34
Micro-Nano Thermal-Fluid: Physics, Sensors, Measurements Cantilever Sensors: An Example of what you will learn in ME 381R Prof. Li Shi Micro-Nano Thermal-Fluid Laboratory Department of Mechanical Engineering The University of Texas at Austin [email protected]

Micro-Nano Thermal-Fluid: Physics, Sensors, Measurements Cantilever Sensors: An Example of what you will learn in ME 381R Prof. Li Shi Micro-Nano Thermal-Fluid

Embed Size (px)

Citation preview

Micro-Nano Thermal-Fluid: Physics, Sensors, Measurements

Cantilever Sensors: An Example of what you will learn in ME 381R

Prof. Li Shi

Micro-Nano Thermal-Fluid Laboratory

Department of Mechanical Engineering

The University of Texas at Austin

[email protected]

2

Outline• Cantilever Thermal Sensors:

Thermal Property of Nanotubes and Nanowires

• Cantilever Thermal Sensors:

Scanning Thermal Microscopy

• Cantilever Bio Sensors

• Cantilever IR Sensors

3

Source Drain

Gate

Nanowire Channel

Silicon Nanoelectronics

Courtesy: C. Hu et al., Berkeley

4

Length Scale

1 m

1 nm

MEMS Devices

Size of a Microprocessor

Nanowire Diameter

100 nml (Phonon mean freepath at RT)

1 ÅAtom

L

W l: boundary scattering - +-W

Thin Film Thickness in ICs

10 nm

Lattice vibration

5

Thermal Conductivity

k = C v l13

Specific heat Sound velocityPhonon Mean Free path

umst lll111 Mean free path:

Static scattering (phonon -- defect, boundary)

Umklapp phonon scattering

6

0

10

20

30

40

50

60

0 40 80 120 160 200 240 280 320 360

0

10

20

30

40

50

60

0 40 80 120 160 200 240 280 320 360

Temperature (K)

The

rmal

Con

duct

ivity

(W

/m-K

)

30nm

56nm

115nm

Silicon NanowiresIncreased boundary scattering Suppressed thermal conductivity

Localized hot spots

Li, et al.

Bulk Si: k ~150 W/m-K

Diameter:

7

Thermoelectric Nanowires

Bi or Bi2Te3 nanowires (Dresselhaus et al., MIT):

Top View

Al2O3 template

Smaller d, shorter boundary scattering mfp

Lowered thermal conductivity k = Cvl/3

High ZT, high COP

I

Cold

Hot

P N

TE Cooler

Thermoelectric Figure of Merit: ZT = S2Tk

8

Carbon Nanotubes

Single Wall -- Semiconducting or Metallic

Super high current109 A/cm2

1-2 nmmicrons

Multiwall -- Metallic

10 nm

9

Thermal Conductivity of Nanotubes

• Strong SP2 bonding (high v), few scattering (long l) high k

• Theory: 3000 ~ 6000 W/m-K at RT (e.g. Berber et al., 2000)

10

Pt Resistance Heater/Thermometer

Suspended SiNx Membrane

Long SiNx Cantilever

A Cantilever Sensor for Thermal Sensing of Nano- Wires/Tubes

11

Measurement Scheme

14 nm multiwall tube

Island

Beam

Pt heater line

Th Ts

t Ts

R s

Rh Qh=IRh

Tube

Ql=IRl

Environment

T0 I

Gt = kA/L

sh

s

sh

lht TT

TT

TTT

QQG

0

02

Thermal Conductance:

VTE

Thermopower:Q = VTE/(Th-Ts)

12

Device Fabrication

Si

SiO2

SiNx

Pt

Photoresist(a) CVD

(b) Pt lift-off

(c) Lithography

(d) RIE etch

(e) HF etch

13

0

500

1000

1500

2000

2500

3000

3500

0 100 200 300 400

Temperature (K)

Th

erm

al

Co

nd

uc

tiv

ity

(W

/m-K

)

Thermal Conductivity

• Room temperature thermal conductivity ~ 3000 W/m-K

• k ~ T2 : Quasi 2D graphene behavior at low temperatures

• Umklapp scattering ~ 320 K , l ~ 0.5 m

l ~ 0.5 m~T2

Kim, Shi, Majumdar, McEuen, Phy. Rev. Lett 87, 215502-1 (2001)

14 nm multiwall tube

14

Thermopower100

80

60

40

20

030025020015010050

Ts

Th

erm

opow

er (V

/K)

Temperature (K)

F

B

eETk

Q6

22

For metals w/ hole-type majority carriers:

T

15

Single Wall Carbon Nanotubes

Nanotube

16

Bi2Te3 Nanowire High-efficiency refrigerators!

