33

Mo r dula - sandgal19.cremona.polimi.it · Mo r dula elements The collection of all semigroup rietiesva rms fo a lattice with the wingfollo naturally de ned op erations: r fo rietiesva

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Mo r dula - sandgal19.cremona.polimi.it · Mo r dula elements The collection of all semigroup rietiesva rms fo a lattice with the wingfollo naturally de ned op erations: r fo rietiesva

ON MODULAR ELEMENTS

OF THE LATTICE OF SEMIGROUP VARIETIES

Dmitry Skokov and Via heslav Shaprynskii

Ural Federal University

SandGAL 2019

Cremona, 12th June, 2019

Dmitry Skokov and Via heslav Shaprynskii On modular elements of the latti e of semigroup varieties

Page 2: Mo r dula - sandgal19.cremona.polimi.it · Mo r dula elements The collection of all semigroup rietiesva rms fo a lattice with the wingfollo naturally de ned op erations: r fo rietiesva

Modular elements

The olle tion of all semigroup varieties forms a latti e with the following

naturally de�ned operations: for varieties X and Y, their join X ∨ Y is the

variety generated by the set-theoreti al union of X and Y, while their meet

X ∧ Y oin ides with the set-theoreti al interse tion of X and Y.

Evans T., The latti e of semigroup varieties, Semigroup Forum, 2 (1971), 1�43.

Shevrin L. N. , Vernikov B. M., Volkov M. V., Latti es of semigroup varieties,

Russ. Math. Izv. VUZ, 53, No. 3 (2009), 1�28.

The stru ture of the latti e SEM is very ompli ated. This means, for instan e,

that this latti e ontains an anti-isomorphi opy of the partition latti e over a

ountably in�nite set, when e SEM does not satisfy any non-trivial latti e

identity.

Gr�atzer G. Latti e Theory: Foundation. Birkh�auser, Springer Basel AG. (2011)

B.M. Vernikov, Spe ial elements in latti es of semigroup varieties, A ta S i.

Math. (Szeged), 81:1-2 (2015), 79-109.

Dmitry Skokov and Via heslav Shaprynskii On modular elements of the latti e of semigroup varieties

Page 3: Mo r dula - sandgal19.cremona.polimi.it · Mo r dula elements The collection of all semigroup rietiesva rms fo a lattice with the wingfollo naturally de ned op erations: r fo rietiesva

Modular elements

The olle tion of all semigroup varieties forms a latti e with the following

naturally de�ned operations: for varieties X and Y, their join X ∨ Y is the

variety generated by the set-theoreti al union of X and Y, while their meet

X ∧ Y oin ides with the set-theoreti al interse tion of X and Y.

Evans T., The latti e of semigroup varieties, Semigroup Forum, 2 (1971), 1�43.

Shevrin L. N. , Vernikov B. M., Volkov M. V., Latti es of semigroup varieties,

Russ. Math. Izv. VUZ, 53, No. 3 (2009), 1�28.

The stru ture of the latti e SEM is very ompli ated. This means, for instan e,

that this latti e ontains an anti-isomorphi opy of the partition latti e over a

ountably in�nite set, when e SEM does not satisfy any non-trivial latti e

identity.

Gr�atzer G. Latti e Theory: Foundation. Birkh�auser, Springer Basel AG. (2011)

B.M. Vernikov, Spe ial elements in latti es of semigroup varieties, A ta S i.

Math. (Szeged), 81:1-2 (2015), 79-109.

Dmitry Skokov and Via heslav Shaprynskii On modular elements of the latti e of semigroup varieties

Page 4: Mo r dula - sandgal19.cremona.polimi.it · Mo r dula elements The collection of all semigroup rietiesva rms fo a lattice with the wingfollo naturally de ned op erations: r fo rietiesva

Modular elements

The olle tion of all semigroup varieties forms a latti e with the following

naturally de�ned operations: for varieties X and Y, their join X ∨ Y is the

variety generated by the set-theoreti al union of X and Y, while their meet

X ∧ Y oin ides with the set-theoreti al interse tion of X and Y.

Evans T., The latti e of semigroup varieties, Semigroup Forum, 2 (1971), 1�43.

