8
The Space Congress® Proceedings 1966 (3rd) The Challenge of Space Mar 7th, 8:00 AM Missile Explosion Simulation Missile Explosion Simulation Robert O. Harper Apollo Support Department, Missile and Space Division, General Electric Company Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Scholarly Commons Citation Harper, Robert O., "Missile Explosion Simulation" (1966). The Space Congress® Proceedings. 3. https://commons.erau.edu/space-congress-proceedings/proceedings-1966-3rd/session-11/3 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected].

Missile Explosion Simulation

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Missile Explosion Simulation

The Space Congress® Proceedings 1966 (3rd) The Challenge of Space

Mar 7th, 8:00 AM

Missile Explosion Simulation Missile Explosion Simulation

Robert O. Harper Apollo Support Department, Missile and Space Division, General Electric Company

Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings

Scholarly Commons Citation Scholarly Commons Citation Harper, Robert O., "Missile Explosion Simulation" (1966). The Space Congress® Proceedings. 3. https://commons.erau.edu/space-congress-proceedings/proceedings-1966-3rd/session-11/3

This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected].

Page 2: Missile Explosion Simulation

MISSILE EXPLOSION SIMULATION

By

Robert O. Harper Apollo Support Department Missile and Space Division General Electric Company Daytona Beach, Florida

SUMMARY

Missile propellant systems are not designed to ex­ plode. However, prototype missiles may require a range destruct command for safety reasons or even ex­ plode due to some malfunction. Digital computer sim­ ulations of missile explosions were run to provide an estimate of physical parameters which an Explosion Measurement System must measure. The computer simulations were run using the Naval Ordnance Labor­ atory "WUNDY" hydrodynamic computer code (pro­ gram) reported on herein as well as with a two dimen­ sional code. After an explosion the remotely measured data are used to determine inputs to the hydrodynamic computer code. Iterative methods are then used to fit data points currently capable of measurement and to provide values for other quantities not directly meas­ urable. Results include shock wave position as well as static pressure, dynamic pressure, particle veloc­ ity, temperature, density, and energy as functions of both elapsed time and distance from the center of the explosion.

The initial calculations were made to provide good estimates of the magnitude and rate of change of physi­ cal parameters such as temperature, pressure, den­ sity, velocity, etc., which were to be remotely meas­ ured. During the course of the study it was determined that such a digital computer simulation is also a valu­ able tool for post incident analysis.

DESCRIPTION OF SIMULATION

The physical system is described on the computer in terms of total energy content, density, size, the equations of state, etc. The Lagrangean differential equations of compressible flow are set up in finite dif­ ference form and solved in sequential time steps. »^»^ The size of each time step is internally controlled in order to provide both accurate results and economical computer running time.

Data resulting from the computer calculations may be processed through another computer program, "WUNPLT, " and automatically plotted directly from the computer output magnetic tapes. An individual looks at printed output from the basic hydrodynamic computer run, the three available forms of which are illustrated in Figures la, Ib, and Ic, and selects those curves which should be plotted. Each selected curve then requires about one minute of IBM 7044 com­ puter time and one minute of digital plotter time to produce. A typical computer run of 5000 cycles takes 30 minutes of computer time. On magnetic output tapes there are then available plots of particle velocity, density, total static pressure, dynamic pressure, and temperature as functions of distance from the center of detonation for some 250 different points in time. There are also plots available of density, particle ve­ locity, total static pressure, overpressure, and dynamic

pressure as functions of time for eight different loca­ tions as well as a plot of shock wave location versus time.

Sample curves of physical parameters versus dis­ tance from the center of detonation at selected points in time are presented in Figures 2 through 5. A sample curve of total pressure versus time for a given location is shown in Figure 6 as automatically plotted.

