=0.1mg/mcoarseness=0.2mg/mcoarseness=0.3mg/mcoarseness=0.4mg/mcoarseness=0.5mg/m

    Influenceofcoarsenessonseparationbasedonspecificsurface

    Particlelength=2mmShapefactors

    3=1.5

  • 7/23/2019 moddeling of hydrocyclones

    14/17

    FI#ER FRACTIONATIONFI#ER FRACTIONATION

    I"5l3e"ce o5 particle le",t- o" #eparatio" 2a#ed o" dia!eter

    I"5l3e"ce o5 t-e particle le",t- o"

    5ractio"atio"diameter(m)

    carriedunder(%)

    2E-05 4E-05 6E-05 8E-05 0.00010

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    density=1100kg/m3,L=1mm

    density=1100kg/m3,L=6mm

    density=1050kg/m

    3

    ,L=1mmdensity=1050kg/m3,L=6mm

    Influenceofparticlelengthonseparationbasedondiameter

    length(mm)

    carriedover(%)

    1 2 3 4 5 60

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Influenceofparticlelengthonfractionation

    Referencedata:

    FiberA:L=3.1mm;density=1050kg/m3;d=48microns

    FiberB:L=3.5mm;density=1100kg/m3;d=39microns

    Referencelines:

    (a) density=1050kg/m3;d=48microns

    (b) density=1100kg/m3;d=39microns

    (c)density=1140kg/m3;d=12microns

    (d) density=1140kg/m3;d=45microns

    FiberA

    * *

    FiberB

  • 7/23/2019 moddeling of hydrocyclones

    15/17

    FI#ER FRACTIONATIONFI#ER FRACTIONATION

    I"5l3e"ce o5 e"tr particle po#itio" o" #eparatio" a"d

    5ractio"atio" $Fi2re A : Earl ;ood1 Fi2re B : Late ;ood% 5or

    a" e"tr 5eed at t-e top o5 -drocclo"e $< 6 /%

    ytangential

    (mm)

    xaxial(mm)

    0 10 20 30 400

    5

    10

    15

    20

    downward

    upward

    SeparationasfunctionofentrypositionforfiberB(z=0mm)-Tangentialfeed-

    ytangential

    (mm)

    xaxial(mm)

    0 10 20 30 400

    5

    10

    15

    20

    downward

    upward

    SeparationasfunctionofentrypositionforfiberA(z=0mm)-Tangentialfeed-

    ytangential(mm)

    xaxial(mm)

    0 10 20 30 405

    10

    15

    20

    25

    downward

    upward

    SeparationasfunctionofentrypositionforfiberA(z=5mm)-Tangentialfeed-

    ytangential(mm)

    xaxial(mm)

    0 10 20 30 405

    10

    15

    20

    25

    downward

    upward

    eparatonasunctono entryposton or er z= mm-Tangentialfeed-

    I"5l3e"ce o5 e"tr particle po#itio" o" #eparatio" a"d

    5ractio"atio" $Fi2re A : Earl ;ood1 Fi2re B : Late ;ood% 5or a

    + !! do4"4ard e"tr 5eed $< 6 + !!%

  • 7/23/2019 moddeling of hydrocyclones

    16/17

    #ENEFITS#ENEFITS

    Increase operating efficiency for hydrocyclonesIncrease operating efficiency for hydrocyclones

    Optimize the hydrocyclones designOptimize the hydrocyclones design

    Evaluate the influence on fractionation of fiberEvaluate the influence on fractionation of fiber

    wet density, fiber diameter, fiber length, andwet density, fiber diameter, fiber length, andfiber specific surfacefiber specific surface

    Evaluate the influence of the fluid temperature onEvaluate the influence of the fluid temperature on

    fractionationfractionation

    Predict the fractionation performance of a hydro-Predict the fractionation performance of a hydro-

    cyclone for given fiber propertiescyclone for given fiber properties

  • 7/23/2019 moddeling of hydrocyclones

    17/17

    COY OF RESENTATIONCOY OF RESENTATION

    Go toGo to www.psl.bc.cawww.psl.bc.ca

    Press on Press on FTPFTP from fromDownloadDownloadmenumenu

    Go to directory HydrocycloneGo to directory Hydrocyclone

    Download filesDownload files