Shevrin L. N. , Vernikov B. M., Volkov M. V., Latti es of semigroup varieties,

Russ. Math. Izv. VUZ, 53, No. 3 (2009), 1�28.

The stru ture of the latti e SEM is very ompli ated. This means, for instan e,

that this latti e ontains an anti-isomorphi opy of the partition latti e over a

ountably in�nite set, when e SEM does not satisfy any non-trivial latti e

identity.

Gr�atzer G. Latti e Theory: Foundation. Birkh�auser, Springer Basel AG. (2011)

B.M. Vernikov, Spe ial elements in latti es of semigroup varieties, A ta S i.

Math. (Szeged), 81:1-2 (2015), 79-109.

Dmitry Skokov and Via heslav Shaprynskii On modular elements of the latti e of semigroup varieties

Page 5: Mo r dula - sandgal19.cremona.polimi.it · Mo r dula elements The collection of all semigroup rietiesva rms fo a lattice with the wingfollo naturally de ned op erations: r fo rietiesva

Modular elements

The olle tion of all semigroup varieties forms a latti e with the following

naturally de�ned operations: for varieties X and Y, their join X ∨ Y is the

variety generated by the set-theoreti al union of X and Y, while their meet

X ∧ Y oin ides with the set-theoreti al interse tion of X and Y.

Evans T., The latti e of semigroup varieties, Semigroup Forum, 2 (1971), 1�43.

Shevrin L. N. , Vernikov B. M., Volkov M. V., Latti es of semigroup varieties,

Russ. Math. Izv. VUZ, 53, No. 3 (2009), 1�28.

The stru ture of the latti e SEM is very ompli ated. This means, for instan e,

that this latti e ontains an anti-isomorphi opy of the partition latti e over a

ountably in�nite set, when e SEM does not satisfy any non-trivial latti e

identity.

Gr�atzer G. Latti e Theory: Foundation. Birkh�auser, Springer Basel AG. (2011)

B.M. Vernikov, Spe ial elements in latti es of semigroup varieties, A ta S i.

Math. (Szeged), 81:1-2 (2015), 79-109.

Dmitry Skokov and Via heslav Shaprynskii On modular elements of the latti e of semigroup varieties

Page 6: Mo r dula - sandgal19.cremona.polimi.it · Mo r dula elements The collection of all semigroup rietiesva rms fo a lattice with the wingfollo naturally de ned op erations: r fo rietiesva

Modular elements

The olle tion of all semigroup varieties forms a latti e with the following

naturally de�ned operations: for varieties X and Y, their join X ∨ Y is the

variety generated by the set-theoreti al union of X and Y, while their meet

X ∧ Y oin ides with the set-theoreti al interse tion of X and Y.

Evans T., The latti e of semigroup varieties, Semigroup Forum, 2 (1971), 1�43.

Shevrin L. N. , Vernikov B. M., Volkov M. V., Latti es of semigroup varieties,

Russ. Math. Izv. VUZ, 53, No. 3 (2009), 1�28.

The stru ture of the latti e SEM is very ompli ated. This means, for instan e,

that this latti e ontains an anti-isomorphi opy of the partition latti e over a

ountably in�nite set, when e SEM does not satisfy any non-trivial latti e

identity.

Gr�atzer G. Latti e Theory: Foundation. Birkh�auser, Springer Basel AG. (2011)

B.M. Vernikov, Spe ial elements in latti es of semigroup varieties, A ta S i.

Math. (Szeged), 81:1-2 (2015), 79-109.

Dmitry Skokov and Via heslav Shaprynskii On modular elements of the latti e of semigroup varieties

Page 7: Mo r dula - sandgal19.cremona.polimi.it · Mo r dula elements The collection of all semigroup rietiesva rms fo a lattice with the wingfollo naturally de ned op erations: r fo rietiesva

Modular elements

The olle tion of all semigroup varieties forms a latti e with the following

naturally de�ned operations: for varieties X and Y, their join X ∨ Y is the

variety generated by the set-theoreti al union of X and Y, while their meet

X ∧ Y oin ides with the set-theoreti al interse tion of X and Y.

Evans T., The latti e of semigroup varieties, Semigroup Forum, 2 (1971), 1�43.

