3
7/21/2019 MIT14_381F13_ps1_2007 http://slidepdf.com/reader/full/mit14381f13ps12007 1/3 14.381: Statistics Problem Set 1 1. Let  X  and  Y  be random variables with finite variances. Show that min  ( − g()) 2 = E  ( −  ( | )) 2 , g(·) where  g(·) ranges over all functions. 2. Let  X  have Poisson distribution, with parameter  θ e θ θ  j  ∼ Poisson(θ) ⇐⇒ { = j } =  j  = 0, 1,...  j ! Let  Y  ∼ Poisson(λ) be independent on  X . (a) Show that X  +  Y  ∼ Poisson(λ + θ ). (b) Show that X | +  Y  is binomial with success probability  θ . θ+λ Note : Variable ξ  has binomial distribution with success probability p  and parameter  n  if n! {ξ  = j } =  p  j (1  p) n j ;  j  = 0, 1,...,n  j !(n j )!  − 3. Show that if a sequence of random variables  ξ i  converges in distribution to a  p constant  c, then  ξ i  → c. 4. Let  { i }  be independent Bernoulli (  p). Then  EX i  =  p,  V ar ( i ) =  p(1  p). Let  Y n  =  1  n i=1  X i . n (a) Show that  √ n(n  p) (0,p(1  p)). (b) Show that for  p  =  1 the estimated variance  Y n (1 n ) has the following 2 limit behavior √ n(n (1 n )  p(1  p)) (0, (1 2  p) 2  p(1  p)). 1

MIT14_381F13_ps1_2007

Embed Size (px)

Citation preview

Page 1: MIT14_381F13_ps1_2007

7/21/2019 MIT14_381F13_ps1_2007

http://slidepdf.com/reader/full/mit14381f13ps12007 1/3

14.381: Statistics

Problem Set 1

1. Let  X  and  Y   be random variables with finite variances. Show that

min E  (Y  − g(X ))2 = E  (Y  − E  (Y  | X ))2,

g(·)

where  g(·) ranges over all functions.

2. Let  X  have Poisson distribution, with parameter  θ

e−θθ j

X  ∼ Poisson(θ) ⇐⇒ P {X  = j} =   j  = 0, 1,... j!

Let  Y  ∼Poisson(λ) be independent on  X .

(a) Show that X  +  Y  ∼Poisson(λ + θ).

(b) Show that X |X  +  Y  is binomial with success probability   θ .θ+λ

Note : Variable ξ  has binomial distribution with success probability p  andparameter  n  if 

n!P {ξ  = j} =   p j(1   p)n− j;   j  = 0, 1, . . . , n

 j!(n j)!  −−

3. Show that if a sequence of random variables   ξ i   converges in distribution to a p

constant  c, then  ξ i → c.

4. Let

 {X i

}  be independent Bernoulli ( p). Then  EX i   =  p,   V ar(X  i) =  p(1

− p).

Let  Y n  =   1   ni=1 X i.

n

(a) Show that √ 

n(Y n − p) ⇒ N (0, p(1 − p)).

(b) Show that for  p  =   1 the estimated variance  Y n(1 − Y n) has the following2

limit behavior

√ n(Y n(1 − Y n) − p(1 − p)) ⇒ N (0, (1 − 2 p)2 p(1 − p)).

1

Page 2: MIT14_381F13_ps1_2007

7/21/2019 MIT14_381F13_ps1_2007

http://slidepdf.com/reader/full/mit14381f13ps12007 2/3

(c) Show that for  p =   12

n

  1

Y n(1 − Y n) − 4

  1⇒ −   χ2

4   1

Note :   χ21   is a chi-square distribution with 1 degree of freedom. Let

ξ 1, . . . , ξ   p  be i.i.d.   N (0, 1), then  χ2 p =

  p

i=1 ξ 2i .

Curious fact : Note that Y n(1−Y n) ≤   1 , that is, we always underestimate4

the variance for  p =   1 .2

√ (d) Prove that if (i)   n (ξ nσ

  − µ) ⇒  N (0, 1) (ii)  g  is twice continuously differ-

entiable:   g(µ) = 0,  g(µ) = 0, then

µn(g(ξ n)− g(µ   ⇒ σ2

g( )))   χ2

2   1.

Note . You may assume that  g  has more derivatives, if it simplifies your life.

5. Let  X 1, X 2,...,X n ∼ i.i.d. N (µ, σ2). Let us define

n n1

X  =   i, s2   1X    = (X i   X )2;

n

  X  n

i=1   i=1

−− 1

andX  j   1

 j  =  −   k kµ   1

Y    ; Y  k  = =   −   )σ

Y i; s2 2

k   (Y Y .k k

i=1  −

  i k

1i=1

(n(a) Show that

  −1)s2X

2   = (n − 1)s2n.

σ

(b) Check that

(k − 1)s2k  = (   − 2)s2   k

k

  2

1 +  − 1

k Y Y −   k −   k−1k

  .

(c) Prove that if (k − 2)s2k   1 ∼ χ2−   k−2  then (k − 1)s2k ∼ χ2k−1.

(d) Check that s2 22 ∼ χ1.

(e) Conclude that   n−1σ2   s2

X  ∼ χ2n−1.

Hint : You can use the fact proved on the lecture that random variables  s2k  and

Y  k  are independent.

2

Page 3: MIT14_381F13_ps1_2007

7/21/2019 MIT14_381F13_ps1_2007

http://slidepdf.com/reader/full/mit14381f13ps12007 3/3

MIT OpenCourseWarehttp://ocw.mit.edu

14.381 Statistical Method in Economics

Fall 

2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.