44
Version : P132 -308 -420/-421/-425/-426/-427 -632 ff Index : B Release : 09 / 2011 Technical Data Sheet This document does not replace the technical Manual Feeder Management and Bay Control

MiCOM P132_TechnicalDataSheet

Embed Size (px)

Citation preview

Page 1: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 1/44

Version: P132 -308 -420/-421/-425/-426/-427 -632 ffIndex: BRelease: 09 / 2011

Technical Data Sheet

This document does not replace the technical Manual 

MiCOM P132

Feeder Management and

Bay Control

Page 2: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 2/44

[One-Box Solutions for Protection and Control] MiCOM P132  2 

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

Application and ScopeThe unit's protections functions provide selectiveshort-circuit protection, ground fault protectionand overload protection in medium- and high-voltage systems.

The systems can be operated as solidly-, low-

impedance or resonant-grounded or isolated.The multitude of protection functions enables theuser to cover a wide range of applications in theprotection of cable and lines, transformers andmotors.

For easy adaptation to varying system operationconditions four independent parameter subsetsare provided.

 Alternatively the MiCOM P132 is optionally

deliverable with VT inputs only to be applied asover-/under frequency/voltage protection unit.

The optional control functions are designed forthe control of up to three electrically operatedswitchgear units located in the bay of a MV- or anon-complex HV- Station.

ANSI IEC 61850

Function

group

Function

only

VT´s

only

CT´s

CT s

an d

VT´s

50 P/Q/NDtpPhs-/DtpEft-/ 

DtpNgsPTCOxDTOC

Definite-time o/c protection, four stages, phase-

selective• •

51 P/Q/NItpPhs-/ItpEft-/ 

ItpNgsPTCOx

IDMT1/ 

IDMT2

Inverse-time o/c protection, single-stage, phase-

selective• •

67DtpPhs-/ DtpResRDIRx

SCDD Short circuit direction detection•

50 / 27

PSOF1 SOTF Switch onto fault protection • •

85 PSCH1 PSIG Protective signaling • •

79 RREC1 ARC  Auto-reclosure control (3-pole) • •

25 RSYN1 ASC  Automatic synchronism check (  • )

67W/YN PSDE1 GFDSS Ground fault direction determination ( wattmetric ) •

PTEF1 TGFD Transient ground fault direction dtermination (  • )1)

37/48/49/ 

49LR/50S/66

MotPMRI1/

MotPMSS1/ 

MotPTTR1/ ZMOT1

MP Motorprotection • •

49 ThmPTTR1 THERM Thermal overload protection • •

Coolant temperature measuring (using MEASI) (  • ) (  • )

46 UbpNgsPTOCx I2> Unbalance protection • •

27/59/47

P/Q/N

 VtpPhs-/VtpNgs-/ 

 VtpPss-

 /VtpRefPTyVx

U<>Over/Undervoltage protection

• •

81 FrqPTyFx f<> Over- / Underfrequenceprotection • •

32/ 37

PdpAct-/ 

PdpRealPDyPxP<>

Directional power protection•

50/62BF RBRFx CBF Circuit breaker failure protection • •

 XCBR1 CBM Circuit breaker monitoring • •

30/74  AlmGGIO1 MCMON Measuring circuit monitoring • • •

LIMIT Limit value monitoring • •

PHAR1 MAIN Inrushstabilizing • •

LGC PloGGIOx LOGIC Programmable logic • • •

LLN0.SGCB PSS Parameter subset selection • • •

Mmuxxx Measuring • • •

 Analog inputs and outputs (  • ) (  • ) (  • )

26 RtdGGIO1 MEASI RTD input (  •

 ) (  •

 ) (  •

 )IdcGGIO1 Measuring data input 20 mA, one settable input value (  • ) (  • ) (  • )

MEASOMeasuring data output 20 mA, two settable output

values(  • ) (  • ) (  • )

PTRCx/ RDRE1 FT_RC Fault recording • • •

52 XCBRx, XSWIx, CS BM Control and monitoring of up to 3 switchgear units (  • ) (  • ) (  • )

CtlGGIO2 BEF_1 Single-pole commands (  • ) (  • ) (  • )

  CtlGGIO1 MEL_1 Single-pole signals (  • ) (  • ) (  • )

LGC V_LOG Interlocking logic (  • ) (  • ) (  • )

16S KOMMx 2 Communication interfaces serial, RS 422/485 or FO (  • ) (  • ) (  • )

CLK IRIGB Time synchronisation IRIG-B (  • ) (  • ) (  • )

16E IEC Communication interface Ethenet (  • ) (  • ) (  • )

16E GosGGIOx GOOSE IEC 61850 (   •

 ) (  •

 ) (  •

 )

16S FKT_T 6 Function keys (  • )1)

(  • )1)

(  • )1)

• = STANDARD; ( • ) = ORDER OPTION; ( · )1) = Not for P132 in 24 TE

Functional overview P132

Page 3: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 3/44

[One-Box Solutions for Protection and Control] MiCOM P132  3 

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

The MiCOM P132 provides over 80 predefinedbay types for simple efficient configuration ofSwitchgear control functions.

External auxiliary devices are largely obviatedthrough the integration of binary inputs andpower outputs that are independent of auxiliaryvoltages, by the direct connection option forcurrent and voltage transformers and by thecomprehensive interlocking capability.

This simplifies handling of the protection andcontrol technology for HV- or MV- Feeder fromplanning to put into operation.

The MiCOM P132 provides an extensive numberof functions which can select individually forinclusion in the unit's configuration or cancelthem as desired. By means of a straight-forwardconfiguration procedure, the user can adapt thedevice flexibly to the scope of protection requiredin each particular application. Due to the

powerful, freely configurable logic of the device,special applications can be accommodated.

Following global functions are available in theMiCOM P132:

•  Parameter subset selection (4 subsets)

•  Measured operating data to support the userduring commissioning, testing and operation

•  Operating data recording (time-tagged signal)

•  Overload data acquisition1) 

•  Overload recording (time-tagged signal) ) 

•  Ground fault data acquisition

•  Ground fault recording (time-tagged signal)

•  Measured fault data

•  Fault data acquisition

•  Fault recording (time-tagged signal)(logging together with fault value recording ofthe three phase currents, the residual current,the three phase-to-ground voltages and the

neutral displacement voltage).

Setting tool MiCOM S1 Studio

Scheme signaling

50/27

SOTF

67

SCDD

46

I2>

50/ 51 P/Q/N

DTOC

51 P/Q/N

IDMT_1

85

PSIG

27/59 P/Q/N

V<>

LGC

LOGIC

LIMIT

25

 ASC

LGC

ILOCK

I

V

Vref 

SIG_1CMD_1

26

MEASI

conventionalserial

Feeder Management and

Bay Control Unit MiCOM P1321)

16S

COMM1

16S

COMM2

16E

IEC

CBM

50/62BF

CBF

52

DEV

77

InterMiCOM

CLK

IRIGB

32/37

P<>

51 P/Q/N

IDMT_2

49

THERM

MEASO

TGFD

67 W/YN

GFDSS

30/74

MCMONMCMON

79

 ARC

37/48/49/50S/66

MP

81

f<>

Further

options

 Always

available

Optional

VT´s fitted

Optional Control /

Monitoring of up to

3 switchgear units

Communication

to SCADA / substation control / RTU / modem ...

via RS485 or Fiber optics

using IEC 60870-5-101, -103, Modbus, DNP3, Courier 

resp.

via RJ45 or Fiber optics using IEC 61850

Self

Monitoring

Recording and

Data

 Acquisition

Metering

Overload rec.

Ground flt. rec.

Fault rec.

Function diagram

1) Function diagram for P132 with CT inputs and P132 with CT and VT inputs in 40TE resp. In 84TE case

  Function overview for P132 with VT inputs only resp. In 24TE case please see table "functions overview "

Page 4: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 4/44

[One-Box Solutions for Protection and Control] MiCOM P132  4 

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

DesignThe MiCOM P132 is of modular design. The

pluggable modules are housed in a robustaluminum case and electrically connected via ananalog and a digital bus printed circuit board.

The MICOM P132 has the following inputs and

outputs: •  4 current-measuring inputs

•  4 or 5 voltage-measuring inputs

•  4 binary inputs and 8 output relays

 As further option one control board with 6 binarysignal inputs (optical couplers) and 6 outputrelays for the control of 3 switchgear units (2-polecontacts).

Furthermore up to 36 additional binary signalinputs (optical couplers) with freely configurablefunction assignment for individual control or

protection signals and up to 18 additional outputrelays with freely configurable functionassignment for individual control or protectionapplications can be configured.

 Alternatively up to 16 high break output relaysapplicable for DC circuits with max. breakingcapability of 2500 W inductive (L/R = 40 ms) or10 A at 250 VDC are configurable.

The nominal currents or the nominal voltages,respectively, of the measuring inputs can be setwith the help of function parameters.

The nominal currents or the nominal voltages,

respectively, of the measuring inputs can be setwith the help of function parameters.

The nominal voltage range of the standard opticalcoupler inputs is 24 to 250  V DC without internal

switching. Optional there are also other rangeswith higher pick-up thresholds possible.

The auxiliary voltage input for the power supply isa wide-range design as well. The nominal voltageranges are 48 to 250  V DC and 100 to 230  V  AC.

 An additional version is available for the lowernominal voltage range of 24  V DC.

 All output relays are suitable for both signals and

commands.

The optional resistance temperature detector(RTD) inputs are lead compensated andbalanced. The optional 0 to 20 mA input providesopen-circuit and overload monitoring, zerosuppression defined by a setting, plus the optionof linearizing the input variable via 20 adjustableinterpolation points.

Two freely selected measured signals (cyclicallyupdated measured operating data and storedmeasured fault data) can be output as a load-independent direct current via the two optional 0

to 20 mA outputs. The characteristics are definedvia 3 adjustable interpolation points allowing aminimum output current (4 mA, for example) forreceiver-side open-circuit monitoring, knee-point

definition for fine scaling and a limitation to lowernominal currents (10 mA, for example). Wheresufficient output relays are available, a freelyselected measured variable can be output inBCD-coded form via contacts.

Control and display

•  Local control panel with LC-display

•  6 function keys (available for 40TE and 84TE)

•  23 LED’s, 18 configurable(Red/Green/Yellow)(24TE: 10 unicoloured LED’s, 5 configurable ).

•  PC interface

•  Communication interfaces (optional)

•  IRIG-B signal input (optional)

•  Protection communication interfaceInterMiCOM (optional)

24TE, 40TE and 84TE Mounting case options

 

Page 5: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 5/44

[One-Box Solutions for Protection and Control] MiCOM P132  5 

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

Function keys(available in 40T and 84T case)

The MiCOM P132 has six freely configurablefunction keys. A single function can be assignedto each function key. So circuit breakers andfunctions can be switched on or off and recorded

information can be reseted directly via functionkey.

Instead of a single function, a menu jump listswith up to 16 elements can be assigned. Settingparameters, event counters and/or event recordscan be selected into a menu list. Repeatedpressing of the relevant function key will thensequentially trigger the element of the selectedmenu jump list.

For each function key, the user can define anoperating mode suitable to the assignedfunctionality. To guard against inadvertent or

unauthorized use each function key is protectedwith a password.

Detachable HMI(available in 40T and 84T case)

For remote mounting in switch gears theMiCOM P132 can be equipped with a detachable

HMI. This design has the advantage of acomfortable device handling even in switch gearswith protection arrangements difficult to access.

Detachable HMI mounted a MV switchgear 

 

The design of the protection device MiCOM P132

allows a connection or disconnection to thedetachable HMI at any time. The HMI hardwaremodule will be completely and automaticallyrecognized.

The visualisation of the device status is done viathe display of the HMI and via 4 LED`s at thebasic device.

Even if the detachable HMI is lacking all devicefunctions are completely warranted. With aconnected HMI the PC-interface of the devicecannot be enabled.

To connect the basic device and the detachableHMI standardised cable (Ethernet cable, max.length 10 m) can be used. One connection cableof three meter length is included in theMiCOM P132 scope of delivery.

Basic device with detachable HMI

 

Information interfaces(optional)

Information exchange is done via the local controlpanel, the PC interface and 2 optionalcommunication interfaces.

The first communication interface has settableprotocols conforming to IEC 60870-5-103,

IEC 60870-5-101, DNP 3.0, Modbus and Courier

(COMM1) or provides alternatively protocolconforming to IEC 61850 (IEC). It’s intended forintegration in substation control systems.

The 2nd communication interface (COMM2)conforms to IEC 60870-5-103 and is intended forremote setting access only.

Clock synchronization can be achieved using oneof the protocols or using the IRIG-B signal input.

 Additionally, the optional InterMiCOM interface(COMM 3) allows a direct transfer of any digitalstatus information between two devices.

Page 6: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 6/44

[One-Box Solutions for Protection and Control] MiCOM P132  6 

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

Main functions

Main functions are autonomous function groupsand can be individually configured or disabled tosuit a particular application. Function groups thatare not required and have been disabled by theuser are masked completely (except for the

configuration parameter) and functional supportis withdrawn from such groups.

This concept permits an extensive scope offunctions and universal application of the devicein a single design version, while at the same timeproviding for a clear and straight-forward settingprocedure and adaptation to the protection andcontrol task under consideration.