Shevrin L. N. , Vernikov B. M., Volkov M. V., Latti es of semigroup varieties,

Russ. Math. Izv. VUZ, 53, No. 3 (2009), 1�28.

The stru ture of the latti e SEM is very ompli ated. This means, for instan e,

that this latti e ontains an anti-isomorphi opy of the partition latti e over a

ountably in�nite set, when e SEM does not satisfy any non-trivial latti e

identity.

Gr�atzer G. Latti e Theory: Foundation. Birkh�auser, Springer Basel AG. (2011)

B.M. Vernikov, Spe ial elements in latti es of semigroup varieties, A ta S i.

Math. (Szeged), 81:1-2 (2015), 79-109.

Dmitry Skokov and Via heslav Shaprynskii On modular elements of the latti e of semigroup varieties

Page 8: Mo r dula - sandgal19.cremona.polimi.it · Mo r dula elements The collection of all semigroup rietiesva rms fo a lattice with the wingfollo naturally de ned op erations: r fo rietiesva

Modular elements

An element x of a latti e L is alled modular if

∀ y, z : y ≤ z → (x ∨ y) ∧ z = (x ∧ z) ∨ y.

s

s

s

s

s

x

y

z

This on�guration is impossible

Dmitry Skokov and Via heslav Shaprynskii On modular elements of the latti e of semigroup varieties

Page 9: Mo r dula - sandgal19.cremona.polimi.it · Mo r dula elements The collection of all semigroup rietiesva rms fo a lattice with the wingfollo naturally de ned op erations: r fo rietiesva

Modular elements in the latti e SEM

Re all that a semigroup variety is alled a nil-variety if it onsists of

nilsemigroups or, equivalently, satis�es an identity of the form x

n ≈ 0 for some

natural n.

Proposition 1 (J.Je�zek and R.N.M Kenzie - 1993; V.Yu.Shaprynski

i - 2012)

If V is a modular element of the latti e SEM then either V = SEM or

V = M ∨N where M is one of the varieties T or SL, while N is a nil-variety.

u ≈ v � substitutive if the words u and v depend on the same letters and v

may be obtained from u by renaming of letters

w · x ≈ x · w ≈ w where the letter x does not o ur in the word w � w ≈ 0 �

0-redu ed identity.

Proposition 2 (B.M.Vernikov - 2007)

A modular nil-variety of semigroups may be given by 0-redu ed and substitutive

identities only.

Proposition 3 (B.M.Vernikov and M.V.Volkov - 1988; J.Je�zek and

R.N.M Kenzie - 1993)

Every 0-redu ed semigroup variety is modular.

Dmitry Skokov and Via heslav Shaprynskii On modular elements of the latti e of semigroup varieties

Page 10: Mo r dula - sandgal19.cremona.polimi.it · Mo r dula elements The collection of all semigroup rietiesva rms fo a lattice with the wingfollo naturally de ned op erations: r fo rietiesva

Modular elements in the latti e SEM

Re all that a semigroup variety is alled a nil-variety if it onsists of

nilsemigroups or, equivalently, satis�es an identity of the form x

n ≈ 0 for some

natural n.

Proposition 1 (J.Je�zek and R.N.M Kenzie - 1993; V.Yu.Shaprynski

i - 2012)

If V is a modular element of the latti e SEM then either V = SEM or

V = M ∨N where M is one of the varieties T or SL, while N is a nil-variety.

u ≈ v � substitutive if the words u and v depend on the same letters and v

may be obtained from u by renaming of letters

w · x ≈ x · w ≈ w where the letter x does not o ur in the word w � w ≈ 0 �

0-redu ed identity.

Proposition 2 (B.M.Vernikov - 2007)

A modular nil-variety of semigroups may be given by 0-redu ed and substitutive

identities only.

Proposition 3 (B.M.Vernikov and M.V.Volkov - 1988; J.Je�zek and

R.N.M Kenzie - 1993)

Every 0-redu ed semigroup variety is modular.

Dmitry Skokov and Via heslav Shaprynskii On modular elements of the latti e of semigroup varieties

Page 11: Mo r dula - sandgal19.cremona.polimi.it · Mo r dula elements The collection of all semigroup rietiesva rms fo a lattice with the wingfollo naturally de ned op erations: r fo rietiesva

Modular elements in the latti e SEM

Re all that a semigroup variety is alled a nil-variety if it onsists of

nilsemigroups or, equivalently, satis�es an identity of the form x

n ≈ 0 for some

natural n.