Provision has been made inNOL "WUNDY" to insert variable geometry rather than the flat plane, infinite cylinder, or spherical geometry previously available. This will allow computation of two-dimensional problems for analysis of a missile explosion when required by inci­ dent geometry. Normally, a simple spherical geometry will provide sufficient information about an incident. How­ ever, the criticality or nature of an incident may make a two-dimensional solution desirable. In those two- dimensional cases, the expansion ratio along a number of stream lines would be obtained photographically and en­ tered as additional statements in the geometry subroutine of the computer program. The program will accept an ad­ ditional 96 different expansion equations, but seven stream lines should be sufficient and would give about 20 data points around a contour plot. Computer time for each different stream line would be one-half hour of IBM 7044 computational time or atotalof 3-1/2 hours for the seven-line case. The equations describing expansion along each stream line are functions of the specific inci­ dent. They may be analytical expressions or numerical tables obtained from photographic records. The network for calculating the physical representation of an explo­ sion including variable geometry is illustrated in Figure 7.

There is a new equation of state (Landau- Stanyukovich) for hydrogenous materials such as TNT included in the program along with the real air and y law gas equations of state previously available. Pro­ visions for insertion of nine other basic equations of state are in the program. When sufficient experimen­ tal data on rocket propellants is available to describe their equations of state accurately, these equations should be utilized. Presently available equations of state for most propellant combinations are predictions and less useful for calculations than the experimentally verified TNT equation currently include din the program.

Figure 8 shows the variation of debris radius and shock radius with percent yield and time for the Titan mC detonation. Where the shock wave cannot be observed and measured directly, useful data may be obtained from measurement of the debris radius out until the shock wave velocity approaches mach 3 (mach 2.5 for 25-percent yield, mach 2.95 for 50-percent yield, and mach 3.2 for 78.5-percent yield). Shortly after the time corresponding to this velocity, the debris reaches its maximum expansion and begins to contract, losing its direct relationship with the shock wave. For veloci­ ties of shock wave above mach 3, the variation due to per­ cent yield may be largely eliminated by hand calculations

540

Page 3: Missile Explosion Simulation

prior to selecting input conditions for a computer run to duplicate an incident. Table I shows the re­ sults of three such preliminary calculations using three measured debris radii and corresponding times from a 25-percent yield detonation of a Titan ETC. The first assumed percent yield in these calculations rapidly converges on the true value, oscillating slightly about it in the process. The calculation procedure is as follows:

Assume that a Titan me detonated and that the radius of explosion products (Rep) was measured as 30.20 meters at 17,329 microseconds. We first as­ sume any percent yield, say 78.5percent (7.245 x 1010 ergs/gm) from which we get Rs/Rep = 1.094555 at the measured Rep and, in turn, calculate the radius of shock (Rs) as 39.6229 meters. From the measured time of 17,329 microseconds and calculated Rs = 39.6229,

we obtain an energy release of 1.172784 x 1019 ergs (^280 tons TNT) or 24 percent (2.2128 xlO10 ergs/gm).

Next, using the 24 percent calculated as our assumed percent yield and the measured Rep of 30. 20 meters, we get Rs/Rep = 1.128242 and, in turn, calculate Rs =40.8424 meters. From the measured time of 17,329 microseconds and calculated R =40.8424 meters, we obtain an en­ ergy release of 1.2265366 x 10 19 ergs (*293 tons TNT) or 25.1 percent (2.31422 x 1010 ergs/gm).

The 25.1-percent yield obtained is used as the as­ sumed percent yield for the next iteration and the proc­ ess is continued until a satisfactory fit to this and other measured data is obtained. In this way, much com­ puter time will be saved and only those computer itera­ tions absolutely needed will be calculated for the com­ plete detonation.