Overcurrent protection

For the overcurrent protection stages the threephase currents, residual current and negative-

sequence current determined from the filteredfundamental wave of the three phase currents areevaluated in separate, single stage measuringsystems.

For the residual current stage the use of theresidual current measured directly or calculatedfrom the three phase currents is offered forselection. The residual and negative-sequencecurrents stages affect the general starting signal.This effect can be suppressed if desired.

 Additionally, the operate values of all overcurrentstages can be set as dynamic parameters. For asettable hold time, switching to the dynamicoperate values can be done via an externalsignal. Once the hold time has elapsed, the staticoperate values are reinstated.

Definite time overcurrent protection

Definite-time overcurrent protection is providedfor the three phase currents and the negative-sequence current with three timer stages and forthe residual current with four timer stages. Forthe fourth residual current stage - with extendedsetting range - the calculated residual current isalways used.

Starting of the phase current stage I> and thenegative-sequence current stage Ineg> can bestabilized under inrush conditions if desired. Thephase current stages I>> and I>>> and thenegative-sequence current stages Ineg>> andIneg>>> are never affected by this stabilizationprocedure.

Intermittent starting of the residual current stageIN> can be accumulated over time by means of asettable hold time. If the accumulated startingtimes reach the trip limit value (which is alsoadjustable by setting) then a trip with selective

signaling ensues.

Inverse time overcurrent protection

For the inverse-time overcurrent protectionstages the three phase currents, residual currentand negative-sequence current are evaluated inseparate, single stage measuring systems.

For the individual measuring systems, the usercan select from a multitude of trippingcharacteristics.

Starting of the phase current stage and thenegative-sequence current stage can bestabilized under inrush conditions if desired.

Intermittent starting of the phase, negative-sequence or residual current stage can beaccumulated on the basis of the set trippingcharacteristic by means of a settable hold time.Tripping is also performed in accordance with therelevant tripping characteristic.

No Tripping time characteristic

 k= 0.01 … 10.00) A B C R

0 Definite Time

per IEC 255-3

1 Normally inverse 0,14000 0.02000

2  Very inverse 13.50000 1.00000

3 Extremely inverse 80.00000 2.00000

4 Long time inverse 120.00000 1.00000

per ANSI / IEEE C37.112 Trip

Release

5 Moderately inverse 0.05150 0.02000 0.11400 4.85000

6  Very inverse 19.61000 2.00000 0.49100 21.60000

7 Extremly inverse 28.20000 2.00000 0.12170 29.10000

per ANSI Trip

Release

8 Normally inverse 8.93410 2.09380 0.17966 9.00000

9 Short time inverse 0.26630 1.29690 0.03393 0.50000

10 Long time inverse 5.61430 1.00000 2.18592 15.75000

not per standard

11 RI-type inverse

not per standard

12 RXIDG-type inverse

Constants and formulae (t in s)

kt  =

1I

I

 Akt

B

B

−⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ ⋅=

⎟⎟⎟⎟⎟

 ⎠

 ⎞

⎜⎜⎜⎜⎜

⎝ 

⎛ 

−⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ ⋅=   C

1I

I

 Akt

B

B

1I

I

Rkt

B

B

−⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ ⋅=

⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ −

⋅=

BI

I

236.0339.0

1kt

⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ ⋅−⋅=

BI

Iln35.18.5kt

 

Page 7: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 7/44

[One-Box Solutions for Protection and Control] MiCOM P132  7 

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

Short-Circuit Direction Determination

Due to the short-circuit direction determinationfunction, the MiCOM P132 can be used as a

directional time-overcurrent protection device.For the individual overcurrent timer stages theuser may select whether the stage shall be

forward-directional, backward-directional or non-directional. Direction determination is performedin separate measuring systems for the phasecurrent and residual current timer stages,respectively.

In the direction-measuring system for the phasecurrent timer stages, the phase-to-phase voltageopposite to the selected phase current is used fordirection determination as a function of the typeof fault, and an optimum characteristic angle isemployed (see table “Directional characteristicsin short-circuit direction determination ”).  A

voltage memory is integrated to provide therequired voltage data for direction determinationin the event of 3-pole faults with a large 3-phasevoltage drop.

In the direction measuring system for the residualcurrent timer stages, direction is determinedusing the internally computed neutraldisplacement voltage; the characteristic angle isadjustable taking account of the various neutral-point treatments in the system. The directionmeasuring system for the residual current timerstages is not enabled until a set value for neutraldisplacement voltage is exceeded. The user may

select whether the triggering pre-orientation for anon-enabled direction measuring system forresidual current timer stages shall be blocked inthe event of phase current starting.

Meas.-

systemStarting

Characteristic

angle1)

I

meas

U

meas

 

P

 bzw.

N

P A  I1  VBC=VBN-VCN +45°

B I2  VCA =VCN-V AN +45°

C I3  V AB=V AN-VBN +45°

 A-B I1  VBC=VBN-VCN +60°

B-c I3  V AB=V AN-VBN +30°

C-A  I3  V AB=V AN-VBN +60°

 A-B-C I3  V AB=V AN-VBN +45°

G GF IN VNG=

  1/3(V AN+VBN+VCN )

-90°…+90°

(adjustable)

1) for phase sequence A - B - C

Variables selected for measurement

Protective Signaling

Protective signaling can be used in conjunctionwith short-circuit direction determination. For thispurpose the protection devices must be suitablyconnected by pilot wires or the optionalprotection interface InterMiCOM on both ends ofthe line section to be protected. The user may

select whether teleprotection will be controlled bythe direction measuring system of the phasecurrent timer stages only, by the directionmeasuring system of the residual current timerstages only, or by the direction measuringsystems of the phase current and residual currenttimer stages. For protection devices on the infeedside of radial networks, teleprotection can also becontrolled without the short-circuit directiondetermination function.

Protection Interface InterMiCOM

(Optional)InterMiCOM allows high performance permissiveand blocking type unit protection to beconfigured, plus transfer of any digital statusinformation between line ends. Intertripping issupported too, with channel health monitoringand cyclic redundancy checks (CRC) on thereceived data for maximum message security.

InterMiCOM provides eight end-end signal bits,assignable to any function within a MiCOMrelay’s programmable logic.

Default failsafe states can be set in case of

channel outage.

Page 8: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 8/44

[One-Box Solutions for Protection and Control] MiCOM P132  8 

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

Switch on to Fault Protection

Closing of a circuit breaker might inadvertentlylead to a short-circuit fault due to a feedergrounding connection not yet removed, forexample.

The manual close command is monitored for a

settable period of time. During this period, anundelayed trip command may be issuedautomatically on initialisation of the generalstarting (depending on the chosen operatingmode).

Auto-Reclosing Control

The auto-reclosing control (ARC) operates inthree-phase mode. ARC cycles with one high-speed reclosing (HSR) and multiple (up to nine)subsequent time-delay reclosing (TDR) may beconfigured by the user. Reclosing cycles withoutprior HSR are possible. For special applications,tripping prior to an HSR or TDR can be delayed.HSR and TDR reclosings are counted andsignaled separately. A test HSR can be triggeredvia any of the unit's interfaces.

Automatic Synchronism Check(Optional)

This function can be used in conjunction withautomatic or manual (re)closure or closecommand of the control functions. In non-radial

networks this ensures that reclosure or closecommand will proceed only if the synchronismconditions are met.

For the control functions a second mode with adecoupled operation of the automaticsynchronism check and close command isavailable.

Over-/Underfrequency Protection

Over-/underfrequency protection has four stages.Each of these can be operated in one of thefollowing modes:

•  Over-/underfrequency monitoring

•  Over-/underfrequency monitoring combinedwith differential frequency gradientmonitoring (df/dt) for system decouplingapplications

•  Over-/underfrequency monitoring combinedwith medium frequency gradient monitoring

( Δf/ Δt) for load shedding applications

Over-/Undervoltage Protection

The over-/undervoltage-time protection functionevaluates the fundamental wave of the phasevoltages, reference voltage and of the neutraldisplacement voltage as well as the positive-sequence voltage and negative-sequence voltage

obtained from the fundamental wave of the threephase-to-ground voltages.

Two definite-time-delay overvoltage stages eachare provided for evaluation of the neutraldisplacement voltage and negative-sequencevoltage.

Two additional definite-time-delay undervoltagestages each are provided for evaluation of thephase voltages and the positive-sequencevoltage. As an option, a minimum current levelcan be specified to enable the undervoltagestages.

Evaluation of the phase voltages can beperformed using either the phase-to-phasevoltages or the phase-to-ground voltages asdesired. For evaluating the neutral displacementvoltage, the user may choose between theneutral displacement voltage formed internallyfrom the three phase-to-ground voltages and theneutral displacement voltage formed externally(from the open delta winding of the voltagetransformer, for example) via the fourth voltagemeasuring input.

Directional Power ProtectionThe directional power protection monitorsexceeding the active and reactive power limit, apower drop and the reversal of direction atasymmetrically operated lines.

Evaluation of the power is performed using thefundamental wave of the phase currents and ofthe phase-to-ground voltages.

Page 9: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 9/44

[One-Box Solutions for Protection and Control] MiCOM P132  9 

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

Circuit Breaker Failure Protection

With the trip command, two timer stages arestarted for circuit breaker action monitoring. If thecurrent is still in excess of a set current thresholdafter the first timer stage has elapsed, a furthertrip command is issued. This could be used to

trigger a second trip coil, for example.Should the protection criterion continue to bemet after the second timer stage has elapsed, atrip command is issued to a higher-levelprotection system.

If a 'circuit breaker failure' signal is received viaan appropriately configured binary input while thegeneral starting condition persists, a CBF tripsignal is issued.

Circuit Breaker Monitoring

This function provides the user with severalcriteria for the assessment of circuit breakerwear:

•  Calculated number of remaining operationsbased on the CB wear curve

•  Mechanical operations count

•  Interrupted currents sum (linear and squared)

•   Accumulated current-time integrals of trips

For each of these criteria, a signaling thresholdcan be set by the user.

Circuit breaker wear curve

100000

10

100

1000

10000

0,1 1 10 100

Tripped current [kA]

 

If the CBM function is blocked, the accumulatedvalues and counts are frozen so that they remainunchanged by secondary protection testing.

To connect the basic device and the detachableHMI standardised cable (Ethernet cable, max.length 10 m) can be used. One connection cableof three meter length is included in theMiCOM P132 scope of delivery.

The settings of the accumulated values andcounts can be adjusted to allow for prior CBwear, CB servicing etc.

Ground-Fault Direction Determination

For the determination of the ground-fault

direction in isolated or Peterson-coilcompensated power systems several provenmethods are provided:

•  Steady-state power or admittance evaluationmethods - complemented by signalingschemes and tripping logic

•  Transient signal method (optional)

Ground Fault Direction DeterminationUsing Steady-State Values

The ground fault direction is determined by

evaluating the neutral displacement voltage andthe residual current (from a core balance orwindow-type current transformer). The directional

characteristic (cos ϕ  or sin ϕ  circuit) can be set tosuit the neutral-point treatment (resonant-

grounded or isolated-neutral). In the cos ϕ mode(for a resonant-grounded network), the adjustablesector angle also has an effect so that faultydirection decisions (resulting, for instance, fromthe phase angle error of the CT and VT) can besuppressed effectively. Operate sensitivity andsector angle can be set separately for the forwardand backward direction, respectively.

Either steady-state power or steady-stateadmittance can be selected for evaluation.

 Alternatively, an evaluation based on current onlycan be performed. In this case, only themagnitude of the filtered neutral current is usedas ground fault criterion.

Both procedures operate with either the filteredfundamental wave or the fifth harmoniccomponent in accordance with the chosensetting.

Transient Ground Fault DirectionDetermination(Optional)

The ground fault direction is determined byevaluating the neutral displacement voltagecalculated from the three phase-to-groundvoltages and the neutral current on the basis ofthe transient ground fault measuring procedure.The direction decision is latched. The user mayselect either manual or automatic resetting after aset time delay.

Page 10: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 10/44

[One-Box Solutions for Protection and Control] MiCOM P132  1

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

Motor Protection

For the protection of directly switched h.v.induction motors with thermally critical rotor, thefollowing specially matched protection functionsare provided:

•  Recognition of operating mode

•  Rotor overload protection using a thermalmotor replica

•  Motor operation hours run counter (controlfunctionality)

•  Choice of reciprocally quadratic orlogarithmic tripping characteristic

•  Inclusion of heat dispersion processes in therotor after several startups

•  Separate cooling periods for rotating andstopped motors

•  Startup repetition monitoring with reclosureblocking (see Figure 4)

•  Control logic for heavy starting andprotection of locked rotor

•  Loss of load protection

m

[%]

100

80

40

20

321

t

t

60

t

t

Overload Memory

Permissible number of StartupsBlocking

Three successive startups

Motor Start-Up Supervision

 

Using the optional resistance temperaturedetector inputs direct monitoring of thetemperature of the stator windings and thebearings can be realized.

Unbalance Protection

The negative-sequence current is determinedfrom the filtered fundamental wave of the threephase currents. The evaluation of the negative-sequence current is performed in two time-overcurrent stages with definite-time delay.

