33
MIT’s N+3 Project: The D8 Aircraft Concept and Its Boundary Layer Ingestion Benefit Technology Lead: Alejandra Uranga [email protected] Principal Investigator: Edward Greitzer [email protected] Chief Engineer: Mark Drela [email protected] MIT / Aurora / Pratt & Whitney 4 th International Workshop on Aviation and Climate Change University of Toronto Institute for Aerospace Studies May 28, 2014

MIT's N+3 Project: The D8 Aircraft Concept and Its Boundary Layer Ingestion Benefit …uranga.usc.edu/presentations/Uranga2014_UTIAS... · 2017. 7. 15. · MIT N+3 Project NASA N+3

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • MIT’s N+3 Project:

    The D8 Aircraft Concept

    and Its Boundary Layer Ingestion Benefit

    Technology Lead: Alejandra Uranga [email protected] Investigator: Edward Greitzer [email protected] Engineer: Mark Drela [email protected]

    MIT / Aurora / Pratt & Whitney

    4th International Workshop on Aviation and Climate ChangeUniversity of Toronto Institute for Aerospace Studies

    May 28, 2014

  • Summary

    I Closer integration of propulsion system and airframe provides newopportunities to reduce fuel burn and emissions of commercial aircraft

    I Boundary layer ingestion (BLI)

    I Novel configurations

    I System optimization (airframe, engine, operations)

    I Flow power and dissipation in power balance framework provide usefulmetrics for integrated configurations

    MIT N+3 Phase 2 1 / 32

  • True OptimumOptimization of the aircraft as an integrated system can reach higher levels offuel e�ciency than separate optimization of airframe and propulsion system

    . existing engines

    existing airplanes

    W/S , . . .

    t 4

    Λ ,

    FPR,BPR,T

    EngineParameters

    AirframeParameters

    true optimum

    fuel burnisocontours

    h cruise t/cM ,

    OperatingParameters

    .

    .

    . . .

    airframer design domain

    engine manufacturer design domain

    apparent (false) optimum

    MIT N+3 Phase 2 2 / 32

    M. Drela

  • MIT N+3 Project

    NASA N+3 Program, Fixed Wing Project

    I Develop advanced aircraft concepts and enabling technologiesfor step improvements in fuel e�ciency and emissionsof commercial aircraft entering service in 2025 – 2035

    Phase 1 (2008 – 2010)

    I MIT-led team developed the double-bubble D8 aircraft concept

    I Opportunity to impact the way the industry thinks about aircraft andpropulsion

    MIT N+3 Phase 2 3 / 32

  • The D8 Aircraft ConceptMIT N+3 D8.2

    MIT N+3 Phase 2 4 / 32

    I B737-800/A320 class

    I 180 PAX, 3,000 nm range

    I Double-bubble lifting fuselagewith pi-tail

    I Two aft, flush-mounted enginesingest ⇠ 40% of fuselage BL

    I Cruise Mach 0.72

    �37% fuel with current tech(configuration)

    �66% fuel with advanced tech(2025-2035)

    No “magic bullet”

    E. Greitzer et al. 2010, NASA CR 2010-216794

  • MIT N+3 Phase 2 5 / 32Photos NASA/George Homich

  • System Impact of BLI

    BLI benefitsI

    Aerodynamic (direct) benefitsI Reduced jet and wake dissipationI Reduced nacelle wetted area

    ISystem-level (secondary) benefits

    I Reduced engine weightI Reduced nacelle weightI Reduced vertical tail sizeI Compounding from reduced overall weight

    “Morphing” sequence: B737-800 7! D8I Features of D8 introduced one at a time

    I Sequence of conceptual designs, optimized at each step (TASOPT)

    MIT N+3 Phase 2 6 / 32

    E. Greitzer et al. 2010, NASA CR 2010-216794

    M. Drela 2011, AIAA 2011-3970

  • Morphing Sequence: B737-800 7! D8.2 7! D8.6

    0

    0.2

    0.4

    0.6

    0.8

    1

    88 %

    81 %

    82 %

    67 %

    66 %

    100 %

    op

    tim

    ize

    d7

    37

    -8

    00

    M=

    0.8

    ,C

    FM

    56

    en

    gin

    e

    0

    slow

    to

    M=

    0.7

    2

    1

    D8

    fu

    se

    la

    ge,

    pita

    il

    2

    re

    ar

    po

    dd

    ed

    en

    gin

    es

    3

    in

    te

    gra

    te

    de

    ng

    in

    es,

    BL

    I

    4

    op

    tim

    ize

    en

    gin

    eB

    PR

    ,F

    PR

    5

    20

    10

    en

    gin

    es

    8

    Fuel

    Burn

    63 %

    D8.2

    6 7 9 10

    20

    35

    en

    gin

    es

    20

    35

    ma

    te

    ria

    ls

    win

    gb

    ot.