PROBLEM MOt. WUNDY 303 TITAN 3 C 50 D C 584 TOMSCYCLF TIME(SFC) NEXT TJME^TFP TOTAL FNFR1Y JPT1905 1.75142E-09 7.3312PE-05 fl.02681E 29 36

18 SFP 64

CM CM/SEC C M GM/CG ERG/GM DYMF/ROCM HYNE/SOCM PST P?I KPLVTM SFP0 01 52 1 3 14 9 5 2ft 37 48 49 4

10411 412 413 4 4 45 4 ft 47 48 49 4

20 421 429 423 424 425 42ft 427 42A 429 430 431 439 437 434 435 43ft 437 43 53 5

4 54 5 4 64 7

072«33E 02 715196E 03 7 74164E 03 134*5ftE 03 197391E 03 1. "3291E 03 915221E 03 130549E 03 179ft62E 03 1.

42296E 07 j51943E 03 15243*E 03 153ft48E 0^ 1 54«69E 03 156102E 03 1 S74Q9E 03 158769E 03 1ft012«E 03 1ft!471.E 03 1ft2«67£ 03 1ft475lE 03 165R61E 03 jft7730£ 05 1ft8P59£ 03 170 4 71 E 03 172087E 03 173ft8<?E 03 17574«E 03 17 7 0 8 5 fc- [)3 178794E 03 1« 0 4 8 1 E 03 1«2274E 03 1P4075E 03 1R5795E 03 1* 7 ft 1 4 E 0 * 190094E 03 096461E 03 ?060 o5E 03 31 6 0 0 0 E 0 3 3

26000E 03 0360QOE 03 0 36POnE 03 036000E 03 0

609E 04 9245E 04 8 097E 05 1482E 05 2

959E 05 3827E 05 3432E 05 4479E 05 4

471E 05 4465E 05 4457E 05 4450E 05 4 454E 05 4460E 05 4

444E 05 4435E 05 442*E 05 442*E 05 4437E 05 4432E 05 44Q5E 05 4407E 0* 4449E 05 44QftE 05 43 8 0 E 05 4415E 05 4424E 05 4781E 05 4399E 05 4439E 05 4395E 05 4373F 05 4429E 05 4723E 04 4109E 04 4650E 09 597PE-01 5

5*

ft

"64E 09 9624F 02 9 447F 03 8044F 03 8

303E 03 7« 9 7 F 03 9929F 03 335 IE 03 7

4 1 0 F 03 146*E 07 251«F 03 2530F 03 3 543 E 03 3555E 07 3 *6*F 07 3^81E 03 3594E 03 3ft 0 ft E 03 4>-29E 03 4ft 3 ft E 03 4ft51F 03 4ft6*F 03 4ft81F 03 4ft97F 03 4717E 03 4729F 03 574SE 03 5769F Q3 5779E 03 57 9 * F 03 5P14E 07 5«39E 03 5H4QE 07 ft"67F 03 ftU89F 07 4(>37E 03 1019F 03 1110E 03 1

910E 03 1310F 03 1 86 OE 03 186 np 03 1

927E-04 3056F-04 2 778E-04 9402E-04 2

292F-04 9718E-04 9566E-03 ft966E-03 7

968E-Q3 4430F-03 7916E-03 9109F-03 ">

4 9 8 E - 0 3 9

ft3ftF-03 9S49F-Q3 1154F-03 19 4 8 p - 0 3 119ftF-03761E-03717E-03789E-03722F-03954E-03''27E-039 7 5 F - 0 39 5 3 E - 0 3c'ftlF-03fl 6 5 F - 0 7734E-03qp*E-03435E-Q3^lOF-077 8 2 E - 0 7 19 0 ft F • D 3 4982F-03 992ftF-03 ^

925F-0* 9P ? S F "°7 9

225E-03 9

OOftE 00 1987E 09 1 94*E 00 189 e'E 09 9

73ftF 09 7950F 09 971 OE 09 1957E 0° 1

79«F in 9401E in 9ft27E in 949«E in 97 8 1 E in 9 957E 1.0 9

OOOE 1 n 9915E in 9«41F in 977^E in 9ft90E in 9ft49E in 9ftlOE 1 0 9^67E 1 0 9^n^E in 948nE in 94ft*5E in 94 3 7 E 10 978«E in 27 8 4 E 10 2770E 10 273*E 10 2317E m 9721 F in 3977 E 10 91 n^E 10 915nE 0" 1117F oo 106«E 0° 1

