13
Vasanth V. Balasubramanian, and B. Moudgil Microbial Adhesion and Removal from BioSurfaces Adsorption Density of Microbes on Flat Surfaces Center for Particulate and Surfactant Systems (CPaSS) Fall 2019 IAB Meeting Columbia University, New York, NY August 67, 2019

Microbial Adhesion and Removal from Bio Surfaces · 2020. 7. 30. · Vasanth V. Balasubramanian, and B. Moudgil Microbial Adhesion and Removal from Bio‐ Surfaces ‐ Adsorption

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Microbial Adhesion and Removal from Bio Surfaces · 2020. 7. 30. · Vasanth V. Balasubramanian, and B. Moudgil Microbial Adhesion and Removal from Bio‐ Surfaces ‐ Adsorption

Vasanth

V. Balasubramanian, and B. Moudgil

Microbial Adhesion and Removal from Bio‐Surfaces

‐ Adsorption Density of Microbes on Flat Surfaces ‐

Center for Particulate and Surfactant Systems (CPaSS)Fall 2019 IAB Meeting

Columbia University, New York, NYAugust  6‐7, 2019

Page 2: Microbial Adhesion and Removal from Bio Surfaces · 2020. 7. 30. · Vasanth V. Balasubramanian, and B. Moudgil Microbial Adhesion and Removal from Bio‐ Surfaces ‐ Adsorption

Overview of the PresentationResearch Team:Vasanthakumar Balasubramanian (Vasanth), Brij Moudgil,  J. Carnali, C. Walsh, and P. Chandar. Goal: Establish techniques for adsorption density measurements on lowsurface area surfaces

Industrial Relevance: Unilever, Ecolab, Colgate‐Palmolive, Johnson & Johnson, P&G etc…

In this presentation

Microbes as sensors for determining polymer adsorption density on Vitroskin

2

Technical Information:Cell  viability  can  be  used  as  a  detection  parameter.  For  a  given  polymer,  cell viability  depends  on  free  polymer  concentration  in  solution  (indirect  Г (adsorption density) measurement). Fluorescence‐based protocol may also be used for  enumeration  of  viable  microbes  on  surfaces  and  in  solution  (direct  Г measurement).

Desorption

Addition of microbes to supernatant Enumeration

Adsorption of microbes

Microbesas sensors

Page 3: Microbial Adhesion and Removal from Bio Surfaces · 2020. 7. 30. · Vasanth V. Balasubramanian, and B. Moudgil Microbial Adhesion and Removal from Bio‐ Surfaces ‐ Adsorption

Current Scenario… 3

High Specific Surface Area Systems (e.g., fine particles)1. Indirect (depletion) method – UV absorption, fluorescence, colorimetric methods, radioisotope‐labeled  fluorescently labeled molecules, TOC

2.   Direct method – Radiolabeling, Fluorescence

Low Specific Surface Area Systems (flat surfaces)1. Indirect (depletion) method ‐ requires new approaches.2. Direct method – Radiolabeling, Fluorescence, SPR, OWLS, DPI, ATR‐FTIR, SE,  QCM‐D, AFM

Promising techniques ‐measurements on biosurfaces‐ QCM ‐ AFM‐ Microbes as sensors

Background: Microbial removal from surfaces using engineered particlesdemonstrated.

Adsorption density measurements required to develop quantitativecorrelations.

Page 4: Microbial Adhesion and Removal from Bio Surfaces · 2020. 7. 30. · Vasanth V. Balasubramanian, and B. Moudgil Microbial Adhesion and Removal from Bio‐ Surfaces ‐ Adsorption

4Quartz Crystal Microbalance (QCM)

The change in QCM frequencydetermines the mass of analyteadsorbed in ng/cm2.Sauerbrey equation

Microbes immobilized using antibodies/ DNA/protein as bioreceptor (Quartz surface)

Bacillus thuringiensis 107 CFU – 60mg/cm2

Bacillus anthracis 107 CFU – 6mg/cm2

E.coli 108 CFU ‐ 10μg/cm2

Δm=−C′Δf

QCM sensing system

Frontiers in Bioengineering and Biotechnology (2018) Vol. 6 p‐158

Page 5: Microbial Adhesion and Removal from Bio Surfaces · 2020. 7. 30. · Vasanth V. Balasubramanian, and B. Moudgil Microbial Adhesion and Removal from Bio‐ Surfaces ‐ Adsorption

5Atomic Force Microscopy (AFM)

Atomic force microscopy (AFM) was used to determine the adhesion forcesbetween bacteria and substrate in water and to gain insight into the nano‐scalesurface morphology. Rastering  ‐ Tapping mode

Parameters E. coliCell length/μm 2.3 ± 0.5

Cell width/μm 1.3 ± 0.1Cell height/nm 237 ± 28

Cell envelop thickness/nm 22 ± 4

Pilithickness/nm 4.8 ± 0.8

Surface topographies of microbes on the substrate can be measured  in  tapping mode.  Г  calculated  from  thickness and surface coverage.