Proposition 1 (J.Je�zek and R.N.M Kenzie - 1993; V.Yu.Shaprynski

i - 2012)

If V is a modular element of the latti e SEM then either V = SEM or

V = M ∨N where M is one of the varieties T or SL, while N is a nil-variety.

u ≈ v � substitutive if the words u and v depend on the same letters and v

may be obtained from u by renaming of letters

w · x ≈ x · w ≈ w where the letter x does not o ur in the word w � w ≈ 0 �

0-redu ed identity.

Proposition 2 (B.M.Vernikov - 2007)

A modular nil-variety of semigroups may be given by 0-redu ed and substitutive

identities only.

Proposition 3 (B.M.Vernikov and M.V.Volkov - 1988; J.Je�zek and

R.N.M Kenzie - 1993)

Every 0-redu ed semigroup variety is modular.

Dmitry Skokov and Via heslav Shaprynskii On modular elements of the latti e of semigroup varieties

Page 12: Mo r dula - sandgal19.cremona.polimi.it · Mo r dula elements The collection of all semigroup rietiesva rms fo a lattice with the wingfollo naturally de ned op erations: r fo rietiesva

Modular elements in the latti e SEM

Re all that a semigroup variety is alled a nil-variety if it onsists of

nilsemigroups or, equivalently, satis�es an identity of the form x

n ≈ 0 for some

natural n.

Proposition 1 (J.Je�zek and R.N.M Kenzie - 1993; V.Yu.Shaprynski

i - 2012)

If V is a modular element of the latti e SEM then either V = SEM or

V = M ∨N where M is one of the varieties T or SL, while N is a nil-variety.

u ≈ v � substitutive if the words u and v depend on the same letters and v

may be obtained from u by renaming of letters

w · x ≈ x · w ≈ w where the letter x does not o ur in the word w � w ≈ 0 �

0-redu ed identity.

Proposition 2 (B.M.Vernikov - 2007)

A modular nil-variety of semigroups may be given by 0-redu ed and substitutive

identities only.

Proposition 3 (B.M.Vernikov and M.V.Volkov - 1988; J.Je�zek and

R.N.M Kenzie - 1993)

Every 0-redu ed semigroup variety is modular.

Dmitry Skokov and Via heslav Shaprynskii On modular elements of the latti e of semigroup varieties

Page 13: Mo r dula - sandgal19.cremona.polimi.it · Mo r dula elements The collection of all semigroup rietiesva rms fo a lattice with the wingfollo naturally de ned op erations: r fo rietiesva

Modular elements in the latti e SEM

Re all that a semigroup variety is alled a nil-variety if it onsists of

nilsemigroups or, equivalently, satis�es an identity of the form x

n ≈ 0 for some

natural n.

Proposition 1 (J.Je�zek and R.N.M Kenzie - 1993; V.Yu.Shaprynski

i - 2012)

If V is a modular element of the latti e SEM then either V = SEM or

V = M ∨N where M is one of the varieties T or SL, while N is a nil-variety.

u ≈ v � substitutive if the words u and v depend on the same letters and v

may be obtained from u by renaming of letters

w · x ≈ x · w ≈ w where the letter x does not o ur in the word w � w ≈ 0 �

0-redu ed identity.

Proposition 2 (B.M.Vernikov - 2007)

A modular nil-variety of semigroups may be given by 0-redu ed and substitutive

identities only.

Proposition 3 (B.M.Vernikov and M.V.Volkov - 1988; J.Je�zek and

R.N.M Kenzie - 1993)

Every 0-redu ed semigroup variety is modular.

Dmitry Skokov and Via heslav Shaprynskii On modular elements of the latti e of semigroup varieties

Page 14: Mo r dula - sandgal19.cremona.polimi.it · Mo r dula elements The collection of all semigroup rietiesva rms fo a lattice with the wingfollo naturally de ned op erations: r fo rietiesva

A permutational identity of length 2

A permutational identity � an identity of the type

x

1

x

2

. . . xn

≈ x

1πx2π . . . xnπ

where π is a non-trivial permutation on the set {1, 2, . . . , n}.