06«F 09 1068E 09 1 oftRE 09 1Pft«E 09 1

109F Oft 0081F Oft 0034F Qft 0 729E 05 0

970F 05 0«45F Oft 1399F 07 5964F 07 o

'39F 07 1737E 07 0737F 07 9797F 07 1 479 07 0490 07 0

?78 07 7437 07 7^59 07 9537 07 7413 07 0455 07 0ft39 07 7590 07 0481F 07 057ftE 07 ftft 9 n F 0 7 7A 5 EiE 07 0570F 07 0797F 07 Q«51F 07 0707F 07 0777F 07 .«019F 07 ^85«F 07 0341F 07 9371 F 07 1ft 3 3 F 0 ft 501 4F Oft 1

017F 06 7017F 06 0 P13F Oft 001 7F 06 0

1.608 01 41.141 00 4;i«6F 0 2137F-07 1 40ll5ft7 01 2ll5o 01 4ll B;7F n 2l3«F-07 1 4Q

1.411 01 l'.036 02 41074F 0 2.39E-07 1 4Q1.206 01 ll646 02 31978F o 2>2F-07 i 4f) l'.t^7 01 2'.2«7 02 31812F 0 2.67E-Q7 1 4Q75F 06 4.196 01 2>52 02 4il1lF 0 liSPF-07 1 4fl51F 06 2l07Q 02 6l9*6 02 8i299F 0 5.49F-Q4 1 382.848 02 llll7 03 9^417F 0 7i9ftF-Q4 1 37

22F 03 3.237F 02 3ll06P 02 3l95lp o 1.44F-04 1 2667F 02 3.300F 02 3l799P 02 3l3 K OP 0 5^28F-04 1 9823F 03 3.3H4F 02 4^512F 02 2[7B7p n 7^60F-05 1 3031F 03 3.477F 02 4l7ft2F 02 ?'.f>*6f 07 7.87f--05 1 31

3.695F 02 5'.3«5F 02 2.4S9F 0.7 8.37F-05 1 32

52F 03 3.449F 02 5".578F n2 2.278F 03 9.49f--05 1 3322F 03 3.574F 02 5'.788F 02 2l2o5F 03 9l62f--05 1 3331F 03 3.701F 02 6ll75P 02 2.140F n.7 .65F-Q5 1 397F 00 3.679F 02 6l2«lF 02 2io° F 03 Io4{--04 i' 3

3.500F 02 ft '. 2 4 3 F 02 2.00 F 034F 02 3.5ft1P 02 ft'.509F 02 1.9^ F nft3F 04 3.817F 02 6^884P 02 K94 F n

3.7ft9F 02 6l8ft4F 02 K80 F 03.509F 02 6l950F 02 1.83 F 0

2 Q F 04 31776F 02 7'.?P8F 02 1^80 F 058F 04 3.909F 02 7l3ftOF 02 li700F 0

3.851P 02 7>75P 02 li753F n3.797P 02 7^ft76F 02 1^7o4F 0

93P 04 3.950F 02 7'.935P 02 1^700F 04.174F 02 8'.178P 02 1^60.7P 03.996P 02 8'.29lF 09 lift45F 0

04F 04 4.092F 02 8l587F 02 1.695F 011F 04 4.3ft8F 02 8l94l£ 09 llft99F o

4ll45F 02 8'.983F 02 1^578F 034P 06 4.191F 02 5ll78F 02 li390F 006.F 07 1.989F 02 6l841F 01 5^710F 047F 05 2.3^8F 01 2 '. 0 ft 9 F oo 2l9*OF 071F 02 1.471F 01 51919P-04 2l8"2F 0