    NL

    F

    sm

    art

    stru

    ct

    48 %

    38 %

    35 %

    34 %

    D8.6

    - 15 %

    MIT N+3 Phase 2 7 / 32

  • Phase 2: Nov. 2010 – Nov. 2014

    Research thrusts

    I Airframe-propulsion system integration (Task 1)

    I Define/design aft section of D8 (integration of engines into fuselage)

    I Quantify aerodynamic benefit of BLI

    I Propulsor performance with distortion from BLI

    I Phenomena, expected (and unexpected) behavior

    I High e�ciency, high pressure ratio small core engines (Task 2)

    I Limits to performance

    I Technology opportunities for performance enhancement

    I Innovative propulsion system architectures

    MIT N+3 Phase 2 8 / 32

  • NASA N+3 Phase 2

    How

    I Direct, back-to-back comparisonof non-BLI and BLI configurations(podded) (integrated)

    I Turbomachinery characterization

    Tools

    I Experiments at NASA Langley14⇥22 wind tunneland MIT tunnels

    I Computational studies

    I Close collaboration with NASA

    MIT N+3 Phase 2 9 / 32

  • Outline

    1 Introduction

    2 MethodologyPerformance Metric for BLIConfigurationsApproach

    3 Results

    4 Summary

    MIT N+3 Phase 2 10 / 32

  • Nomenclature

    FX , CX =FX

    q1SNet stream-wise force (“drag minus thrust”)

    PE , CPE =PE

    q1SV1Electrical power supplied to propulsors

    PK , CPK =PK

    q1SV1Mechanical flow power through propulsors

    V1 , q1 =1

    2⇢1V 21 Free-stream (tunnel) speed, dynamic pressure

    S Reference area (1686 in2, 1.088 m2 at 1:11 scale)

    D Propulsor fan diameter (5.67 in, 0.072m at 1:11 scale)

    MIT N+3 Phase 2 11 / 32

  • BLI Analysis

    I Ambiguous decomposition into drag and thrust(airframe) (propulsion system)

    I Use power balance method instead of force accounting

    I BLI reduces wasted KE in combined jet+wake (mixing losses)

    wake, or “draft”

    WastedKinetic Energy

    Zero NetMomentum

    combined wake and jet

    propulsor jet

    +

    +

    +

    +

    +

    +

    +

    -

    -

    -

    MIT N+3 Phase 2 12 / 32

    M. Drela 2009, AIAA Journal 47(7)

  • Power Balance method

    Consider mechanical energy sources and sinks: [ Power In ] = [ Dissipation ]

    ⇢⇢PS|{z}shaftpower

    + ⇢⇢PV|{z}p dVpower

    + PK|{z}mechanicalflow power

    = �jet

    + �wake

    + �fuse

    + �vortex

    + Ė|{z}power

    out of CV

    PK

    �wake

    �wake �vortex

    �vortex�fuse

    �fuse

    PK

    �jet

    �jet

    Non-BLI Configuration

    BLI Configuration

    MIT N+3 Phase 2 13 / 32

    M. Drela 2009, AIAA Journal 47(7)

  • Power Balance methodAerodynamic (direct) benefit of BLI configuration

    Reduced jet + wake dissipation, reduced nacelle wetted area

    P

    BLI

    K � �BLIjet| {z }Net propulsive power

    = PBLIK ⌘BLI

    p|{z}>⌘p

    = �BLIwake| {z }

    (1�fBLI)�wake

    + �BLIfuse

    + �vortex

    PK

    �wake

    �wake �vortex

    �vortex�fuse

    �fuse

    PK

    �jet

    �jet

    Non-BLI Configuration

    BLI Configuration

    MIT N+3 Phase 2 14 / 32

    M. Drela 2009, AIAA Journal 47(7)

  • BLI Benefit

    BLI benefit (aerodynamic)