Proposition 4 (B.M.Vernikov - 2007)

A ommutative semigroup variety V is a modular element of the latti e SEM if

and only if V = M ∨ N where M is one of the varieties T or SL, while N

satis�es the identities x

2

y = 0 and xy = yx.

Dmitry Skokov and Via heslav Shaprynskii On modular elements of the latti e of semigroup varieties

Page 15: Mo r dula - sandgal19.cremona.polimi.it · Mo r dula elements The collection of all semigroup rietiesva rms fo a lattice with the wingfollo naturally de ned op erations: r fo rietiesva

A permutational identity of length 3

A permutational identity � an identity of the type

x

1

x

2

. . . xn

≈ x

1πx2π . . . xnπ

where π is a non-trivial permutation on the set {1, 2, . . . , n}.

Proposition 5 (D.V.Skokov and B.M.Vernikov - 2019)

A semigroup variety V satisfying a permutational identity of length 3 is a

modular element in the latti e SEM if and only if V = M ∨N where M is one

of the varieties T or SL, while the variety N satis�es one of the following

identity systems:

a) xyz = zyx, x2y = 0;

b) xyz = yzx, x2y = 0;

) xyz = yxz, xyzt = xzty, xy2 = 0;

d) xyz = xzy, xyzt = yzxt, x2y = 0.

Dmitry Skokov and Via heslav Shaprynskii On modular elements of the latti e of semigroup varieties

Page 16: Mo r dula - sandgal19.cremona.polimi.it · Mo r dula elements The collection of all semigroup rietiesva rms fo a lattice with the wingfollo naturally de ned op erations: r fo rietiesva

Modular elements in the latti e SEM

StabV

(u) = {g ∈ S

n

| u ≈ g(u) in V}

Proposition 6

If a nil-variety of semigroup V is a modular element of the latti e SEM and V

does not satisfy an identity u ≈ 0 then StabV

(u) is a modular element of the

Sub(Sn

).

Dmitry Skokov and Via heslav Shaprynskii On modular elements of the latti e of semigroup varieties

Page 17: Mo r dula - sandgal19.cremona.polimi.it · Mo r dula elements The collection of all semigroup rietiesva rms fo a lattice with the wingfollo naturally de ned op erations: r fo rietiesva

Modular elements in the latti e SEM

StabV

(u) = {g ∈ S

n

| u ≈ g(u) in V}

Proposition 6

If a nil-variety of semigroup V is a modular element of the latti e SEM and V

does not satisfy an identity u ≈ 0 then StabV

(u) is a modular element of the

Sub(Sn

).

Dmitry Skokov and Via heslav Shaprynskii On modular elements of the latti e of semigroup varieties

Page 18: Mo r dula - sandgal19.cremona.polimi.it · Mo r dula elements The collection of all semigroup rietiesva rms fo a lattice with the wingfollo naturally de ned op erations: r fo rietiesva

The latti e Sub(S3

)

s s

s

s

s sT

12

T

13

T

23

A

3

S

3

T

Dmitry Skokov and Via heslav Shaprynskii On modular elements of the latti e of semigroup varieties

Page 19: Mo r dula - sandgal19.cremona.polimi.it · Mo r dula elements The collection of all semigroup rietiesva rms fo a lattice with the wingfollo naturally de ned op erations: r fo rietiesva

The latti e Sub(S4

)

s

s s s s s s s s s s s s s

s s s s s s s s s s s

s s s s

s

A

4

S

4

V

4

I(12)(34) I(13)(24) I(14)(23)

T

Dmitry Skokov and Via heslav Shaprynskii On modular elements of the latti e of semigroup varieties

Page 20: Mo r dula - sandgal19.cremona.polimi.it · Mo r dula elements The collection of all semigroup rietiesva rms fo a lattice with the wingfollo naturally de ned op erations: r fo rietiesva

Modular elements in the latti e SEM

u ≤ v i� u = aξ(v)b where a, b ∈ F

1

and ξ ∈ End(F)

Theorem

A nil-variety of semigroups V is a modular element of the latti e SEM if and

only if the following holds:

a) V may be given by 0-redu ed and substitutive identities only;

b) if V does not satisfy an identity u ≈ 0 then StabV

(u) is a modular element

of the Sub(Sn

);

) there are no un omparable words u and v su h that con(u) = con(v) and

StabV

(u), StabV

(v) ∈ {T12

,T23

,T13

};

StabV

(u) ∈ {T12

,T23

,T13

},StabV

(v) = A

3

;

StabV

(u), StabV

(v) ∈ {I(12)(34), I(13)(24), I(14)(23)};

StabV

(u) ∈ {I(12)(34), I(13)(24), I(14)(23)}, StabV(v) = A

4

.