52«=-03 1.470F 01 4l749F-m 2i8«2P o1.470F 01 n; 918P2F 0

.09E--Q4 1 7Il4f-04 1 3.09F-04 1 3ll8F-04 1 3'.17E--04 1 3113F-04 1 3

l.lftF-04 1 7l.l«f--04 1 3l..l«F-04 1 3li2nf--04 1 31.33h-04 1 3ll2«F-04 1 31.31F-04 1 31.32F-04 1 31.25F-04 1 37'.33F-05 i 31M1F-04 1 36.1 e; F-04 i' 4Q1.89F-07 1 40

ll9ftF-07 1 4nl'. 9ftF-0'< 1 40

1.470F 01 ol 218P9F 09 ll9ftF-09 1 40

REGION123

MATERIAL 2 2 2 200

MZONFS GAMMA9 n.!4000F 01

30 0,1400nE 01 n.I4oonp 01

0.76338'= 190.50647P 190.11169F 07

0.9ft330F 190 .10*01F 20n.«9941F 23

TOT EWE 0.102ft7F 20 0.16766F 90 0.89241F 23

MAXIMUM n TS IN 70NE 77 AT Y= 4.9080E 03

Figure la. Sample "NOL WUNDY" Data Printout

541

Page 4: Missile Explosion Simulation

SHOCK FRONT PATA

CYCLE 1755 1760 1765 1770 1 775 1780 1785 1790 1795 1800 1805 1810 1815 1820 18?5 1830 1835 1840 1845 1850 1855 I860 1865 1870 1875 18«0

1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 19«0 1985 1990 1995 2000

3? 3?

3434353535363637373729293031 31 3? 333334353536373738 3«3031 31 3? 33333435363637 3« 3* 39 31 3?

J«Ar

1 1 2 1 1 3 1 1 1 ? 1 1 ? 1 3 1 1 3 1 1 3 1 1 1 1 3 ? 1 1 2 1 1 3 1 1 3 1 1 1 3

0 . 01991? Oi010120 0.01031? Oi0105l4 0.01071? 0'.010905 0.011107 0.01130?

0.011691 0,011884 Oi01207?

Oi013?3ft 0. 01 3580 0.013917 0.014267

Oi01497? 0. 015334 0. 015693

Oi 01 6793 Oi017l49 O'.0175l4 0.017870 Oi018?31 ' 0.018597 ' Oi018979 ' 0.019402 ! Oi019P39 ( 0.020261 • Oi020687 • Oi02113* ( OiO?158? • 0.0?2011 * OiO?2476 * 0.022939 « Oi02337* 5 0.023846 5 0.024324 • OiO?4767 t Oi025?5" < Oi025756 i

3421.901 3459.126

3546.466 3581 .P24 3632.193 3667. 16" 371*. 183

5*33.020

105.543 143.034 23ft. 189

463. FU«

747.249P16.621 P49.35?

>004.48ft >052.43fl>123.Q04 >160.757 >237.25ft >329.37ft >4Q4.537 >44?.76"1 >53ft,324 >610,447 449^139

» 74 4. 07* >F"lfl.054P56.no«>951.90« 027.353 104.02? 141 ,906

*QMAV

3453.1?1

3575.371

3*6?. 76« 3?17.450 3750. ?0«

413*. 35?19n.35fi 261 .705

531 .169

4777,* 5 9

4907.97"

5034.763 5063.93751 55,, 6 ft? 5?30.*845»< not53*1 .55t 5437.36)1 5494.3745561. OOn5ft 44,0 01 5713,757 5771.904 5651 ,559 5926,61* 5985,034 6 0 6ft. 3 3 T 6i37i76n 620?. 183

MAY

69?.

673'. 39*.640 .

545*

546,

4»ll

455 ,

41T,

394,

375!375 ,

3*4,

341 \3% 4.

317!

PO

409 P51

4«633?

?&?

4Q9

98*45:1! 305

93*

934763

720.704 689.88«

667.276 395.39?

629.080

589.17?