    Savings in power required for given net stream-wise force

    with BLI engines relative to non-BLI engines

    Power metric

    Mechanical flow power transmitted to the flow by the propulsors

    PK =

    I(po � po1)V · n̂ dS

    BLI benefit ⌘ PKnon-BLI � PKBLIPK

    non-BLI

    ����at given FX

    MIT N+3 Phase 2 15 / 32

  • Obtaining PK

    Method 1: Integration of the flow over cross-section of the stream-tubeupstream and downstream of the propulsor: flow survey data

    PK =

    Z

    exit

    (po � po1)V · n̂ dS �Z

    inlet

    (po � po1)V · n̂ dS

    exit

    inlet inlet

    exit

    Method 2: From electrical power provided to the propulsor motor,which is related to mechanical flow power through fan and motor e�ciencies

    PK|{z}mechanicalflow power

    = ⌘f|{z}fan

    e�ciencyPK/PS

    ⇥ ⌘m|{z}motor

    e�ciencyPS/PE

    ⇥ PE|{z}electricalpower

    MIT N+3 Phase 2 16 / 32

  • Podded (non-BLI) Configuration

    MIT N+3 Phase 2 17 / 32

    Photo NASA/George Homich

    0 50 in10

  • Integrated (BLI) Configuration

    MIT N+3 Phase 2 18 / 32

    Photo NASA/George Homich

    0 50 in10

  • Back-to-Back Comparison

    MIT N+3 Phase 2 19 / 32

    Podded(non-BLI)

    Integrated(BLI)

    BLI benefit =CPK

    podded

    � CPKintegrated

    CPKpodded

    �����at given CX

  • Bases for ComparisonGiven a BLI propulsor with some jet velocity, mass flow, nozzle area,

    how do you choose an “equivalent” non-BLI propulsor as basis for comparison?

    1 1.2 1.4 1.6 1.8

    1

    1.02

    1.04

    1.06

    1.08

    1.1

    0.98

    0.8

    CPKCPK , BLI

    A

    A

    BLI propulsor

    Non−BLI propulsorswith same net force

    same Vjet

    same

    same fanm

    A

    same PK

    .

    smaller propulsor

    nozzle

    nozzle

    nozzle, BLI

    lowerpropulsorpower

    MIT N+3 Phase 2 20 / 32

    (=

  • Scaling Considerations for Low Speed Study

    No dynamic symilarity between full-size D8 and experiments:Reynolds number and Mach number are not matched

    ) How do we ensure BLI benefit results are representative of full-size conditions?

    I Airframe scaled geometrically by 1:11 from full-size, current-technology D8(fuselage, wing and tail planforms, fan diameter)

    I Wing profiles and sweep designed for low speed (low Mach, low Re)

    I Propulsion system scaling

    I Use same propulsion system for both BLI and non-BLII Data taken with varying nozzle area to bracket design power and

    propulsive e�ciency at cruise condition

    I Investigate o↵-design points

    MIT N+3 Phase 2 21 / 32

  • Experimental Approach

    I NASA Langley 14⇥22 Foot Subsonic Wind TunnelV1 = 70 mph, M1 = 0.09, Rec = 570,000

    I 1:11 scale, 13.4 ft span, powered D8 model

    I Podded and integrated configurations share a large part of hardwareI Common wings and front 80% of fuselageI Common propulsor units plug into interchangeable tails

    (fan stage, motor, center-body, housing, nozzle, electronics)I All model surfaces tripped

    I Data collectionI Forces and moments (internal NASA balance)I Electrical powerI Fan wheel speedI Rake system for total and static pressure surveys

    MIT N+3 Phase 2 22 / 32

  • Outline

    1 Introduction

    2 Methodology

    3 ResultsBLI BenefitFlow SurveysDissipation

    4 Summary

    MIT N+3 Phase 2 23 / 32

  • BLI BenefitCPK BLI < CPK non-BLI for any given CX

    or CX BLI > CX non-BLI for any given CPK

    0 0.02 0.04 0.06 0.08 0.1

    -0.03

    -0.02

    -0.01

    0

    0.01

    0.02

    0.03

    C

    PKMechanical flow power coe↵.

    integrated

    podded

    6% BLI benefit

    at simulated cruise

    C

    X

    Streamwise

    force coe↵.