Page 11: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 11/44

[One-Box Solutions for Protection and Control] MiCOM P132  11 

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

Thermal Overload Protection

Using this function, thermal overload protectionfor lines, transformers and stator windings of h.v.motors can be realized. The highest of the threephase currents serves to track a first-orderthermal replica according to IEC 255-8. The

tripping time is determined by the set thermaltime constant τ   of the protected object and the

set tripping level Δϑtrip and depends on the

accumulated thermal load Δϑ0:

t = ln.

I

Iref 

2

- 0

I

Iref 

2

- Trip

 

The temperature ot the cooling medium can be

taken into account in the thermical replica usingthe optional resistance temperature inputs or the0 to 20 mA input.

The user has a choice of using a thermal replicaon the basis of either relative or absolutetemperature.

 A warning signal can be issued in accordance

with the set warning level Δϑwarning. As an

alternative method of generating a warning, thecyclically updated measured operating value ofthe predicted time remaining before tripping ismonitored to check whether it is falling below aset threshold.

Limit Monitoring

The phase currents, the phase-to-groundvoltages and the phase-to-phase voltages aremonitored. For 3-phase sets, the highest and thelowest value is determined. Also the neutraldisplacement and the reference voltage, thetemperatures of the resistance temperaturedetectors and the value of the linearised 0 to 20mA input are monitored. The evaluations uses anoperate value and time delay set by the user.Thereby, all values can be monitored forexceeding an upper limit or falling below a lowerlimit.

Limit value monitoring is not a fast protectionfunction and is intended to be used formonitoring and signaling purposes e.g. limittemperature monitoring.

Temperature detection of a motor for Limit monitoring and Thermal overload protection

RTD PhaseL1 L2 L3

RTD

 Ambient temperature/Cooling temperature

Bearing

Prime Sensor 

Backup Sensor 

RTD

RTD

   R   T   D

   R   T   D

   R   T   D

   R   T   D

   R   T   D

   R   T   D

   R   T   D

Stator    R   T   D

Stator 

Rotor 

   R   T   D

   R   T   D

Bearing

 

Page 12: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 12/44

[One-Box Solutions for Protection and Control] MiCOM P132  12

 

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

Programmable Logic

User-configurable logic enables the user to setup logic operations on binary signals within aframework of Boolean equations. By means of astraightforward configuration procedure, any ofthe signals of the protection device can be linked

by logic 'OR' or 'AND' operations with thepossibility of additional negation operations.

The output signal of an equation can be fed into afurther, higher-order equation as an input signalthus leading to a set of interlinked Booleanequations.

The output signal of each equation is fed to aseparate timer stage with two timer elementseach and a choice of operating modes. Thus theoutput signal of each equation can be assigned afreely configurable time characteristic.

The two output signals of each equation can be

configured to each available input signal. Theuser-configurable logic function is then able toinfluence the individual functions without externalwiring (block, reset, trigger, for example).

 Via non-storable continuous signals, monostabletrigger signals and bistable storedsetting/resetting signals, the Boolean equationscan be controlled externally via any of thedevice's interfaces.

Programmable logic

Output

signalsFunction groups

Spec. application

(programmable)

LOGIC

HMI

INP

F_KEY

PC

COMM1

COMM2

COMM3

GOOSE

Fixed device logic

DTOC, IDMT

 ARC, THERM, ...

Input

signals

HMI

OUTP

LED

PC

COMM1

COMM2

COMM3

GOOSE

 

Measured Data Input(Optional)

The optional analog I/O module provides a 0 to20 mA input for the acquisition of externallymeasured variables such as transducer outputs.The external input characteristics can be

linearized via adjustable interpolation points. Thisfeature also provides for an adaptation of therange to, for example, 4 to 20 mA or 0 to 10 mA.

The RTD module is equipped with 9 resistancetemperature detectors for direct temperatureacquisition. Depending on the set operatingmode, all the RTD's operate in parallel or theRTD's can be subdivided into regular inputs andreserve inputs which take over when thecorresponding regular inputs fail.

The measured variables acquired by the analogdata input function are monitored for exceeding

or falling below set limits. Furthermore, they areused by thermal overload protection function forthe acquisition of the coolant temperature.

Measured Data Output

The protection device provides the options ofoperating data output and fault data output. Theuser can select an output in BCD-coded formthrough relay contacts or an output in analogform as load-independent current (0 to 20 mA).For an output in BCD-coded form, an appropriatenumber of free output relays need to be available.

For the current output, a special analog I/Omodule is required.

Measuring-Circuit Monitoring

Measuring-circuit monitoring includes themonitoring of the phase currents and phase-to-phase voltages.

Phase current monitoring is based on theprinciple of maximum allowable magnitudeunbalance, whereby the arithmetic differencebetween the maximum and minimum phasecurrents - as referred to the maximum phase

current - is compared to the set operate value.Even with an economy-type CT connection (CT’sin only two phases) it is possible to monitor thephase currents given appropriate settings.

Phase-to-phase voltage monitoring is based on aplausibility check involving the phase currents. Ifa low current threshold setting is exceeded by atleast one phase current, the three phase-to-phase voltages are monitored for a set minimumlevel. In addition to magnitude monitoring, phasesequence monitoring of the phase-to-phasevoltages may be activated.

Page 13: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 13/44

[One-Box Solutions for Protection and Control] MiCOM P132  13 

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

Control Functions(optional)

The optional control functions of theMiCOM P132 are designed for the control of upto three electrically operated switchgear unitsequipped with electrical check-back signaling.

For this task, the MiCOM P132 is fitted with theoptional binary I/O module X (6I/6O) for thecontrol of switchgear units. This module providesbinary inputs for the acquisition of switchingpositions and output relays for switchingcommands.

For the control of switchgear units either thebinary inputs or the optional communicationinterface or the function keys of the local controlpanel can be used.

Up to 12 single-pole operating signals can beacquired and processed in accordance with their

significance for the substation (circuit breakerreadiness, for example). For the setting of thedebounce and chattering times, threeindependent setting groups are available. Thesecan be assigned to the switching positionsignaling inputs and single-pole operatingsignals.

The MICOM P132 issues switching command

outputs with the integration of switchingreadiness and permissibility tests; subsequentlythe MiCOM P132 monitors the intermediate

position times of the switchgear units. If aswitchgear malfunction is detected, this fact will

be indicated (e.g. by an appropriately configuredLED indicator).

Before a switching command output is executed,the interlocking logic of the MiCOM P132 will

check whether the new switchgear unit statecorresponds to a permissible bay or substationtopology. The interlocking logic is set out foreach bay in the default setting as bay interlockwith and without station interlock. By means of astraight-forward parameter setting procedure, theinterlocking equations can be adapted to theprevailing bay and substation topology. The

presentation and functioning of the interlockingsystem correspond to those of the programmablelogic.

For integration of the MiCOM P132 into anintegrated control system, the equations for thebay interlock with station interlock form the basisof interlock checking.

Without integration into the substation controlsystem or with integration using IEC 61850, thebay interlock without station interlock is used ininterlock checking; external ring feeders orsignals received via IEC 61850 may be includedin the interlocking logic.

If the bay or station topology (as applicable) ispermissible then the switching command isissued. If a non-permissible state would resultfrom the switching operation then the switchingcommand is rejected and a signal to this effect isissued.

If the bay type does not require all binary outputsthen the remaining outputs are available for freeconfiguration.

In addition to the switching command output, atriggering of binary outputs by continuouscommands is possible.

Page 14: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 14/44

[One-Box Solutions for Protection and Control] MiCOM P132  14 

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

Global Functions

Functions operating globally allow the adaptationof the unit's interfaces to the protected powersystem, offer support during commissioning andtesting and provide continuously updatedinformation on the operation, as well as valuable

analysis results following events in the protectedsystem.

Clock Synchronization

The device incorporates an internal clock with aresolution of 1ms. All events are time-taggedbased on this clock, entered in the recordingmemory according to their significance andsignaled via the communication interface. Alternatively two external synchronization signalscan be employed. Using one of thecommunication protocols Modbus, DNP3,IEC 60870-5-103, IEC 60870-5-101 or IEC 61850,

the device will be synchronized by a timetelegram from a higher-level substation controlsystem. Alternatively, it can be synchronized viathe IRIG-B signal input. The user can select aprimary and a backup source for synchronization.The internal clock will then be adjustedaccordingly and operate with an accuracy of±10 ms if synchronized via protocol and ±1ms if

synchronized via IRIG-B signal.

Parameter Subset Selection

The function parameters for setting the protection

functions are, to a large extent, stored in fourindependent parameter subsets. Switchingbetween these subsets is readily achieved viaany of the device's interfaces.

Operating Data Recording

For the continuous recording of processes insystem operation or of events, a non-volatile ringmemory is provided. The relevant signals, eachfully tagged with date and time at signal start andsignal end, are entered in chronologicalsequence. Included are control actions such asthe enabling or disabling of functions as well as

local control triggering for testing and resetting.The onset and end of events in the network, asfar as these represent a deviation from normaloperation (overload, ground fault or short-circuit,for example) are recorded.

Overload Data Acquisition

Overload situations in the network represent adeviation from normal system operation and canbe permitted for a brief period only. The overloadprotection functions enabled in the devicerecognize overload situations in the system and

provide for acquisition of overload data such asthe magnitude of the overload current, therelative heating during the overload situation andits duration.

Overload Recording

While an overload condition persists in thenetwork, the relevant signals, each fully taggedwith date and time at signal start and signal end,are entered into a non-volatile memory inchronological sequence. The measured overloaddata, fully tagged with the date and time ofacquisition, are also entered. Up to eightoverload situations can be recorded. If more thaneight overload situations occur without interimmemory clearance then the oldest overloadrecording is overwritten.

Ground Fault Data Acquisition

While a ground fault in a network with isolatedneutral or resonant grounding represents asystem fault, it is usually nevertheless possible, inthe first instance, to continue system operationwithout restrictions. The ground faultdetermination functions enabled in the protection

device recognize ground faults in the system andprovide for the acquisition of the associatedground fault data such as the magnitude of theneutral displacement voltage and the ground faultduration.

Ground Fault Recording

While a ground fault condition persists in thepower system, the relevant signals, each fullytagged with date and time at signal start andsignal end, are entered into a non-volatilememory in chronological sequence. Themeasured ground fault data, fully tagged with the

date and time of acquisition, are also entered. Upto eight ground faults can be recorded. If morethan eight ground faults occur without interimmemory clearance then the oldest ground faultrecording is overwritten.

Page 15: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 15/44

[One-Box Solutions for Protection and Control] MiCOM P132  15 

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

Fault Data Acquisition

 A short-circuit within the network is described asa fault.

The short-circuit protection functions enabled inthe devices recognize short-circuits within thesystem and trigger acquisition of the associated

measured fault data such as the magnitude of theshort-circuit current and the fault duration.

 As acquisition time, either the end of the fault orthe start of the trip command can be specified bythe user.

Triggering via an external signal is also possible.The acquisition of the measured fault data isperformed in the measuring loop selected by theprotective device and provides impedances andreactances as well as current, voltage and anglevalues.

The fault distance is determined from the

measured short-circuit reactance and is read outwith reference to the set 100% value of theprotected line section.

The fault location is output either with eachgeneral starting or only with a general startingaccompanied by a trip (according to the user'schoice).

Fault Recording

While a fault condition persists in the powersystem, the relevant signals, each fully tagged

with date and time at signal start and signal end,are entered into a non-volatile memory inchronological sequence.

The measured fault data, fully tagged with thedate and time of acquisition, are also entered.Furthermore, the sampled values of all analoginput variables such as phase currents andneutral current, phase-to-ground voltages andneutral displacement voltage are recorded duringa fault.

Up to eight faults can be recorded. If more thaneight faults occur without interim memoryclearance then the oldest fault recording isoverwritten.

Self-Monitoring

Comprehensive self-monitoring procedureswithin the devices ensure that internal hardwareor software errors are detected and do not causemalfunctions of the device.

 As the auxiliary voltage is turned on, a functional

test is carried out. Cyclic selfmonitoring tests arerun during operation.

If test results deviate from the default value thenthe corresponding signal is entered into the non-volatile monitoring signal memory.

The result of the fault diagnosis determineswhether a blocking of the protection and controlunit will occur or whether a warning only isissued.

Password protection

For variable configuration requirements thedevices are provided with a settable default –

password.

If required the function keys available with thetext HMI can be provided with settable barriers(password for each of the keys).

 Access barriers protect the enter mode or thefunction keys in order to guard againstinadvertent or unauthorized changing ofparameter settings or triggering of controlfunctions.

Page 16: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 16/44

[One-Box Solutions for Protection and Control] MiCOM P132  16 

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

Local Control

 All data required for operation of theMiCOM P132 are entered from the integratedlocal control panel, and the data important forsystem management are read out there as well.The following tasks can be handled via the local

control panel:•  Switchgear control

•  Readout and modification of settings

•  Readout of cyclically updated measuredoperating data and state signals

•  Readout of operating data logs and ofmonitoring signal logs

•  Readout of event logs (after overloadsituations or short-circuits in the powersystem)

•  Resetting of the unit and triggering of further

control functions designed to support testingand commissioning tasks

The MiCOM P132 local control panel (HMI)comprises the local control elements andfunctions described below.