578.983 556.258 543.604

498,976

452.887

44 6, 13 n

411,707 41?. 76?396,59? 390,916367,703383,23? 315,687

370,190 370,777 358,714 359,909 353, 82fl 339,02ft

336,864 33?. 77?

677, AH

65«.496 383.71?

59?.?91

586. P2?

574.-S96

549.91?

531 .635

470.771

440 . 5Q«S

42?. 129

391.351 40'.?61 379.71? 374.5 76 37*.?31 360.754 36ft . 6 0 1

350. ?39 346.1 2« 341 .686 340.155 327. ?37

307.32? 30?.5Q6

675.191

65?. 570380 .695

A14.3S?

597. 5?4

574.475

564 ,?86

5?P.9Q7

484. ?70

438.190

431 .433

397.009 39*. 065 381 .895 376. ?10 373.006 *6«.53* 360.990

356.080 344 . 017 345.?!? 339.123

32?. 167 318.075

1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1

1

1 1 1 1 1 1 1 \

11 11 1 1 1 1

697 697 697 697

697 697 697 697 697 697 697 697 697 697 697 697 697 697 697 697 697 697 697 697

697

697

697 697 697 697 697 697 697

Sl'OPE 0.oi oi oi

•1 il6fl

0.449 Oi43? l'.3i7 1 '.366 Oi6l3 0'.743 1J141 1.103 1 i 1 . ? 01 '.364

1 i 3 6 1 1.i5?5 1.6?0 1 i486 1 '.567 li5?2 1 i 4 0 0 li465 1 i538 •T.379

1.507

1.480

l".495 1 '.538 l'.550 li2Bl li265 li242 li041 li062«? iji"

697 1.223 697 -l'.?P6 697 -l'.494 697 0 '. 697 Oi 697 O'. 697 Oi 697 Oi

Figure Ib. Sample "NOL WUNDY" Data PrintoutSTATTOW ? AMRJFNT PRFSSUR E(PM >= 1.46970F HI SPEEntCM/SFO = 0. PERI-HHRST DIST(CM) = S.OOOOOF 03

TYCLF TIMF PSI nVPST 1759 9.871F-03 1.470* 01 0.1764176917741779178417*91794179918041809181418191824182918341839184418491854185918641869187418791884188918941895189618971698189919001901190219031904190519061907190819091910191119121913191419151916

1.0ft8F-02111111111111111111111111111111111111111111111111

.027F-02'.047F-02.068F-02.OP7E-02.106F-02,1?7F-02.145F-02.165F-02.1R5E-02.203F-02,2?3F-fl2.242F-02,26lF-fl2;2*OF-ft2,3noF-ft2,3l8F-ft2,35lF-ft2,3P4F-ft2.420F-02^456F-02.490E-02.527F-02.562E-02.598F-02.635F-02i67lF-fl2.679F-02.6P7F-02.694F-02.701F-02.708F-02i7!5F-02.722F-02.729F-02.737F-02.744F-02.751F-02'. 759F-02.766F-02.773E-02.780F-02.7P7F-02.794F-02.801F-02.809F-02.816F-02.823F-02.831E-02

1.470F1.470F1.470F1.470F1.470F1.470F1.47QP1.47QP1.470F1.47QF1.47QF1.470F1.470F1.470Fli470F1.470F1.470F1.47QF1.470F1,47 OF1.470F1.470F1.470F1.470«=1.470F1.470P1 i 4 B 0 F1.494F1.522F1.572F1.651F1.77QF1.951F2.223F2.611F3.156F3.945F5.084F6i653F8;715F1.129P1.445F1.837F2.299F2.797C3.323F3.866F4. 1191=3.943F

ftl010101fllm0101ftlftl0101ftlfllfllfll010101fllftlni01fii01ftl01fl 101fllfllfll010101010101ftlftl020202020202020202