Dmitry Skokov and Via heslav Shaprynskii On modular elements of the latti e of semigroup varieties

Page 21: Mo r dula - sandgal19.cremona.polimi.it · Mo r dula elements The collection of all semigroup rietiesva rms fo a lattice with the wingfollo naturally de ned op erations: r fo rietiesva

Modular elements in the latti e SEM

Case 1: n = | con(u)| ≥ 5

Sub ase 1.1: StabV

(u) = S

n

Sub ase 1.1.1: u = x

1

x

2

. . . xn

V

u,Sn

|= x

1

x

2

. . . xn

≈ g(x1

x

2

. . . xn

) (g ∈ S

n

),

x

2

1

x

2

. . . xn−1

≈ 0

Dmitry Skokov and Via heslav Shaprynskii On modular elements of the latti e of semigroup varieties

Page 22: Mo r dula - sandgal19.cremona.polimi.it · Mo r dula elements The collection of all semigroup rietiesva rms fo a lattice with the wingfollo naturally de ned op erations: r fo rietiesva

Modular elements in the latti e SEM

Case 1: n = | con(u)| ≥ 5

Sub ase 1.1: StabV

(u) = S

n

Sub ase 1.1.1: u = x

1

x

2

. . . xn

V

u,Sn

|= x

1

x

2

. . . xn

≈ g(x1

x

2

. . . xn

) (g ∈ S

n

),

x

2

1

x

2

. . . xn−1

≈ 0

Dmitry Skokov and Via heslav Shaprynskii On modular elements of the latti e of semigroup varieties

Page 23: Mo r dula - sandgal19.cremona.polimi.it · Mo r dula elements The collection of all semigroup rietiesva rms fo a lattice with the wingfollo naturally de ned op erations: r fo rietiesva

Modular elements in the latti e SEM

Case 1: n = | con(u)| ≥ 5

Sub ase 1.1: StabV

(u) = S

n

Sub ase 1.1.1: u = x

1

x

2

. . . xn

V

u,Sn

|= x

1

x

2

. . . xn

≈ g(x1

x

2

. . . xn

) (g ∈ S

n

),

x

2

1

x

2

. . . xn−1

≈ 0

Dmitry Skokov and Via heslav Shaprynskii On modular elements of the latti e of semigroup varieties

Page 24: Mo r dula - sandgal19.cremona.polimi.it · Mo r dula elements The collection of all semigroup rietiesva rms fo a lattice with the wingfollo naturally de ned op erations: r fo rietiesva

Modular elements in the latti e SEM

Case 1: n = | con(u)| ≥ 5

Sub ase 1.1: StabV

(u) = S

n

Sub ase 1.1.1: u = x

1

x

2

. . . xn

V

u,Sn

|= x

1

x

2

. . . xn

≈ g(x1

x

2

. . . xn

) (g ∈ S

n

),

x

2

1

x

2

. . . xn−1

≈ 0

Dmitry Skokov and Via heslav Shaprynskii On modular elements of the latti e of semigroup varieties

Page 25: Mo r dula - sandgal19.cremona.polimi.it · Mo r dula elements The collection of all semigroup rietiesva rms fo a lattice with the wingfollo naturally de ned op erations: r fo rietiesva