Operation

(1) The integrated local control panel has agraphical back-lit LCD Display with 4 x 20resp. 16 x 21 alphanumeric characters.

23 resp. 17 LED indicators are provided for signal

display. A separate adhesive label is provided foruser-defined labeling of these LED indicatorsaccording to the chosen configuration.

(2) 5 LED indicators are permanently assigned tosignals.

(3) The remaining 18 LED indicators are availablefor free assignment by the user and can beconfigured for the colors red, green or yellow.Furthermore different operation and flashingmodes are available.

Menu tree

(4) By pressing the navigation keys

, , and guided by the LCDdisplay, the user moves within a plain textmenu. All setting parameters and measuredvariables as well as all local control functionsare arranged in this menu which isstandardized for all devices of the system.Changes to the settings can be prepared and

confirmed by means of the Enter Key

   G  which also serves to trigger local controlfunctions.In the event of erroneous entries, exit from theenter mode with rejection of the entries ispossible at any time by means of the

Clear Key

C  When the edit mode is not

activated, pressing the Clear Key has theeffect of resetting the indications.

Pressing the Read Key  provides directaccess to a preselected point in the menu.

Function keys

(5) 6 Function keys (F1…F6) are available for freeassignment to any logical binary input orcontrol function. This facilitates control, e.g. ofmanual trip and close commands.

Type label and PC interface

(6)  An upper cover identifying the product name.The cover may be raised to provide access tothe product model number and ratings.

(7)  A lower cover concealing the RS232 serial

interface to connect a personal computer.

(8) To guard the lower cover against unauthorized

opening it is provided a facility for fitting asecurity lead seal.

Page 17: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 17/44

[One-Box Solutions for Protection and Control] MiCOM P132  17 

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

Display panels

Display panels are automatically displayed forcertain operation conditions of the system.Priority increases from normal operation tooperation under overload or ground faultconditions and finally operation following a short

circuit in the system. The protection device thusprovides the measured value data relevant for theprevailing conditions.

The configuration of the local control panelallows the installation of measured value“panels” on the LCD display.

Devices with the optional control functions haveadditionally a control panel display to show theactive switchgear status and for local control viafunction keys.

 

C

Local control with text HMI

+

 

Page 18: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 18/44

[One-Box Solutions for Protection and Control] MiCOM P132  18 

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

Mechanical Design

The device is supplied in two case designs.

•  Surface-mounting case

•  Flush-mounting case

Both case types with optional Detachable HMI.With both case versions, connection is viathreaded terminal ends with the option of eitherpin or ring-terminal connection.

Two 40T flush-mounting cases can be combinedto form a complete 19" mounting rack.

Below figure shows the modular hardwarestructure of the device.

The plug-in modules may be combined to suit theindividual requirements. The components fitted inan individual unit can be determined from thetype identification label on the front panel of theunit.

The identification of the modules fitted in thedevice is carried out by the device itself. Duringeach startup of the device, the number and typeof fitted modules are established by interrogationvia the digital bus, the admissibility of the set offitted components is checked and appropriateconfiguration parameters - in accordance withthe fitted set of modules - are released forapplication. The device identification valuesadditionally read out by the device provideinformation on the type, variant and designversion of each individual module.

Transformer Module T

The transformer module converts the measuredcurrent and voltage variables to the internalprocessing levels and provides for electricalisolation. Alternatively a NCIT module for aconnection to non-conventional instrument

transformer is provided.

Processor Module P

The processor module performs theanalog/digital conversion of the measuredvariables as well as all digital processing tasks.

Power Supply Module V

The power supply module ensures the electricalisolation of the device as well as providing thepower supply. Depending on the chosen designversion, optical coupler inputs and output relays

are provided in addition.

Local Control Module L

The local control module encompasses all controland display elements as well as a PC interface forrunning the operating program S1. The localcontrol module is located behind the front paneland connected to the processor module via aribbon cable.

Bus Modules B

Bus modules are printed circuit boards (PCBs)without any active components. They provide the

electrical connection between the other modules.Two types of bus modules are used, namely theanalog and the digital bus PCB.

MiCOM

TRIP

 ALARM

OUT OFSERVICE

HEALTHY

EDIT MODE

GGC

GG

G

      G

     G

O I L/R

Page 19: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 19/44

[One-Box Solutions for Protection and Control] MiCOM P132  19 

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

Transient Ground Fault Evaluation

Module N(Option)

The optional transient ground fault moduleevaluates the measured variables according tothe transient ground fault evaluation scheme.

Binary I/O Modules X(Option)

The binary I/O modules are equipped with opticalcouplers for binary signal input as well as outputrelays for the output of signals and commands orcombinations of these.

Analog Modules Y(Option)

The optional RTD module is fitted with 9resistance temperature detector inputs. Theoptional analog module is fitted with a resistancetemperature detector input, a 20 mA input andtwo 20 mA outputs. One output relay each isassigned to the two 20 mA outputs. Additionallyfour optical coupler inputs are available.

Communication Module A(Option)

The optional communication modules provideone or two serial communication interfaces forthe integration of the protection and control unitinto a substation control system and for remote

access respectively a protection communicationinterface for the transfer of digital informationbetween two protection devices. Thecommunication module with serialcommunication interface(s) is plugged into theprocessor module.

Page 20: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 20/44

[One-Box Solutions for Protection and Control] MiCOM P132  2

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

Technical Data

CE Marking

This product complies with the essential requirements of the

following European directives:

Electromagnetic Compatibility Directive (EMC) 2004/108/ECLow Voltage Directive (LVD) 2006/95/EC

General Data

Design

Surface-mounting case suitable for wall installa-tion or flush-mounting case for 19" cabinets andfor control panels

Installation Position

 Vertical ± 30°

Degree of Protection

Per DIN VDE 0470 and EN 60529 or IEC 529.

IP 52; IP 20 for the rear connection area of theflush-mounting case.

Weight

Case 40T: approx. 7 kgCase 84T: approx. 11 kg

Dimensions

See Dimensions

Terminal Connection Diagrams

See Locations and Connections

Terminals

PC Interface X6)

Connector DIN 41652 connector,Type D-Sub, 9-pin.

Communication Interfaces COMM1 to COMM3

Optical plastic fibers (X7, X8 and X31, X32):F-SMA-interface per IEC 60874-2 per plastic fiber

orBFOC-(ST

® )-interface 2.5 per IEC 60874-10-1 per glass

fiberor

Leads (X9, X10, X33):Threaded terminal ends M2 for wire crosssections up to 1.5 mm

or (Only for InterMiCOM)RS 232 (X34):DIN 41652 connector,Type D-Sub, 9 pin.

Communication Interface IEC 61850

Optical plastic fibers (X7, X8):BFOC-(ST

® )-interface 2.5 per IEC 60874-10-1 per glass

fiberor

optical plastic fibers (X13):SC-interface per IEC60874-14-4 per glass fiber

andLeads (X12):RJ45 connector per ISO/IEC 8877

IRIG-B Interface X11)

BNC plug

Current-Measuring Inputs conventional)

Threaded terminals for pin-terminal connection:Threaded terminal ends M5,self-centering with wire protection for

conductor cross sections of ≤   4 mm2 

orThreaded terminals M4 for ring-terminal connection

Current/Voltage-Measuring Inputs NCIT)

DIN 41652 connector and socket,Type D-Sub, 9 pin.

Other Inputs and OutputsThreaded terminals for pin-terminal connection:

Threaded terminal ends M3,self-centering with wire protection forconductor cross sections of 0.2 to 2.5 mm

orThreaded terminals M4 for ring-terminal connection

Creepage Distances and Clearances

Per EN 61010-1 and IEC 664-1Pollution degree 3,working voltage 250 V,overvoltage category III,

impulse test voltage 5 kV

Environmental Conditions

Ambient Temperature Range

Recommended temperature range:

-5°C to +55°C or +23°F to +131°FLimit temperature range:

-25°C to +70°C or -13°F to +158°F

Ambient Humidity Range

75 % relative humidity (annual mean),

up to 56 days at ≤  95% relative humidity and 40 °C,condensation not permissible

Solar Radiation

 Avoid exposure of the front panel to direct solar radiation.

Page 21: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 21/44

[One-Box Solutions for Protection and Control] MiCOM P132  21 

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

Tests

Type Test

Tests according to EN 60255-6 or IEC 255-6

Environmental tests

Temperature stabilitiy test

Per IEC 60068-2-1-25 °C or -13 °F storage (96 hours)-40 °C or -40 °F operation (96 hours)

Per IEC 60068-2-2+85 °C or 185 °F storage (96 hours)+85 °C or 185 °F operation (96 hours)

Per IEC 60068-2-14Change of temperature, 5 cycles,1°C / min rate of change

Ambient humidity range test

Per IEC 60068-2-3

56 days at ≤ 93 % relative humidity and 40 °C,Per IEC 60068-2-30

Damp heat, cyclic (12 + 12 hours)

93 % relative humidity, + 25 …+ 55 °C

Corrosive environment tests

Industrial corrosive environment/

poor environmental control, mixed gas flow test.

Per IEC 60068-2-60: 1995, Part 2, Test Ke, Method (class) 321 days at 75% relative humidity and +30°Cexposure to elevated concentr. of H

2

S, NO2

, Cl2

 and SO2

 

EMC

Interference Suppression

Per EN 55022 or IEC CISPR 22, Class A

1 MHz Burst Disturbance Test

Per IEC 255 Part 22-1 or IEC 60255-22-1, Class III,

Common-mode test voltage: 2.5 kV,Differential test voltage: 1.0 kV,

Test duration: > 2 s, Source impedance: 200 Ω

Immunity to Electrostatic Discharge

Per EN 60255-22-2 or IEC 60255-22-2, Level 3,

Contact discharge, single discharges: > 10,Holding time: > 5 s, Test voltage: 6 kV,

Test generator: 50 to 100 MΩ, 150 pF / 330 Ω 

Immunity to Radiated Electromagnetic Energy

Per EN 61000-4-3 and ENV 50204, Level 3, Antenna distance to tested device:

> 1 m on all sides,Test field strength, frequ. band 80 to 1000 MHz:

10 V/m,Test using AM: 1 kHz / 80%,Single test at 900 MHz: AM 200 Hz / 100%

Electrical Fast Transient or Burst Requirements

Per IEC 60255-22-4, Test severity Level 4,Rise time of one pulse: 5 ns,Impulse duration (50% value): 50 ns,

 Amplitude: 4 kV / 2 kV, resp.,Burst duration: 15 ms, Burst period: 300 ms,

Burst frequency: 2.5 kHz, Source impedance: 50 Ω 

Surge Immunity Test

Per EN 61000-4-5 or IEC 61000-4-5, Level 4,

Testing of power supply circuits,asymmetrically/ symmetrically operated lines,Open-circuit voltage front time/time to half-value:

1.2 / 50 µs,

Short-circuit current front time/time to half-value:8 / 20 µs,

 Amplitude: 4 / 2 kV, Pulse frequency: > 5/min,

Source impedance: 12 / 42 Ω 

Immunity to Conducted Disturbances Induced by Radio

Frequency Fields

Per EN 61000-4-6 or IEC 61000-4-6, Level 3,

Disturbing test voltage: 10 V

Power Frequency Magnetic Field Immunity

Per EN 61000-4-8 or IEC 61000-4-8 , Level 4,Frequency: 50 Hz, Test field strength: 30 A/m

Alternating Component Ripple) in DC Auxiliary Energizing

Quantity

Per IEC 255-11, 12 %

Insulation

Voltage Test

Per IEC 255-5 or EN 61010, 2 kV AC, 60 sFor the voltage test of the power supply inputs, direct voltage(2.8 kV DC) must be used. The PC interface and the NCITinputs must not be subjected to the voltage test.

Impulse Voltage Withstand Test

Per IEC 255-5,Front time: 1.2 µs, Time to half-value: 50 µs,

Peak value: 5 kV, Source impedance: 500 Ω 

Mechanical Robustness

Vibration Test

Per EN 60255-21-1 or IEC 255-21-1, Test severity class 1,

Frequency range in operation:10 to 60 Hz, 0.035 mm, 60 to 150 Hz, 0.5 g,

Frequency range during transport: 10 to 150 Hz, 1 g

Shock Response and Withstand Test, Bump Test

Per EN 60255-21-2 or IEC 255-21-2, Test severity class 1,

 Acceleration: 5 g/15 g, Pulse duration: 11 ms

Seismic Test

Per EN 60255-21-3 or IEC 255-21-3, Test procedure A,

Class 1,Frequency range:

5 to 8 Hz, 3.5 mm / 1.5 mm8 to 35 Hz, 10/5 m/s2, 3 x 1 cycle

Vibration test 1)

Per DIN EN 60255-21-1 or IEC 255-21-1, Test severity class 2:Frequency range in operation:

10...60 Hz, 0.075 mm, 60...150 Hz, 1.0 g,Frequency range during transport: 10...150 Hz, 2 g

Shock response and withstand test, bump test 1)

Per DIN EN 60255-21-2 or IEC 255-21-2,acceleration and pulse duration:

Shock Response test to verify full operability(during operation): test severity class 2, 10 g für 11 ms,

Shock Response test to verify endurance(during transport): test severity class 1, 15 g für 11 ms

Shock bump test to verify permanent shock(during transport): test severity class 1, 10 g für 16 ms

Seismic test 1)

Per DIN EN 60255-21-3 or IEC 255-21-3,test procedure A, Class 2 frequency range:

5...8 Hz, 7.5 mm / 3.5 mm,8...35 Hz, 20 / 10 m/s2 3 × 1 cycle

Routine Test

Tests per EN 60255-6 or IEC 255-6

Voltage Test

Per IEC 255-5, 2.2 kV AC, 1 sFor the voltage test of the power supply inputs, direct voltage(2.8 kV DC) must be used. The PC interface inputs must notbe subjected to the voltage test.