0.0.0 i0.0.0.0.0.oi0.0.0.0.0.0 i0.0.0.0.0.0 i0.o '.0.0.0.li036F-Ol2.421F-015i254F-Ol1.023F 00i.aioF oo3,005F 004;fil3F 007.533F 001.142F ni1,6B7F 012.475F 013.614F fti5ilB3F 017.245F 019.817F 011.298F 021.690F ft?2.152F 022i650F 023.176F 023.719F 023.972F 023.796F 02

00000000000100a000000000001211416261•&

813612371247B

HYN PST OE^STY',.i',,i.*,,

,*\*,

.,t.917F-1 0'.696F-06.736F-P5i 012P-P4'. 8&3F-P4".945F-P3.711F-P3'.099F-P2i075F-P2i594P-Pli793F-pii462F-Pli79flF POi6tlF POi872F POi249F PI.216F 01i 9 6 5 F pi.199F ni",3ftOF 02i344F ft2i467F ft?,3?6F ft?

.2?5F. -03i2?5F-03i2?5F-fl3i2?5F-03i2?5F-03i2?5F-03i2?5F- if!i3', P'?| 5P-03* 3'?5e-03i2?5F-03l2?5F-03i2?5F-03*.a?5F-03i2?5F-03i pP5P»n3^P35P.03[ ??5F-03i2?5F-03^??5P-P3i2?5F-03i??5F-03'.2?5P-03i??5F-03i2?5F-03i??5F-03i2?5F-03'.2?6F-03i??8F-03i??9F-03't ?3?p-ns".235F-03'.24QF-03'.247F-03'.259F-03'.274F-03't ?<?7P-ft3'.330F-03i379F-03'.448F-03i544F-03'.674F-03^ 857F-03\ i?6F-03i5l4F-03\ 047P-H3i7fl5F-03i8o2F-03iao?F-n3

i5!9F ft? 6iQ95F-03

000c0fl000o00000000000o000o114124812469112345679111

PART

t•

,,.,»,

,

,,,,t,,t

tt~t't

VFL

.469F-01

.741F

.416F

.065F

.338F

.661F

.639Fi523F.580F'.1531=,350 C,366F.341F".855F,478F,207F,056F.071F,2B4F".671F.242F,133F.319F,388F

0101020202P2P3P3P30303ftftftftftftftftft0505ft5

S:Oioi oioioi

i!oi oi

o!oi oi oioioi oioi oi oi oioioioioi oi oi oi oi oioioi

Si

5ioOOF 035ioftOF ft35ioOOF 035ioftOF 035i OOOF 035'. 00 OP 03SioOOF 035,000 C 035.000F 035*. Oft OF 03SioOOF 035ioOOF 035ioOOF 035iOftOF 035JOOOF 035ioOQF 035 '. 0 0 0 F ft 3S'.OOOF 035iOOOF 035'.OOOF 035'.00 OF 035 i 0 0 0 F 03SioOOF 035',OOOF 035 i 0 0 0 F 035 i 0 0 0 F 035*.OOOF 03S'.OOOF 03S'.OOOF 035 i 0 0 0 F 03SioOOF 035ioOOF 03S'.OOOF 035".OOOF 035ioOOF 03

S'.OOOF ft3 5'. 00 OF 03 S'.OOOF ft3 5 i 0 0 0 F 03 5'.OOOF 03 SioOOF 03 5'. OOOF 03 5*.OOOF 03 5". OOOF 03 S'.OOOF 03 5JOOOF 03 5ioOQF 03 5'.OOOF 03 SiflOOF 03

PE70NTMG BY PF70M3 JS ABOUT TO OCCUR

Figure Ic. Sample "NOL WUNDY" Data Printout

542

Page 5: Missile Explosion Simulation

l

aiBgBBBBalClHiBlB8111 lJPjiBl|EJil§5fiHBHjjBHy^

ssisHS5B8!BiPi!il2SS8S!^BBMglBBBBBggBBBBBaBByMBBBBiiBMBBBBBBMBiBBBKBBaMBgBM.iBIMMBBKiipiimiffiiiiBiilSim^