Scientific Reports volume5,  16857 (2015)

Page 6: Microbial Adhesion and Removal from Bio Surfaces · 2020. 7. 30. · Vasanth V. Balasubramanian, and B. Moudgil Microbial Adhesion and Removal from Bio‐ Surfaces ‐ Adsorption

6

Part ‐ I Microbes as sensors for determining polymeradsorption density on Vitroskin

Promising techniques ‐measurements on biosurfaces‐ QCM ‐ AFM‐ Microbes as sensors

Page 7: Microbial Adhesion and Removal from Bio Surfaces · 2020. 7. 30. · Vasanth V. Balasubramanian, and B. Moudgil Microbial Adhesion and Removal from Bio‐ Surfaces ‐ Adsorption

7Illustrative example: Cationic polymer adsorption density on Vitroskin using E.coli as a biosensor

Initial polymer concentration 

(ppm)

Final polymerConcentration 

(ppm)

Adsorption density on VitroskinμM/cm2

(Depletion method)

5 3 20 (not reliable)10  ~6 40 

Sensitivity: Viable cell detection limit > 104/mlReliability of viable cell measurement: ± 0.5 log

CPaSS Approach:‐ Cell viability used as a detection parameter.‐ Agar Plate method to determine cell viability.‐ For a given polymer, cell viability depends on free polymer concentration in solution. 

Polymer adsorption density on Vitroskin can be determined based on cell viability measurements.

Calibration curve

Reliable region

Page 8: Microbial Adhesion and Removal from Bio Surfaces · 2020. 7. 30. · Vasanth V. Balasubramanian, and B. Moudgil Microbial Adhesion and Removal from Bio‐ Surfaces ‐ Adsorption

8

Part – II CPaSS approach: Fluorescence‐based protocolfor enumeration of viable microbes on surfaces and insolution.

(invention disclosure submitted)

Page 9: Microbial Adhesion and Removal from Bio Surfaces · 2020. 7. 30. · Vasanth V. Balasubramanian, and B. Moudgil Microbial Adhesion and Removal from Bio‐ Surfaces ‐ Adsorption

CPaSS Resazurin Fluorescence Dye Assay

PrestoBlue® uses the metabolically active resazurin, which is weakly fluorescent and is irreversibly reduced to highly fluorescent resorufin. 

Resazurin and resorufin freely diffuse through cell membranes, so readings are taken from the bulk solution.

Resorufin Excitation and EmissionPrestoBlue® Mechanism

9

• Potential for utilization as a reporter for enumeration from surfaces.

NAD(P)H

NAD(P)H

Non‐Fluorescent Fluorescent

Non‐Fluorescent

Page 10: Microbial Adhesion and Removal from Bio Surfaces · 2020. 7. 30. · Vasanth V. Balasubramanian, and B. Moudgil Microbial Adhesion and Removal from Bio‐ Surfaces ‐ Adsorption

Data Extraction

0E+0

2E+5

4E+5

6E+5

8E+5

1E+6

1E+6

1E+6

0:00:00 2:24:00 4:48:00 7:12:00 9:36:00 12:00:00 14:24:00 16:48:00

Fluorescence (AU)

Time (HH:MM:SS)

Building a Calibration Curve

LOG7 LOG6

LOG5

LOG4

LOG3

0

100

200

300

400

500

600

1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

Time to Peak (min)

Initial Inoculum Size (# of cells)

Time to Peak vs. Initial Inoculum Size

Since the independent variable isinoculum size, the dependentvariable becomes lag time.

Each curve represents a different initial inoculum size.

A unique lag phase exists for each inoculum size. By plotting the lag time, a LOG – linear curve is generated.

10

Page 11: Microbial Adhesion and Removal from Bio Surfaces · 2020. 7. 30. · Vasanth V. Balasubramanian, and B. Moudgil Microbial Adhesion and Removal from Bio‐ Surfaces ‐ Adsorption

Advantages: Lower cell count limit extended due to higher fluorescence sensitivity‐ Reliable up to 1E+2 as compared to Agar plate method (1E+4) 

11

y = ‐42.92ln(x) + 757.58R² = 0.93

y = ‐48.75ln(x) + 902.27R² = 0.88

0

100

200

300

400

500

600

700

800

900

1E+2 1E+3 1E+4 1E+5 1E+6 1E+7 1E+8

Time to Peak (min)

Initital Inoculum Size (# of cells)

E. coli Calibration Curves

Log. (in solution)Log. (on vitroskin)Solution Inoculation (n=8)

Vitro‐Skin® Inoculation (n=12)

E.coli calibration curves in solution and at Vitroskin

Initial inoculationCFU/cm2

Adsorption density on VitroskinCFU/cm2 pg/cm2

1E+4 1E+3.2 11E+5 1E+3.8 11E+6 1E+4.7 10

Page 12: Microbial Adhesion and Removal from Bio Surfaces · 2020. 7. 30. · Vasanth V. Balasubramanian, and B. Moudgil Microbial Adhesion and Removal from Bio‐ Surfaces ‐ Adsorption

12

Microbes as sensors is a promising approach for adsorption 

measurements (depletion as well as direct methods).

QCM  and  AFM  may  be  used  for  direct  adsorption  density 

measurements. (QCM ‐ limitation of substrates).

Viability of AFM and QCM for microbial adsorption density need 

to be established.

Summary and Future work

Challenges in the adsorption of biomolecules on solid surfaces:

very small amounts of adsorbed material to be detected

inherent difficulties to sense at an interface without interference from

the solution.

concomitance of several molecular phenomena (adsorption, desorption,

conformational changes, and rearrangements)

Page 13: Microbial Adhesion and Removal from Bio Surfaces · 2020. 7. 30. · Vasanth V. Balasubramanian, and B. Moudgil Microbial Adhesion and Removal from Bio‐ Surfaces ‐ Adsorption

Thank you Acknowledgment

This material is based upon work supported by the National Science Foundationunder Grant No. 1362060 and by CPaSS industry members.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the 

National Science Foundation/Sponsors.

Disclaimer

13