Additional Thermal Test

100% controlled thermal endurance test, inputs loaded

1) Enhanced mechanical robustness for the following case variants:Flush mounted case, version 2 (with angle brackets and frame)Surface mounted case

Page 22: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 22/44

[One-Box Solutions for Protection and Control] MiCOM P132  22 

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

Ratings

Measurement Inputs

Nominal frequency f nom: 50 and 60 Hz (settable)

Operating range: 0.95 to 1.05 f nom 

Over-/Underfrequency Protection: 40...70 Hz

Current

Conventional inputs:Nominal current Inom: 1 and 5 A (settable)Nominal consumption per phase: < 0.1 VA at I nom 

Load rating:continuous 4 I nom 

for 10 s: 30 I nom  

for 1 s; 100 I nom 

Nominal surge current: 250 I nom 

Voltage

Conventional inputs:Nominal voltage V nom: 50 to 130 V AC (settable)

Nominal consumption per phase:< 0.3 VA at V nom = 130 V AC

Load rating: continuous 150 V AC

Binary Signal Inputs

Max. permissible voltage: 300 V DC

Switching threshold (as per order option)Standard variant: 18V (VA, nom: 24 ... 250  V DC):

Switching threshold range 14 V ... 19 V DCSpecial variant with switching thresholds from58 ... 72 % of the nominal supply voltage (V A, nom )(definitively "low" at V A  < 58 % of the nominal supply voltage,definitively "high" at V A  > 72 % of the nominal supply voltage):

"Special variant 73 V": nominal supply voltage 110 V DC"Special variant 90 V": nominal supply voltage 127 V DC"Special variant 146 V": nominal supply voltage 220 V DC"Special variant 155 V": nominal supply voltage 250 V DC

Power Consumption as per order option):Standard variant:

 V A  = 19...110V DC : 0,5 W +/-30%

 V A  > 110V DC : V A  ∗ 5 mA +/- 30 %Special variants:

 V A  > switching threshold: V A  ∗ 5mA +/-30 %Binary Count InputMaximum frequency of 20 Hz with pulse/interpulse ratio of 1:1

Output Relays

Rated voltage: 250 V DC, 250 V ACContinuous current:

Output relays of binary I/O module X (6I/6O) for control ofswitchgear units: 8 AOutput relays of other modules: 5 A

Short-duration current: 30 A for 0.5 sMaking capacity: 1000 W (VA) at L/R = 40 ms

Breaking capacity:0.2 A at 220 V DC and L/R = 40 ms

4 A at 230 V AC and cos ϕ = 0.4

Binary modules X (4H; 6I6H)with High-break contacts applicable to DC circuits onlyRated voltage: 250 VDCContinuous current: 10 AShort-duration current:

250 A for 0.03 s30 A for 3 s

Making capacity: 30 ABreaking capacity:

7500 W resistive or 30 A at 250 VDCmaximum values: 30 A and 300 VDC2500 W inductive (L/R = 40 ms) or 10 A at 250 VDCmaximum values: 10 A and 300 VDC

Analog Inputs and Outputs

Direct Current InputInput current: 0 to 26 mA

 Value range: 0.00 to 1.20 I DC,nom ( I DC,nom = 20 mA)Maximum permissible continuous current: 50 mAMaximum permissible input voltage: 17 V

Input load: 100 Ω Open-circuit monitoring: 0 to 10 mA (adjustable)Overload monitoring: > 24.8 mAZero suppression: 0.000 to 0.200 I DC,nom (adjustable)

Resistance Temperature detector:For analog module only Pt100 permitted,for RTD module Pt100, Ni100 or Ni120 permitted

 Value range: -40 to +215°C(Equivalent to -40 to +419°F)

3-wire configuration: max. 20 Ω per conductor.Open and short-circuited input permitted.Open-circuit monitoring:

Θ > +215°C (or Θ > +419°F) and Θ < -40°C (or Θ < -40°F)

Direct Current OutputOutput current: 0 to 20 mA

Maximum permissible load: 500 Ω Maximum output voltage: 15 V

Power Supply

Nominal Auxiliary VoltageV  A,nom: 48 to 250 V DC and 100 to 230 V AC or 

V  A,nom: 24 V DC (depends on ordering) 

Operating Rangefor direct voltage: 0.8 to 1.1 V  A,nom 

with a residual ripple of up to 12 % of V  A,nom 

for alternating voltage: 0.9 to 1.1 V  A,nom 

Nominal Consumptionat V  A  = 220 V DC and maximum number of modules fitted:

in case 40TE:Initial position approx.: 12.6 W

 Active position approx.: 34.1 Win case 84TE:

Initial position approx.: 14.5 W Active position approx.: 42.3 W

Start-Up Peak Current< 3 A, duration 0.25 ms

Stored-Energy Time

≥ 50 ms for interruption of V  A  ≥  220 V DC

Page 23: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 23/44

[One-Box Solutions for Protection and Control] MiCOM P132  23 

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

PC Interface

Transmission rate: 300 to 115,200 baud (settable)

Communication Interface COMM1 to COMM3

Communication interface COMM1:

Protocol can be switched between

IEC 60870-5-103, IEC 870-5-101, Modbus, DNP 3.0, CourierTransmission speed: 300 to 64000 bit/s (settable)

Communication interface COMM2:

Protocol per IEC 60870-5-103Transmission speed: 300 to 57600 bit/s (settable)

Protection interface COMM3:

InterMiCOM, asynchronous, full duplexTransmission speed: 600 to 19200 bit/s (settable)

Wire Leads

Per RS 485 or RS 422, 2kV-isolation,Distance to be bridged:

peer-to-peer link: max. 1200 mmulti-endpoint link: max. 100 m

Plastic Fiber Connection

Optical wavelength: typ. 660 nmOptical output: min. -7.5 dBmOptical sensitivity: min. -20 dBmOptical input: max. -5 dBmDistance to be bridged: max. 45 m 1) 

Glass Fiber Connection G 50/125

Optical wavelength: typ. 820 nmOptical output: min. -19.8 dBmOptical sensitivity: min. -24 dBmOptical input: max. -10 dBmDistance to be bridged: max. 400 m 1) 

Glass Fiber Connection G 62,5/125

Optical wavelength: typ. 820 nmOptical output: min. -16 dBmOptical sensitivity: min. -24 dBmOptical input: max. -10 dBm

Distance to be bridged: max. 1400 m 1) 

Communication Interface IEC

 

61850

Ethernet based communication per IEC 61850

Wire Leads

RJ45, 1.5kV-isolation,Transmission rate: 10 resp.100 Mbit/sDistance to be bridged: max. 100 m

Optical Fiber 100 Mbit/s)

ST- or SC-interfaceOptical wavelength: typ. 1300 nmFor glass fiber G50/125

Optical output: min. –23.5 dBmOptical sensitivity: min. -31 dBmOptical input: max. -14 dBm

For glass fiber G62.5/125Optical output: min. -20 dBmOptical sensitivity: min. -31 dBmOptical input: max. -14 dBm

IRIG-B Interface

Format B122, Amplitude modulated,1 kHz carrier signal, BCD time-of-year code

1) Distance to be bridged for optical outputs and inputs thatare equal on both ends, taking into account a systemreserve of 3 dB and typical fiber attenuation.

Page 24: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 24/44

[One-Box Solutions for Protection and Control] MiCOM P132  24 

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

Typical Characteristic DataMain Function

Minimum output pulse for a trip command: 0.1 to 10 s(settable)Output pulse for a close command: 0.1 to 10 s (settable)

Definite-Time and Inverse-Time Overcurrent Protection

Operate time inclusive of output relay (measured variable from

0 to 2-fold operate value):≤ 40 ms, approx. 30 ms

Reset time (measured variable from 2-fold operate value to 0):

≤ 40 ms, approx. 30 msStarting resetting ratio: ca. 0.95

Short-Circuit Direction Determination

Nominal acceptance angle for forward decision: ±90 °

Resetting ratio forward/backward recognition: ≤ 7 °Base point release for phase currents: 0.1 I nom 

Base point release for phase-to-phase voltages:0.002 V nom at V nom = 100 V

Base point release for residual current: 0.01 I nom 

Base point release for neutral displacement voltage:

0.015 to 0.6 V nom / √3 (adjustable)

Over-/Undervoltage Protection

Operate time inclusive of output relay (measured variable fromnominal value to 1.2-fold operate value or measured variablefrom nominal value to 0.8-fold operate value):

≤ 40 ms, approx. 30 msReset time (measured variable from 1.2-fold operate value tonominal value or measured variable from 0.8-fold operatevalue to nominal value):

≤ 45 ms, approx. 30 msStarting resetting ratio: settable hysteresis 1...10%

Directional Power Protection

Operate time inclusive of output relay (measured variable fromnominal value to 1.2-fold operate value or measured variablefrom nominal value to 0.8-fold operate value):

≤ 60 ms, approx. 50 msReset time (measured variable from 1.2-fold operate value to

nominal value or measured variable from 0.8-fold operatevalue to nominal value):

≤ 40 ms, approx. 30 msResetting ratio for P>, Q>: settable hysteresis 0.05...0.95

P<, Q<: settable hysteresis 1.05...20

Deviations of the Operate Values‘Reference Conditions’

Sinusoidal signals with nominal frequency f nom ,

total harmonic distortion ≤ 2 %, ambient temperature 20 °Cand nominal auxiliary voltage V  A,nom

‘Deviation’

Deviation relative to the setting under reference conditions

Measuring-circuit monitoring

Operate values : ± 3 % 

Overcurrent-Time Protection

Operate values: ± 5 %

Short-circuit direction determination

Operate values: ± 10 °

Motor and Thermal Overload Protection

Reaction time: ± 7.5 % at I/Iref =6

Over-/Underfrequency Protection

Operate values f<>: +/- 30 mHz ( f nom = 50 Hz)

+/- 40 mHz ( f nom = 60 Hz)

Operate values df/dt: +/- 0,1 Hz/s ( f nom = 50 or 60 Hz)

Over-/Undervoltage Protection

Operate values V<>, Vref<>, Vpos<>: ± 1 %(setting 0.6…1.4 V nom )

Operate values VNG>, Vneg>: ± 1 %(setting > 0.3 V nom )

Unbalance Protection

Operate values: ± 5 %

Directional Power Protection

Operate values P<>, Q<>: ± 5 %

GF Direction Determination

Operate values: VNG>, IN,act , IN,reac, IN> ± 3 %

Sector Angle: 1 °

Deviations of the Timer Stages‘Reference Conditions’

Sinusoidal signals with nominal frequency f nom ,total harmonic distortion ≤ 2 %, ambient temperature 20 °Cand nominal auxiliary voltage V  A,nom

‘Deviation’

Deviation relative to the setting under reference conditions

Definite-Time Stages

± 1% + 20...40 ms

Inverse-Time Stages

± 5 % + 10 to 25 ms (measured variable greater than 2 I ref )

for IEC characteristic extremely inverse and for thermaloverload protection:± 7.5 % + 10 to 20 ms

Deviations in Measured Data Acquisition‘Reference Conditions’

Sinusoidal signals with nominal frequency f nom ,

total harmonic distortion ≤ 2 %, ambient temperature 20 °Cand nominal auxiliary voltage V  A,nom

‘Deviation’

Deviation relative to the setting under reference conditions

Operating Data

Currents / measuring inputs: ± 1 % Voltages / measuring input: ± 0.5 %Currents / internally calculated : ± 2 %

 Voltages / internally calculated : ± 2 % Active and reactive power / energy:

approx. ± 2 % of meas. value for cos ϕ = ± 0.7

approx. ± 5 % of meas. value for cos ϕ = ± 0.3Load angle: ± 1 °Frequency: ± 10 mHz

Fault Data

Short-circuit current and voltage: ± 3 %Short-circuit impedance, reactance and Fault location: ± 5 %

Internal Clock

With free running internal clock: < 1 min / monthWith external synchronization

via protocol, synch. interval ≤  1 min: ± 10 ms

via IRIG-B signal input: ± 1 ms

Resolution in measured Data AcquisitionTime Resolution

20 sampled values per period

Phase Currents

Dynamic range: 100 I nom resp. 25 I nom 

 Amplitude resolutionat I nom = 1 A: 6.1 mA r.m.s. resp. 1.5 mA r.m.s.

at I nom = 5 A: 30.5 mA r.m.s. resp. 7.6 mA r.m.s.

Residual Current

Dynamic range: 16 I nom resp. 2 I nom 

 Amplitude resolutionat I nom = 1 A: 0.98 mA r.m.s. resp. 0.12 mA r.m.s.

at I nom = 5 A: 4.9 mA r.m.s. resp. 0.61 mA r.m.s.