17

Outline

• Cantilever Thermal Sensors:

Thermal Property of Nanotubes and Nanowires

• Cantilever Thermal Sensors:

Scanning Thermal Microscopy

• Cantilever Bio Sensors

• Cantilever IR Sensors

18

Molecular Electronics

TubeFET (McEuen et al., Berkeley)

Nanotube Logic (Avouris et al., IBM)

Nanotube Interconnect(Dai et al., Stanford)

19

Electron Transport in Nanotubes

- +- - +-

Ballistic (long mfp) Diffusive (short mfp)

mfp: electron mean free path

MultiwallBallistic (Frank et al., 1998)Diffusive (Bachtold et al., 2000)

Single Wall MetallicBallistic at low bias (Bachtold ,et al.)Diffusive at high bias (Yao et al., 2000)

20

Dissipation in Nanotubes

Nanotube bulk Electrode

Electrode

Diffusive – Bulk Dissipation

Ballistic – Junction Dissipation

Junction

X

X

T

T

T profile diffusive or ballistic

21

Thermal Microscopy

Infrared Thermometry 1-10 m*

Laser Surface Reflectance 1 m*

Raman Spectroscopy 1 m*

Liquid Crystals 1 m*

Near-Field Optical Thermometry < 1m

Scanning Thermal Microscopy (SThM) < 100 nm

Techniques Spatial Resolution

*Diffraction limit for far-field optics

22

X-Y-Z Actuator

Scanning Thermal Microscope

Sample

Temperature Sensor

Laser

Atomic Force Microscope (AFM) + Thermal Probe

CantileverDeflectionSensing

Thermal

X

TTopographic

X

Z

23

Thermal Probe

Tip

Solid-Solid Conduction

Liquid-Film Conduction

Air Conduction

Radiation

Cantilever Cantilever Mount

Liquid

Cr Pt SiO2

Sample

Substrate

Sample

Rts

Rt

Ts

Ta

Tt

Rc

Q

24

Probe Fabrication

1 m

SiO2 tip

Si

SiO2

SiNx

Photoresist Cr

Cr

RIE+HF Etch

200 nm

Pt SiO2

SiO2

Pt

Pt

CrSiO2

Photoresist

Pt

100~500 nm

25

Microfabricated Probes

Pt-Cr Junction

Shi, Kwon, Miner, Majumdar, J. MicroElectroMechanical Sys., 10, p. 370 (2001)

10 m

Pt Line

Cr Line

TipLaser Reflector

SiNx Cantilever

26

Locating Defective VLSI Via

• Collaboration: TI• Shi et al., Int. Reli. Phys. Sym., p. 394 (2000)Metal 1

DielectricMetal 2

Passivation

0.4 m Via

Cross Section

Topography Tip Temperature Rise (K)

20 m

2823

21

19

25

Met

al 2

ViaMetal 1

40 mA

27

Thermal Imaging of Nanotubes Multiwall Carbon Nanotube

1 m

Topography

1 m

Topography

3 V88 A

Distance (nm)

Th

erm

al s

ign

al ( V

) 30

20

10

0

4002000-200-400

50 nm

Distance (nm)

Hei

ght

(nm

)

30 nm

10

5

0

4002000-200-400

Distance (nm)

Hei

ght

(nm

)

30 nm

10

5

0

4002000-200-400

Thermal

30 nm 50 nm

Shi, Plyosunov, Bachtold, McEuen, Majumdar, Appl. Phys. Lett., 77, p. 4295 (2000)

Spatial Resolution

28

20

10

0

210

Distance (m)

Tti

p(K

)

-40

-20

0

20

40

10000-1000

Bias voltage (mV)

Cur

rent

(A

)

1 m

Multiwall NanotubeTopographic

Thermal

A B Ttip

3 K

0

•Diffusive at low and high biases

AB A

B

Shi, Kim, et al.

29

Metallic Single Wall Nanotube

-20

0

20

200010000-1000-2000

Bias voltage (mV)

Cu

rren

t (

A)

AB C D

Bias voltage (mV)

Cu

rren

t (

A)

AB C D

Topographic Thermal

1 m

A B C D

Optical phonon Low bias: ballistic

contact dissipation

High bias: diffusive

bulk dissipation

Ttip

2 K

0

30

Outline

• Cantilever Thermal Sensors:

Thermal Property of Nanotubes and Nanowires

• Cantilever Thermal Sensors:

Scanning Thermal Microscopy

• Cantilever Bio Sensors

• Cantilever IR Sensors

31

Detecting BiomoleculesConventional: Fluorescence

add sample

probes

wash, add marker,wash

• Surface stress

• Fewer steps

• Label - free

deflection

A B

New: Micro-cantilever

~500 m

32

Chemo-mechanical database: PSA

-20

0

20

40

60

80

0.001 0.1 10 1000 100000

fPSA concentration [ng/mL]

[

mJ/

m2]

Wu et al, Nature Biotech. 19, 856-860 (2001).

~ 5 - 10 mJ/m2, independent of cantilever geometry.

• Prostate-specific antigen (PSA)

• Important levels are ~1-10 ng/mL (30-300 pM)

33

MultiplexingWhy?

Throughput

Differential Signal

Molecular Profile

A B

N lasers,

N detectors.

• 1 laser

• 1 detector

CCD

34

Outline

• Cantilever Thermal Sensors:

Thermal Property of Nanotubes and Nanowires

• Cantilever Thermal Sensors:

Scanning Thermal Microscopy

• Cantilever Bio Sensors

• Cantilever IR Sensors (See PowerPoint File 2)