8BWBBBiHHsBaBaBa88SS8SSBBB8^

Figure 2. Titan IIIC, 50 Total Radius, 0 to 75

KB™H?n"ggBB

^3^"^SgBHB|l§ll§igl§iJiPSS§SllliiipiS8i§J^ff§§llpMB»KBMpjgB^BR!BSBSBBBBBBBBB'^aBB»BBB^pjBHB^aBiBB»^

BV/flHMlBwIllllllllBHSBlllB^

•t&{S8ssls£P^888jBS8i!;5M{i§SSS8HSB^ii mm ••••mm mil niiiiiiiiiinniiiiiHi iiiiiiiiiirniiMiiiiiiiiiiniiii i!iHH8BiiiiiigllM LJ,.2.!...!!!

^BI!BlBiilBHilBBlBlBl*5iiiliiBfflBHiiBBBlBBliillBBBB***^Bf jJBSB^55B^B^B^BBB^BBBlc5BBBB;5SSSiBB^BBBB8

iiiiMBBroMiiiiiiiBBiiiiiiiiiiitisaMBiffl I'llliPJlllHiiBll^

iilB^BBBBJBBBjKgBBBlijBlBBBitfcBB^BlMJBg5^|B,B^HiB^PBl|BiHB^BB.B[BJB^iJBB^BBwSSBBMBBllBBigBBBpiSiBBBBBBBSBMBBlBgBMHBB^BBiiiii8B!BgUijiSlgpig|Siip|j§gii|pipiJi|

10iiifBBIIiG•BailRllB

I

Dynamic

543

Page 6: Missile Explosion Simulation

1:1 M f - !

HEnilikliUlEiimiiiiiiii iiiiiiiiiiiiiii^ iiHiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiH

IIIHIIiiiiiiilElIiiiiH^

Figure 4. Titan EIC, 50

Figure 5. Titan me, 50 Percent, Density versus Radius, 0 to 75 Meters

544

Page 7: Missile Explosion Simulation

10*-

STRTION 1L3X/RP1195 LB. TEST

10* '— 10* 10* 10-'

TIKE - SECCNDS

Figure 6. Sample of Automatic Plot of Output Data Figure 7. A Variable Geometry Calculation Network Shortly After Detonation

I ' Shock Radius, 25% Yield

Shock Radius, 50% YieldShock Radius, 78. 5% Yield

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300Radius (meters)

Figure 8 . Variation of Debris Radius and Shock Radius versus Time for Titan IEEC Detonation

545

Page 8: Missile Explosion Simulation

Table I. Calculation of Shock Radius from Explosion Products Radius for Titan TEC (25-Percent Yield)

Measured

R ep(meters)

*17.59

*30.20

*57.42

Time (microseconds)

5704

17329

42583

Assumed Percent

Yield

78.5 23.0 25.1 78.5 24.0 25.1 78.5 24.0 25.1

CalculatedR /R s ep

1.052811 1.065848 1.065355 1.094555 1.128242 1.127562 1.180275 1.230635 1.229618

Calculated

Rs(meters)

18.5189 18.7483

| 18.7396 |39.622940. 8424

| 40.8178 |67.7714 70.6631

| 70.6047 |

Calculated Percent

Yield

23.0 25.1 25.0 24.0 25.1 25.0 24.0 25.1 25.0

Actual Rs(meters)

| 18.74 |

| 40.82 |

| 70.61 |

REFERENCES

1. One-Dimensional Hydrodynamic Code for Nuclear- Explosion Calculations NOLTR62-168 (DASA-1518).

2. Notes on the Equations UsedinWUNDYNOLTN-5421.

3. R.D. Richtmyer, Difference Methods for Initial- Value Problems, Interscience, 1957.

4. K.P. Stanyukovich, Unsteady Motion of Continuous Media, Pergamon Press, 1960.

546