Voltage

Dynamic range: 150 V Amplitude resolution: 9.2 mV r.m.s.

Page 25: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 25/44

[One-Box Solutions for Protection and Control] MiCOM P132  25 

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

Address List

Function Parameters

Global Functions

PC link PC):

Command blocking: No/Yes

Sig./meas.val.block.: No/Yes

Commun ication link CO MM1):

Command block. USER: No/YesSig./meas.block.USER: No/Yes

Communication Link CO MM2):

Command block. USER: No/YesSig./meas.block.USER: No/Yes

Binary and analog output OUTP):

Outp.rel.block USER: No/Yes

Main function MAIN):

Device on-line: No (= off) /Yes (= on)Test mode USER: No/YesNominal frequ. fnom: 50 Hz/60 HzPhase sequence: A – B - C/A – C - BTime tag:

1stEgde.,OpMem sorted1stEgde.,OpMem unsortafter debounce time

Inom C.T. prim.: 1..10000 AIN,nom C.T. prim.: 1....10000 A

 Vnom V.T. prim.: 0.1....1000.0 kV VNG,nom V.T. prim.: 0.1....1000.0 kV Vref,nom V.T. prim.: 0.1...1000.0 kVInom prim.NCIT: 50...4000 AIN,nom prim. NCIT: 10...800 A

 Vnom prim. NCIT:0.1...1000,0 kVPh. err. VAG,1 NCIT: -5.0…5.0°Ph. err. VBG,1 NCIT: -5.0…5.0°Ph. err. VCG,1 NCIT: -5.0…5.0°Ph. err. VAG,2 NCIT: -5.0…5.0°

Ph. e. VBG/Vref,2 NCIT: -5.0…5.0°Ph. err. VCG,2 NCIT: -5.0…5.0°Channel select NCIT:

No channelChannel 1 onChannel 2 on

Inom device: 1.0 A/5.0 AIN,nom device: 1.0 A/5.0 A

 Vnom V.T. sec.: 50...130 V VNG,nom V.T. sec.: 50...130 V Vref,nom V.T. sec.: 30...130 VConn. meas. circ. IP: Standard/OppositeConn. meas. circ. IN: Standard/OppositeMeas. value rel. IP: 0.000...0.200 InomMeas. value rel. IN: 0.000...0.200 IN,nomMeas. value rel. V: 0.000...0.200 Vnom

Meas. val. rel. VNG: 0.000...0.200 VNE,nomMeas. val. rel. Vref: 0,000...0,200 Vref,nomOp. mode energy cnt.: Procedure 1/ Procedure 2Settl. t. IP,max,del: 0.1...60.0 minFct.assign. block. 1: see selection tableFct.assign. block. 2: see selection tableFct.assig.trip cmd.1: see selection tableFct.assig.trip cmd.2: see selection tableFct. assign. fault: see selection tableTrip cmd.block. USER: No/YesMin.dur. trip cmd. 1: 0.10...10.00 sMin.dur. trip cmd. 2: 0.10...10.00 sLatching trip cmd. 1: No/YestCB,close : 0.000…1.000 sLatching trip cmd. 2: No/YesClose cmd.pulse time 0.10...10.00 s

Sig. asg. CB open: see selection tableSig. asg. CB closed: see selection tablevalid for y = ‚1‘ to  ‚8‘  

Debounce time gr. y: 0.00...2.54 sChatt.mon. time gr. y: 0.0...25.4 s

Change of state gr. y: 0...254Cmd. dur.long cmd.: 1...254 sCmd. dur. short cmd.: 1...254 sElectrial Control: Remote/LocalDelay Man.Op.Superv.: 0...255 sW. ext. cmd. termin.: No/YesInp.asg. ctrl.enabl. Without functionInp.asg.interl.deact: see selection tableInp.asg. L/R key sw.: see selection table

 Auto-assignment I/O: No/YesInp.assign. tripping: see selection tableProt.trip>CB tripped:

Without functionGen. trip command 1Gen. trip command 2Gen.trip command 1/2

Inp. asg. CB trip: see selection tableInp.asg.CB tr.en.ext: see selection tableInp.asg. CB trip ext: see selection tableInp.asg. mult.sig. 1: see selection tableInp.asg. mult.sig. 2: see selection table

Parameter subset selection PSS):

Control via USER: No/YesParam.subs.sel. USER:

Parameter subset 1Parameter subset 2Parameter subset 3Parameter subset 4

Keep time: 0.000...65.000 s / Blocked

Selfmonitoring SFMON):

Fct. assign. warning: see selection table

Fault data acquisition FT_DA):

Line length: 0.01...500.00 kmLine reactance:

0.10...200.00 Ω for Inom = 1.0 A

0.02...40.00 Ω for Inom = 5.0 A Angle kG: -180...180 ° Abs. value kG: 0.00...8.00Start data acquisit.: End of fault/Trigg., trip, GS endOutput fault locat.:

On general startingOn gen.start.w.trip

Fault recording FT_RC):

Fct. assig. trigger: see selection tableI>: 0.01...40.00 Inom / BlockedPre-fault time: 1...50 periodsPost-fault time: 1...50 periodsMax. recording time: 5...750 periods

Page 26: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 26/44

[One-Box Solutions for Protection and Control] MiCOM P132  26 

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

Main Functions

Main function MAIN):

Syst.IN enabled USER: No/Yes

Definite-time overcurrent protection DTOC):

General enable USER: No/Yes

Inverse-time overcurrent protection IDMT1 resp. IDMT2):

General enable USER: No/Yes

Shortcircuit direction determination SCDD):

General enable USER: No/Yes

Switch on to fault protection SOTF):

General enable USER: No/YesOperating mode:

Trip by I>Trip by I>>Trip b< I>>>Trip by gen. start.

Manual close timer: 0.00...10.00 s

Protective signaling PSIG):

General enable USER: No/Yes

Autoreclosing control ARC):

General enable USER: No/Yes

Sig.asg.trip t.GFDSS:Starting LSStarting Y(N)>Starting LS/Y(N)>

Fct.assign. tLOGIC: see selection table

Automatic synchronism check ASC):

General enable USER: No/YesTransm.cycle,meas.v.: 0...10 s

Ground fault direction determination using

steady-state values (GFDSS):General enable USER: No/YesOperating mode:

Steady-state powerSteady-state currentSteady-state admitt.

Transient ground fault direction

determination (TGFD):General enable USER: No/Yes

Motor protection MP):

General enable USER: No/YesHours_Run >: 1…65.000 h

Thermal overload protection THERM):

General enable USER: No/YesRelative replica: No/Yes

 Absolute replica: No/Yes

Unbalance protection I2>):

General enable USER: No/Yes

Over-/undervoltage protection V<>):

General enable USER: No/Yes

Over-/ underfrequency protection f<>):

General enable USER: No/YesSelection meas. volt:

 Voltage A-G Voltage B-G Voltage C-G Voltage A-B Voltage B-C

 Voltage C-AEvaluation time: 3...6 Periods

Undervolt. block. V<: 0.20...1.00 Vnom(/ √3)

Directional power protection P<>):

General enable USER: No/Yes

Circuit breaker failure protection CBF):

General enable USER: No/YesStart with man. Trip: No/YesFct.assign. CBaux: see selection tableI<: 0.05...20.00 Inomt1 3p: 0.00...100.00 s / Blockedt2: 0.00...100.00 s / BlockedMin.dur. trip cmd. t1: 0.10...10.00 sMin.dur. trip cmd. t2: 0.10...10.00 sLatching trip cmd. t1: No/YesLatching trip cmd. t2: No/Yes

Delay/starting trig.: 0.00...100.00 s / BlockedDelay/fault beh. CB: 0.00...100.00 s / BlockedDelay/CB sync. superv: 0.00...100.00 s / Blocked

Circuit breaker monitoring CBM)

General enable USER: No/YesBlocking USER: No/YesSig.asg. trip cmd.: see selection tableOperating mode:

with trip cmd. onlywith CB sig.EXT onlyCB sig.EXT or trip

Inom,CB: 1...65000 APerm. CB op. Inom,CB: 1...65000Med.curr. Itrip,CB: 1...65000 A / BlockedPerm. CB op. Imed,CB: 1...65000 / Blocked

Max.curr. Itrip,CB: 1...65000 APerm. CB op. Imax,CB: 1...65000No. CB operations >: 1...65000Remain No. CB op. <: 1...65000

ΣItrip>: 1...65000 Inom,CB

ΣItrip**2>: 1...65000 Inom,CB**2

ΣI*t>: 1...4000 kAsCorr. acqu.time trip 0.000…0.200 sCorr.acqu.t. CB sig. -0.200…0.200 s

Measuring circuit monitoring MCMO N):

General enable USER: No/YesOp. mode Idiff>:

WithoutIA,ICIA, IB, IC

Idiff>: 0.25...0.50 IP,max

 Vmin<: 0.40...0.90 Vnom / BlockedOperate delay: 0.50...10.00 s / BlockedPhase sequ. monitor.: No/YesFF,Vref enabled USER: No/YesOper. delay FF, Vref: 00.00...10.00 s

Page 27: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 27/44

[One-Box Solutions for Protection and Control] MiCOM P132  27 

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

Limit value monitoring LIMIT):

General enable USER: No/YesI>: 0.10... 2.40 Inom/ BlockedI>>: 0.10...2.40 Inom/ BlockedtI>: 1...1000 s / BlockedtI>>: 1...1000 s / BlockedI<: 0.10... 2.40 Inom/ BlockedI<<: 0.10... 2.40 Inom/ Blocked

tI<: 1...1000 s / BlockedtI<<: 1...1000 s / Blocked

 VPG>: 0.10... 2.50 Vnom/ √3 / Blocked

 VPG>>: 0.10... 2.50 Vnom/ √3 / BlockedtVPG>: 1...1000 s / BlockedtVPG>>: 1...1000 s / Blocked

 VPG<: 0.10... 2.50 Vnom/ √3 / Blocked

 VPG<<: 0.10... 2.50 Vnom/ √3 / BlockedtVPG<: 1...1000 s / BlockedtVPG<<: 1...1000 s / Blocked

 VPP>: 0.10... 1.50 Vnom / Blocked VPP>>: 0.10... 1.50 Vnom / BlockedtVPP>: 1...1000 s / BlockedtVPP>>: 1...1000 s / Blocked

 VPP<: 0.10... 1.50 Vnom / Blocked VPP<<: 0.10... 1.50 Vnom / Blocked

tVPP<: 1...1000 s / BlockedtVPP<<: 1...1000 s / Blocked

 VNG>: 0.010... 1.000 Vnom / Blocked VNG>>: 0.010... 1.000 Vnom / BlockedtVNG>: 1...1000 s / BlockedtVNG>>: 1...1000 s / Blocked

 Vref>: 0.10...2.50 Vnom/ Blocked Vref>>: 0.10...2.50 Vnom/ BlockedtVref>: 1...1000 s / BlockedtVref>>: 1...1000 s / Blocked

 Vref<: 0.10...2.50 Vnom/ Blocked Vref<<: 0.10...2.50 Vnom/ BlockedtVref<: 1...1000 s / BlockedtVref<<: 1...1000 s / BlockedIDC,lin>: 0.100...1.100 IDC,nomIDC,lin>>: 0.100...1.100 IDC,nom

tIDC,lin>: 0.00...20.00 stIDC,lin>>: 0.00...20.00 sIDC,lin<: 0.100...1.100 IDC,nomIDC,lin<<: 0.100...1.100 IDC,nomtIDC,lin<: 0.00...20.00 stIDC,lin<<: 0.00...20.00 sT>: -20...200°CT>>: -20...200°CtT>: 0...1000 s / BlockedtT>>: 0...1000 s / BlockedT<: -20...200°CT<<: -20...200°CtT<: 0...1000 s / BlockedtT<<: 0...1000 s / Blockedvalid for y = ‚1‘ to ‚9‘

Ty>: -20...200°C

Ty>>: -20...200°CtTy>: 0...1000 s / BlockedtTy>>: 0...1000 s / BlockedTy<: -20...200°CTy<<: -20...200°CtTy<: 0...1000 s / BlockedtTy<<: 0...1000 s / Blocked

Logic LOGIC):

General enable USER: No/Yesvalid for y = ‚1‘ to ‚8‘  

Set 1 USER: No/Yesvalid for y = = ‚1‘ to ‚32‘  

Fct.assignm. outp. y: see selection tableOp. mode t output y:

Without timer stage

Oper./releas.delayOper.del./puls.dur.Op./rel.delay,retrigOp.del./puls.dur.,rtMinimum time

Time t1 output y: 0.00...600.00 sTime t2 output y: 0.00...600.00 sSig.assig. outp. y: see selection tableSig.assig.outp. y(t): see selection table

Signaling SIG_1):

valid for y = ‚S001‘ to  ‚S040‘  Designat. signal y: see selection tableOper. mode sig. y:

Without functionStart/end signalTransient signal

Gr.asg. debounc. y:Group 1 ... Group 8

Min. sig. dur. y: 0...254 s

Commands CMD_1):

valid for y = ‚C001‘ to  ‚C026‘  Design. command y: see selection tableOper. mode cmd. y:

Long commandShort commandPersistent command

Page 28: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 28/44

[One-Box Solutions for Protection and Control] MiCOM P132  28 

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

Parameter Subset

valid for parameter subsets x = 1 to 4

Measured Data Input MEASI):

BackupTempSensor:NoneGroup 1 - 2Group 1 - 2/3

Main function MAIN):

Neutrl-pt threat. PSx:Low-imped. groundingIsolated/res.ground.