Modular elements in the latti e SEM

Case 1: n = | con(u)| ≥ 5

Sub ase 1.1: StabV

(u) = S

n

Sub ase 1.1.1: u = x

1

x

2

. . . xn

Sub ase 1.1.2: u = (x1

x

2

. . . xn

)k

V

u,Sn

|= (x1

x

2

. . . xn

)k ≈ g((x1

x

2

. . . xn

)k) (g ∈ S

n

),

(x1

x

2

. . . xn

)kxn+1 ≈ g((x

1

x

2

. . . xn

)kxn+1) (g ∈ S

n+1),

x

n+1(x1x2 . . . xn)k ≈ g(x

n+1(x1x2 . . . xn)k) (g ∈ S

n+1),

x

n+1(x1x2 . . . xn)k

x

n+2 ≈ g(xn+1(x1x2 . . . xn)

k

x

n+2) (g ∈ S

n+2),

(x1

x

2

. . . xn

)kxn+1xn+2 ≈ 0,

x

n+1xn+2(x1x2 . . . xn)k ≈ 0

Dmitry Skokov and Via heslav Shaprynskii On modular elements of the latti e of semigroup varieties

Page 26: Mo r dula - sandgal19.cremona.polimi.it · Mo r dula elements The collection of all semigroup rietiesva rms fo a lattice with the wingfollo naturally de ned op erations: r fo rietiesva

Modular elements in the latti e SEM

Case 1: n = | con(u)| ≥ 5

Sub ase 1.1: StabV

(u) = S

n

Sub ase 1.1.1: u = x

1

x

2

. . . xn

Sub ase 1.1.2: u = (x1

x

2

. . . xn

)k

V

u,Sn

|= (x1

x

2

. . . xn

)k ≈ g((x1

x

2

. . . xn

)k) (g ∈ S

n

),

(x1

x

2

. . . xn

)kxn+1 ≈ g((x

1

x

2

. . . xn

)kxn+1) (g ∈ S

n+1),

x

n+1(x1x2 . . . xn)k ≈ g(x

n+1(x1x2 . . . xn)k) (g ∈ S

n+1),

x

n+1(x1x2 . . . xn)k

x

n+2 ≈ g(xn+1(x1x2 . . . xn)

k

x

n+2) (g ∈ S

n+2),

(x1

x

2

. . . xn

)kxn+1xn+2 ≈ 0,

x

n+1xn+2(x1x2 . . . xn)k ≈ 0

Dmitry Skokov and Via heslav Shaprynskii On modular elements of the latti e of semigroup varieties

Page 27: Mo r dula - sandgal19.cremona.polimi.it · Mo r dula elements The collection of all semigroup rietiesva rms fo a lattice with the wingfollo naturally de ned op erations: r fo rietiesva

Modular elements in the latti e SEM

Case 1: n = | con(u)| ≥ 5

Sub ase 1.1: StabV

(u) = S

n

Sub ase 1.1.1: u = x

1

x

2

. . . xn

Sub ase 1.1.2: u = (x1

x

2

. . . xn

)k

Sub ase 1.1.3: u = w(x1

x

2

. . . xn−1

)xn

Sub ase 1.1.4: u = x

1

w(x2

. . . xn

)

Sub ase 1.1.5: u = x

1

w(x2

. . . xn−1

)xn

Sub ase 1.1.6: u = w(x1

x

2

. . . xn

)

Dmitry Skokov and Via heslav Shaprynskii On modular elements of the latti e of semigroup varieties

Page 28: Mo r dula - sandgal19.cremona.polimi.it · Mo r dula elements The collection of all semigroup rietiesva rms fo a lattice with the wingfollo naturally de ned op erations: r fo rietiesva

Modular elements in the latti e SEM

Case 1: n = | con(u)| ≥ 5

Sub ase 1.1: StabV

(u) = S

n

Sub ase 1.1.1: u = x

1

x

2

. . . xn

Sub ase 1.1.2: u = (x1

x

2

. . . xn

)k

Sub ase 1.1.3: u = w(x1

x

2

. . . xn−1

)xn

Sub ase 1.1.4: u = x

1

w(x2

. . . xn

)

Sub ase 1.1.5: u = x

1

w(x2

. . . xn−1

)xn

Sub ase 1.1.6: u = w(x1

x

2

. . . xn

)

Dmitry Skokov and Via heslav Shaprynskii On modular elements of the latti e of semigroup varieties

Page 29: Mo r dula - sandgal19.cremona.polimi.it · Mo r dula elements The collection of all semigroup rietiesva rms fo a lattice with the wingfollo naturally de ned op erations: r fo rietiesva