    (“drag � thrust”)

    MIT N+3 Phase 2 24 / 32

  • Survey Propulsor Inlet and Outlet

    MIT N+3 Phase 2 25 / 32

    Rotating rake systemin wind tunnel experiments

    Total Pressure

    Inlet Rake

    Total Pressure

    Exit Rake

  • Integrated Propulsor Ingested Flow

    MIT N+3 Phase 2 26 / 32

    Experiments Left propulsor Right propulsor BL profile

    Total pressure coe�cient Cpt =pt � pt1

    q1

    z

    Dfan

    y/Dfan-0.6 -0.4 -0.2 0 0.2 0.4 0.6

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    -0.75 -0.5 -0.25 0

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    Left

    Right

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    -0.6 -0.4 -0.2 0 0.2 0.4 0.6

    y/Dfan

    z

    Dfan

    y/Dfan-0.6 -0.4 -0.2 0 0.2 0.4 0.6

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    -0.75 -0.5 -0.25 0

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    Left

    Right

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    -0.6 -0.4 -0.2 0 0.2 0.4 0.6

    y/Dfan

    ↵ = 2�

    11 kRPM(cruise)

    ↵ = 6�

    13 kRPM(climb)

    “Benign” stratified flow

  • Integrated Propulsor Exit Flow

    MIT N+3 Phase 2 27 / 32

    Experiments Left propulsor Right propulsor Jet profile

    Total pressure coe�cient Cpt =pt � pt1

    q1

    0 1 2

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    Left

    Right

    -0.6 -0.4 -0.2 0 0.2 0.4 0.6-0.6 -0.4 -0.2 0 0.2 0.4 0.6

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    z

    Dfan

    y/Dfan y/Dfan

    -0.4

    0

    0.4

    0.8

    1.2

    1.6

    0 1 2

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    Left

    Right

    -0.6 -0.4 -0.2 0 0.2 0.4 0.6

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    z

    Dfan

    y/Dfan

    -0.4

    0

    0.4

    0.8

    1.2

    1.6

    -0.6 -0.4 -0.2 0 0.2 0.4 0.6

    y/Dfan

    ↵ = 2�

    11 kRPM(cruise)

    ↵ = 6�

    13.5 kRPM(climb)

    Clean exit flow

  • Dissipation as a Measure of Configuration Performance

    Cut X=130

    0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

    Integrated

    Podded

    Unpowered

    wing

    fuselage

    nacelle

    jet

    MIT N+3 Phase 2 28 / 32

  • Dissipation as a Measure of Configuration Performance

    Both podded and integrated configurations show separation at thejunctures of vertical tails and horizontal tail: ⇠ 1.2% of total dissipation

    MIT N+3 Phase 2 29 / 32

    Dissipation computed

    on wake plane down-

    stream of separation

  • Outline

    1 Introduction

    2 Methodology

    3 Results

    4 Summary

    MIT N+3 Phase 2 30 / 32

  • Conclusion

    I Aero BLI benefit: 6%± ? saving in power (fuel) with BLI at cruise

    I Estimated total, system-level fuel burn savings of 15% enabled by BLI

    I D8 with estimated 37% fuel saving over conventional tube-and-wingcan be built “today”

    Data supports feasibility of using BLI to improve fuel e�ciencyand viability of D8 concept

    An exciting project aimed at

    changing the way industry thinks about aircraft and propulsion,

    and the look of civil transport aircraft

    MIT N+3 Phase 2 31 / 32

  • Acknowledgments

    NASA Fundamental Aeronautics Program, Fixed Wing ProjectCooperative Agreement NNX11AB35A

    MIT N+3 team

    Partners at Aurora Flight Sciences, Pratt & Whitney, NASA

    Harold (Guppy) Youngren of Aerocraft Inc.

    Sta↵ at NASA Langley 14⇥22 Foot Subsonic Wind Tunnel

    NASA Fixed Wing Project management

    MIT N+3 Phase 2 32 / 32

    1IntroductionMIT N+3 ProjectSystem Impact of BLINASA N+3 Phase 2

    2MethodologyPerformance Metric for BLIConfigurationsApproach

    3ResultsBLI BenefitFlow SurveysDissipation

    4Summary