Modular elements in the latti e SEM

Case 1: n = | con(u)| ≥ 5

Sub ase 1.1: StabV

(u) = S

n

Sub ase 1.2: StabV

(u) = A

n

Sub ase 1.2.1: u = x

1

x

2

. . . xn

Sub ase 1.2.2: u = (x1

x

2

. . . xn

)k

Sub ase 1.2.3: u = w(x1

x

2

. . . xn−1

)xn

Sub ase 1.2.4: u = x

1

w(x2

. . . xn

)

Sub ase 1.2.5: u = x

1

w(x2

. . . xn−1

)xn

Sub ase 1.2.6: u = w(x1

x

2

. . . xn

)

Dmitry Skokov and Via heslav Shaprynskii On modular elements of the latti e of semigroup varieties

Page 30: Mo r dula - sandgal19.cremona.polimi.it · Mo r dula elements The collection of all semigroup rietiesva rms fo a lattice with the wingfollo naturally de ned op erations: r fo rietiesva

Modular elements in the latti e SEM

Case 1: n = | con(u)| ≥ 5

Sub ase 1.1: StabV

(u) = S

n

Sub ase 1.2: StabV

(u) = A

n

Sub ase 1.2.1: u = x

1

x

2

. . . xn

Sub ase 1.2.2: u = (x1

x

2

. . . xn

)k

Sub ase 1.2.3: u = w(x1

x

2

. . . xn−1

)xn

Sub ase 1.2.4: u = x

1

w(x2

. . . xn

)

Sub ase 1.2.5: u = x

1

w(x2

. . . xn−1

)xn

Sub ase 1.2.6: u = w(x1

x

2

. . . xn

)

Dmitry Skokov and Via heslav Shaprynskii On modular elements of the latti e of semigroup varieties

Page 31: Mo r dula - sandgal19.cremona.polimi.it · Mo r dula elements The collection of all semigroup rietiesva rms fo a lattice with the wingfollo naturally de ned op erations: r fo rietiesva

Modular elements in the latti e SEM

Case 1: n = | con(u)| ≥ 5

Sub ase 1.1: StabV

(u) = S

n

Sub ase 1.2: StabV

(u) = A

n

Case 2: n = | con(u)| = 4

Case 3: n = | con(u)| = 3

Case 4: n = | con(u)| = 2

Dmitry Skokov and Via heslav Shaprynskii On modular elements of the latti e of semigroup varieties

Page 32: Mo r dula - sandgal19.cremona.polimi.it · Mo r dula elements The collection of all semigroup rietiesva rms fo a lattice with the wingfollo naturally de ned op erations: r fo rietiesva

Modular elements in the latti e SEM

Case 1: n = | con(u)| ≥ 5

Sub ase 1.1: StabV

(u) = S

n

Sub ase 1.2: StabV

(u) = A

n

Case 2: n = | con(u)| = 4

Case 3: n = | con(u)| = 3

Case 4: n = | con(u)| = 2

Dmitry Skokov and Via heslav Shaprynskii On modular elements of the latti e of semigroup varieties

Page 33: Mo r dula - sandgal19.cremona.polimi.it · Mo r dula elements The collection of all semigroup rietiesva rms fo a lattice with the wingfollo naturally de ned op erations: r fo rietiesva

Modular elements in the latti e SEM

u ≤ v i� u = aξ(v)b where a, b ∈ F

1

and ξ ∈ End(F)

Theorem

A nil-variety of semigroups V is a modular element of the latti e SEM if and

only if the following holds:

a) V may be given by 0-redu ed and substitutive identities only;

b) if V does not satisfy an identity u ≈ 0 then StabV

(u) is a modular element

of the Sub(Sn

);

) there are no un omparable words u and v su h that con(u) = con(v) and

StabV

(u), StabV

(v) ∈ {T12

,T23

,T13

};

StabV

(u) ∈ {T12

,T23

,T13

},StabV

(v) = A

3

;

StabV

(u), StabV

(v) ∈ {I(12)(34), I(13)(24), I(14)(23)};

StabV

(u) ∈ {I(12)(34), I(13)(24), I(14)(23)}, StabV(v) = A

4

.

Dmitry Skokov and Via heslav Shaprynskii On modular elements of the latti e of semigroup varieties