Hld time dyn.par. PSx: 0.00...100.00 s / BlockedBl.tim.st. IN,neg PSx:

WithoutFor single-ph. startFor multi-ph. start.

Gen. start. mode PSx: W/o start. IN, Ineg/With start. IN, InegOp. rush restr. PSx:

WithoutNot phase-selectivePhase-selective

Rush I(2*fn)/I(fn) PSx: 10...35 %I> lift rush restr. PSx: 5.0...20.0 Inom / Blocked

Phase reversal I PSx: No swap; A-B/ B-C/ C-A swappedSuppr.start. sig. PSx: 0.0...100.0 stGS PSx: 0.00...100.00 s / Blocked

Definite-time overcurrent protection DTOC):

Enable PSx: No/YesI>: 0.1...40.0 Inom / BlockedI> dynamic: 0.1...40.0 Inom / BlockedI>>: 0.1...40.0 Inom / BlockedI>> dynamic: 0.1...40.0 Inom / BlockedI>>>: 0.1...40.0 Inom / BlockedI>>> dynamic: 0.1...40.0 Inom / BlockedtI>: 0.00...100.00 s / BlockedtI>>: 0.00...100.00 s / BlockedtI>>>: 0.00...100.00 s / BlockedIneg> PSx: 0.1...25.0 Inom / BlockedIneg> dynamic PSx: 0.1...25.0 Inom / BlockedIneg>> PSx: 0.1...25.0 Inom / BlockedIneg>> dynamic PSx: 0.1...25.0 Inom / BlockedIneg>>> PSx: 0.1...25.0 Inom / BlockedIneg>>> dynamic PSx: 0.1...25.0 Inom / BlockedtIneg> PSx: 0.00...100.00 s / BlockedtIneg>> PSx: 0.00...100.00 s / BlockedtIneg>>> PSx: 0.00...100.00 s / BlockedEvaluation IN> PSx: calculated/MeasuredEvaluation IN>> PSx: calculated/MeasuredEvaluation IN>> PSx: calculated/MeasuredIN>: 0.002...8.000 Inom / BlockedIN> dynamic: 0.020...8.000 Inom / BlockedIN>>: 0.002...8.000 Inom / BlockedIN>> dynamic: 0.020...8.000 Inom / BlockedIN>>>: 0.002...8.000 Inom / BlockedIN>>> dynamic: 0.020...8.000 Inom / BlockedIN>>>>: 0.01...40.00 Inom / BlockedIN>>>> dynamic: 0.01...40.00 Inom / BlockedtIN>: 0.00...100.00 s / BlockedtIN>>: 0.00...100.00 s / BlockedtIN>>>: 0.00...100.00 s / BlockedtIN>>>>: 0.00...100.00 s / BlockedPuls.prol.IN>,interm: 0.00...10.00 stIN>,interm.: 0.00...100.00 s / BlockedHold-time tIN>,intm.: 0.0...600.0 sMode Timer start : With starting, With direction

Inverse-time overcurrent protection IDMT1 resp. IDMT2):

Enable PSx: No/YesIref,P PSx: 0.10...4.00 Inom / BlockedIref,P dynamic PSx: 0.10...4.00 Inom / BlockedCharacteristic P PSx:

Definite TimeIEC Standard InverseIEC Very Inverse

IEC Extr. InverseIEC Long Time Inv.IEEE Moderately Inv.IEEE Very InverseIEEE Extremely Inv.

 ANSI Normally Inv. ANSI Short Time Inv. ANSI Long Time Inv.RI-Type InverseRXIDG-Type Inverse

Factor KI,P PSx 1.00...10.00Factor kt,P PSx: 0.05...10.00Min. trip t. P PSx: 0.00...10.00 sHold time P PSx: 0.00...600.00 sRelease P PSx: Without delay/Delayed as per char.Evaluation IN PSx: calculated/Measured

valid for y = ‚neg‘ or ‚N‘:Iref,y PSx: 0.01...0.80 Inom / BlockedIref,y dynamic PSx: 0.01...0.80 Inom / BlockedCharacteristic y PSx:

Definite TimeIEC Standard InverseIEC Very InverseIEC Extr. InverseIEC Long Time Inv.IEEE Moderately Inv.IEEE Very InverseIEEE Extremely Inv.

 ANSI Normally Inv. ANSI Short Time Inv. ANSI Long Time Inv.RI-Type Inverse

RXIDG-Type InverseFactor KI,y 1.00…10.00Factor kt,y PSx: 0.05...10.00Min. trip t. y PSx: 0.00...10.00 sHold time y PSx: 0.00...600.00 sRelease y PSx:

Without delay/Delayed as per char.Mode Timer start PSx With starting/ With direction

Short-circuit direction determination SCDD):

Enable PSx: No/YesTrip bias: No/Yesvalid values for:

Direction tI>:Direction tI>>:Direction tI>>>:Direction tIref,P>:

Direction tIN>:Direction tIN>>:Direction tIN>>>:Direction tIref,N>:

Forward directionalBackward directionalNon-directional

Charact. angle G: -90... -45...90 °Evaluation IN Calculated, Measured

 VNG>: 0.015... 0.100...0.600 Vnom/ √3Evaluation VNG Calculated, MeasuredBlock. bias G: No/YesOper.val. Vmemory: 0.01...1.00 Vnom

Page 29: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 29/44

[One-Box Solutions for Protection and Control] MiCOM P132  29 

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

Protective signaling PSIG):

Enable PSx: No/YesTripping time: 0.00...10.00 sRelease time send: 0.00...10.00 sDC loop op. mode: Transm.rel.break con/Transm.rel.makecon.Direction dependence:

Without

Phase curr. systemResidual curr.systemPhase/resid.c.system

Autoreclosing control ARC):

Enable PSx: No/YesCB clos.pos.sig. PSx: Without/WithOperating mode PSx:

HSR/TDR permittedTDR only permittedTest HSR only permit

Operative time PSx: 0.00...10.00 sHSR trip.time GS PSx: 0.00...10.00 s / BlockedHSR trip.time I> PSx: 0.00...10.00 s / BlockedHSR trip.time I>>PSx: 0.00...10.00 s / BlockedHSRtrip.time I>>>PSx: 0.00...10.00 s / BlockedHSR trip.time IN>PSx: 0.00...10.00 s / Blocked

HSRtrip.time IN>>PSx: 0.00...10.00 s / BlockedHSRtrip.t. IN>>> PSx: 0.00...10.00 s / BlockedHSRtrip.t. IrefP>PSx: 0.00...10.00 s / BlockedHSRtrip.t.IrefN>PSx: 0.00...10.00 s / BlockedHSRtrip.t. Iref,neg> PSx: 0.00...10.00 s / BlockedHSR trip t.GFDSS PSx: 0.00...10.00 s / BlockedHSRtrip.t. LOGIC PSx: 0.00...10.00 s / BlockedHSR block.f. I>>>PSx: No/YesHSR dead time PSx: 0.15...600.00 sNo. permit. TDR PSx: 0...9TDR trip.time GS PSx: 0.00...10.00 s / BlockedTDR trip.time I> PSx: 0.00...10.00 s / BlockedTDR trip.time I>>PSx: 0.00...10.00 s / BlockedTDRtrip.time I>>>PSx: 0.00...10.00 s / BlockedTDR trip.time IN>PSx: 0.00...10.00 s / BlockedTDRtrip.time IN>>PSx: 0.00...10.00 s / Blocked

TDRtrip.t. IN>>> PSx: 0.00...10.00 s / BlockedTDRtrip.t. IrefP>PSx: 0.00...10.00 s / BlockedTDRtrip.t.IrefN>PSx: 0.00...10.00 s / BlockedTDRtrip.t. Iref,neg> PSx: 0.00...10.00 s / BlockedTDR trip t.GFDSS PSx: 0.00...10.00 s / BlockedTDRtrip.t. LOGIC PSx: 0.00...10.00 s / BlockedTDR dead time PSx: 0.15...600.00 sTDR block.f. I>>>PSx: No/YesReclaim time PSx: 1...600 sBlocking time PSx: 0...600 s

Automatic synchonism check ASC):

Enable PSx: No/YesCB assignment PSx: see selection tableSystem integrat. PSx:

 Autom.synchron.check Autom.synchron.control

 Active for HSR PSx: No/Yes Active for TDR PSx: No/YesClos.rej.w.block PSx: No/YesOperative time PSx: 0.0...6000.0 sOperating mode PSx:

 Voltage-checkedSync.-checked

 Volt./sync.-checkedOp.mode volt.chk.PSx:

 Vref but not V V but not VrefNot V and not VrefNot V or not Vref

 AR with tCB PSx No, Yes

 V> volt.check PSx: 0.10...0.80 Vnom(/ √3)

 V< volt. check PSx: 0.10...0.80 Vnom(/ √3)tmin volt. check PSx: 0.00...10.00 sMeasurement loop PSx:

Loop A-G/ B-G/ C-G/ A-B/ B-C/ C-A

 V> sync. check PSx: 0.40...1.20 Vnom(/ √3)

Delta Vmax PSx: 0.02...0.40 VnomDelta f max PSx: 0.03...1.00 HzDelta phi max PSx: 5...100 °Phi offset PSx: -180...180 °tmin sync. check PSx: 0.00...10.00 s

Ground fault direction determination using

steady-state values (GFDSS):Enable PSx: No/Yes

Op.m.GF pow./adm PSx:cos phi circuit/sin phi circuitEvaluation VNG PSx: Calculated/MeasuredMeas. direction PSx: Standard/Opposite

 VNG> PSx: 0.02...1.00 Vnom(/ √3)tVNG> PSx: 0.02...10.00 sf/fnom (pow.meas.) PSx: 1/5f/fnom (curr.meas.) PSx: 1/5IN,act>/reac> LS PSx: 0.003...1.000 IN,nomSector angle LS PSx: 80...89 °Operate delay LS: 0.00...100.00 s / BlockedRelease delay LS: 0.00...10.00 sIN,act>/reac> BS: 0.003...1.000 IN,nomSector angle BS: 80...89 °Operate delay BS PSx: 0.00...100.00 s / BlockedRelease delay BS PSx: 0.00...10.00 s

IN> PSx: 0.003...1.000 IN,nomOperate delay IN PSx: 0.00...100.00 s / BlockedRelease delay IN PSx: 0.00...10.00 sG(N)> / B(N)> LS PSx: 0.01...1.00 YN,nomG(N)> / B(N)> BS PSx: 0.01...1.00 YN,nomY(N)> PSx: 0.01...2.00 YN,nomCorrection angle: -30...+30°Operate delay Y(N)> PSx: 0.00...100.00 sRelease delay Y(N)> PSx: 0.00...10.00 s

Transient ground fault direction

determination (TGFD):Enable PSx: No/YesEvaluation VNG PSx: Sum (VA-B-C-G) /MeasuredMeasurem. direc. PSx: Standard/Opposite

 VNG> PSx: 0.15...0.50 Vnom(/3)Operate delay PSx: 0.05...1.60 s

IN,p> PSx: 0.10...0.50 InomBuffer time PSx: 0...1200 s / Blocked

Motor protection MP):

Enable PSx: No/YesIref: 0.10...4.00 InomFactor kP: 1.05...1.50Istup>: 1.8...3.0 IreftIstup>: 0.1...1.9 sCharacter. type P: Reciprocal squared/logarithmict6Iref: 1.0...100.0 sTau after start-up: 1...60 sTau machine running: 1...1000 minTau machine stopped: 1...1000 minPermiss.No.start-ups:

2/1 (cold/warm) / 3/2 (cold/warm)

RC permitted, Θ<: 22...60 % / BlockedOperating mode: Without THERM/With THERMStart-up time t,stup: 2.0...100.0 sBlocking time tE: 2.0...100.0 sI<: 0.2...0.9 Iref / BlockedtI<: 0.1...20.0 s

Page 30: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 30/44

[One-Box Solutions for Protection and Control] MiCOM P132  3

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

Thermal overload protection THERM):

Enable PSx: No/YesSel. backup th. PSx: see selection tableIref PSx: 0.10...4.00 InomStart.fact OL_RC PSx: 1.05...1.50Tim.const.1,>Ibl PSx: 1.0...1000.0 minTim.const.2,<Ibl PSx: 1.0...1000.0 minMax.perm.obj.tmp. PSx: 0...300 °C

O/T f.Iref pers. PSx: 0...300 K (abs. replica only)Max. perm.cool.temp. PSx: 0...70 °C (rel. replica only)Select.meas.input PSx: see selection tableWarning temp. PSx: 0...300 °C (abs. replica only)Default CTA PSx: -40...70 °CBl. f. CTA fault PSx: No/YesRel. O/T warning PSx: 50...200 % (rel. replica only)Rel. O/T trip PSx: 50...200 % (rel. replica only)Hysteresis trip PSx: 2...30 %Warning pre-trip PSx: 0.0...1000.0 min / BlockedFunct.f.CTA fail PSx:

Default temp. valueLast meas. temperat.Blocking

Unbalance protection (I2>):Enable PSx: No/Yes

Ineg> PSx: 0.10...0.80 Inom / BlockedIneg>> PSx: 0.10...0.80 Inom / BlockedtIneg> PSx: 0.00...100.00 s / BlockedtIneg>> PSx: 0.00...100.00 s / BlockedOver-/undervoltage protection (V<>):Enable PSx: No/YesOperating mode PSx: Delta/StarI enable V< PSx: 0.04....1.00 InomOp.mode V< mon. PSx : without/with

Evaluation VNG PSx: Calculated/Measured

 V> PSx: 0.20...1.50 Vnom(/ √3) / Blocked

 V>> PSx: 0.20...1.50 Vnom(/ √3) / BlockedtV> PSx: 0.00...100.00 s / BlockedtV> 3-pole PSx: 0.00...100.00 s / BlockedtV>> PSx: 0.00...100.00 s / Blocked

 V< PSx: 0.20...1.50 Vnom(/ √3) / Blocked

 V<< PSx: 0.20...1.50 Vnom(/ √3) / BlockedtV< PSx: 0.00...100.00 s / BlockedtV< 3-pole PSx: 0.00...100.00 s / BlockedtV<< PSx: 0.00...100.00 s / Blocked

 Vpos> PSx: 0.20...1.50 Vnom/ √3 / Blocked

 Vpos>> PSx: 0.20...1.50 Vnom/ √3 / BlockedtVpos> PSx: 0.00...100.00 s / BlockedtVpos>> PSx: 0.00...100.00 s / Blocked

 Vpos< PSx: 0.20...1.50 Vnom/ √3 / Blocked

 Vpos<< PSx: 0.20...1.50 Vnom/ √3 / BlockedtVpos< PSx: 0.00...100.00 s / BlockedtVpos<< PSx: 0.00...100.00 s / Blocked

 Vneg> PSx: 0.20...1.50 Vnom/ √3 / Blocked

 Vneg>> PSx: 0.20...1.50 Vnom/ √3 / BlockedtVneg> PSx: 0.00...100.00 s / BlockedtVneg>> PSx: 0.00...100.00 s / Blocked

 VNG> PSx: 0.02...1.00 Vnom(/ √3) / Blocked VNG>> PSx: 0.02...1.00 Vnom(/ √3) / BlockedtVNG> PSx: 0.00...100.00 s / BlockedtVNG>> PSx: 0.00...100.00 s / Blocked

 Vref> PSx: 0.20...1.50 Vnom/ √3 / BlockedtTransient PSx: 0.00...100.00 s / Blocked

 Vref>> PSx: 0.20...1.50 Vnom/ √3 / BlockedHyst. V<> meas. PSx: 1...10 %tVref> PSx: 0.00...100.00 s / BlockedHyst. V<> deduc. PSx: 1...10 %tVref>> PSx: 0.00...100.00 s / Blocked

 Vref< PSx: 0.20...1.50 Vnom/ √3 / Blocked

 Vref<< PSx: 0.20...1.50 Vnom/ √3 / BlockedtVref< PSx: 0.00...100.00 s / BlockedtVref<< PSx: 0.00...100.00 s / Blocked

Directional power protection P<>):

Enabled PSx: No/Yesvalid for y = ‚>‘ and ‚>>‘ and ‚<‘ and ‚<<‘:

Py PSx: 0.010...0.500 Snom / BlockedOperate delay Py PSx: 0.00...100.00 s / BlockedRelease delay Py PSx: 0.00...100.00 sDirection Py PSx:

Forward directional

Backward directionalNon-directionalDiseng. ratio Py PSx: 0.05...0.95Qy PSx: 0.010...0.500 Snom /BlockedOperate delay Qy PSx: 0.00...100.00 s / Block.Release delay Qy PSx: 0.00...10.00 sDirection Qy PSx:

Forward directionalBackward directionalNon-directional

Diseng. ratio Qy> PSx: 0.05tTransient pulse PSx: 0.00...100.00 s

Over-/ underfrequency protection f<>):

Enable PSx: No/Yesvalid for y = ‚1‘ to ‚4‘  Oper. mode fy PSx:

ff with df/dtf w. Delta f/Delta t

fy PSx: 40.00...70.00 Hz / Blockedtfy PSx: 0.00...10.00 s / Blockeddfy/dt PSx: 0.1...10.0 Hz/s / BlockedDelta fy PSx: 0.01...5.00 Hz / BlockedDelta ty PSx: 0.04...3.00 s

Control

Main function MAIN):

BI active USER: No/YesInp.asg. fct.block.1: see selection tableInp.asg. fct.block.2: see selection tableOp. delay fct. block: 0...60 sPerm.No.mot.drive op: 1...20Mon.time mot.drives: 1...20 minCool.time mot.drives: 0...10 minMon.time motor relay: 0.01...2.00 s

External device DEV01 to DEV03):

Designat. ext. dev.: see selection tableDEV-Name User: Configurable (4 Char. max)Op.time switch. dev.: 0...254 sLatching time: 0.00...25.4 sGr. assign.debounce: Group 1...Group 8Interm. pos. suppr.: No/YesStat.ind.interm.pos.: No/YesOper.mode cmd:

Long command/ Short command/ Time controlInp.asg. sw.tr. plug: see selection tableInp.asg.el.ctrl.open: see selection table

Inp.asg.el.ctr.close: see selection tableInp. asg. end Open: see selection tableInp. asg. end Close: see selection tableOpen w/o stat.interl: No/YesClose w/o stat. int.: No/YesFct.assig.BIwSI open: see selection tableFct.assig.BIwSI clos: see selection tableFct.asg.BI w/o SI op: see selection tableFct.asg.BI w/o SI cl: see selection table

Interlocking logic ILOCK):

valid for y = ‚1‘ to ‚32‘ ‘  Fct.assignm. outp. y: see selection table

Page 31: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 31/44

[One-Box Solutions for Protection and Control] MiCOM P132  31 

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

Operation

Measured Operating DataProtection Communication interface InterMiCOM COMM 3):

No. tel.errors p.u.: 0...100 %No.t.err. max,stored: 0...100 %Loopback result:

Not measuredPassedFailed

Loopback receive:0...255 / not measured

Measured Data Input MEASI):

Current IDC: 0.00...24.00 mACurrent IDC p.u.: 0.00...1.20 IDC,nomCurr. IDC,lin. p.u.: 0.00...1.20 IDC,nomScaled value IDC,lin: -32000...32000Temperature T: -40.0...215.0 °CTemperature Tmax : -40.0...215.0 °CTemperature p.u. T: -0.40...2.15 100 °Cvalid for y = ‚1‘ to ‚9‘  

Temperature Ty: -40.0...215.0 °CTemp. Ty max.: -40.0...215.0 °CTemperature p.u. Ty: -0.40...2.15 100°C

Measured Data Output MEASO):

Current A-1: 0.00...20.00 mACurrent A-2: 0.00...20.00 mA

Main Function MAIN):

Date: 01.01.1997...31.12.2096 dd.mm.yyTime: 00:00:00...23:59:59 hh:mm:ssTime switching: Standard time/Daylight saving timeFrequency f: 40.00...70.00 HzCurr. IP,min prim.: 0...25000 AIP,maxprim, demand: 0...25000 AIP,maxprim,demand st: 0...25000 ACurr. IP,min prim.: 0...25000 ACurrent A prim.: 0...25000 ACurrent B prim.: 0...25000 A

Current C prim.: 0...25000 ACurrent Σ (IP) prim.: 0...100 ACurrent IN prim.: 0...2500 A

 Volt. VPG,max prim.: 0.0...2500.0 kV Volt. VPG,min prim.: 0.0...2500.0 kV Voltage A-G prim.: 0.0...2500.0 kV Voltage B-G prim.: 0.0...2500.0 kV Voltage C-G prim.: 0.0...2500.0 kV

 Volt. Σ(VPG)/3 prim.: 0.0...2500.0 kV Voltage VNG prim.: 0.0...2500.0 kV Voltage Vref prim.: 0.0...3000.0 kV Volt. VPP,max prim.: 0.0...2500.0 kV Volt. VPP,min prim.: 0.0...2500.0 kV Voltage A-B prim.: 0.0...2500.0 kV Voltage B-C prim.: 0.0...2500.0 kV Voltage C-A prim.: 0.0... 2500.0 kV

 Appar.power S prim.: -1399.9...1400.0 MVA Active power P prim.: -999.9...1000.0 MWReac. power Q prim.: -999.9...1000.0 Mvar

 Act.energy outp.prim: 0.00...6.553.500,00 MWh Act.energy inp. prim: 0.00... 6.553.500,00 MWhReact.en. outp. prim: 0.00... 6.553.500,00 Mvar hReact. en. inp. prim: 0.000... 6.553.500,00 Mvar hFrequency f p.u.: 0.200...4.000 fnomCurrent IP,max p.u.: 0.000...25.000 InomIP,maxp.u.,demand st: 0.000...25.000 InomIP,max p.u.,demand: 0.000...25.000 InomCurrent A p.u.: 0.000...25.000 InomCurrent B p.u.: 0.000...25.000 InomCurrent C p.u.: 0.000...25.000 Inom

Current Σ (IP) p.u.: 0.000...25.000 InomCurrent IN unfilt.: 0.000...16.000 IN,nom

Current IN p.u.: 0.000...16.000 IN,nomCurrrent Ipos p.u.: 0.000...25.000 InomCurrrent Ineg p.u.: 0.000...25.000 Inom

 Voltage VPG,max p.u.: 0.000...25.000 Vnom

 Voltage VPG,min p.u.: 0.000...25.000 Vnom Voltage A-G p.u.: 0.000...25.000 Vnom Voltage B-G p.u.: 0.000...25.000 Vnom Voltage C-G p.u.: 0.000...25.000 Vnom

 Volt. Σ(VPG)/ √3 p.u.: 0.000...12.000 Vnom Voltage VNG p.u.: 0.000...25.000 VNG,nom Voltage Vref p.u.: 0.000...3.000 Vnom Voltage VPP,max p.u.: 0.000...25.000 Vnom Voltage VPP,min p.u.: 0.000...25.000 Vnom

 Voltage A-B p.u.: 0.000...25.000 Vnom Voltage B-C p.u.: 0.000...25.000 Vnom Voltage C-A p.u.: 0.000...25.000 Vnom Voltage Vpos p.u.: 0.000...25.000 Vnom Voltage Vneg p.u.: 0.000...25.000 Vnom Appar. power S p.u.: -10.700...10.700 Snom Active power P p.u.: -7,500...7.500 SnomReac. power Q p.u.: -7.500...7.500 Snom

 Active power factor: -1.000...1.000Load angle phi A: -180...180 °Load angle phi B: -180...180 °Load angle phi C: -180...180 °

 Angle phi N: -180...180 °

 Angle Σ VPG vs. IN: -180...180 °

Phase rel.,IN vs ΣIP:Equal phase / Reverse phase

Current ΣI unfilt. 0.000...25.000 Inom

Ground fault direction determination using

steady-state values (GFDSS):Current IN,act p.u.: 0.000...30.000 IN,nomCurr. IN,reac p.u.: 0.000...30.000 IN,nomCurr. IN filt. p.u.: 0.000...20.00 mA

 Admitt. Y(N) p.u.: 0.000... 5.000 YN,nomConduct. G(N) p.u.: -5.000... 5.000 YN,nomSuscept. B(N) p.u.: -5.000... 5.000 YN,nom

Motor Protection MP):

Therm.repl.buffer MP: 0...100 %St-ups still permitt: 0...3Therm. repl. MP p.u.:0.00...1.00 100%St-ups st. perm.p.u.: 0.00...0.30 factor 10

Thermal overload protection THERM):

Status THERM replica: -25000...25000 %Current I, therm prim: 0…25000AObject temperature: -40...300 °CCoolant temperature: -40...200 °CPre-trip time left: 0.0...1000.0 minTherm. replica p.u.: -2.50...2.50 100 %Current I, therm p. u.: 0…2.4 IBObject temp. p.u.: -0.40...3.00 100 °CCoolant temp.p.u.: -0.40...0.20 100 °CTemp. offset replica: -25000...25000 %

Page 32: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 32/44

[One-Box Solutions for Protection and Control] MiCOM P132  32 

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

Dimensional drawings

Surface-mounted case 24 T

Surface-mounted case 40 T

139.6

168.8

186.4

257.1

TRIP

 ALARM

OUT OF SERVICE

HEALTHY

EDIT MODE

Mi

Pa

CO

ra

M

me

P1

te

32

rs

213.4

242.6

260.2

257.1

TRIP

 ALARM

OUTOFSERVICE

HEALTHY

EDIT MODE

Mi

Pa

CO

ra

M

me

P1

te

32

rs

Page 33: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 33/44

[One-Box Solutions for Protection and Control] MiCOM P132  33 

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

Dimensional drawings

Surface-mounted case 84 T

Flush-mounted case 24T with panel cutout, version 1 (without angle brackets)

227.9

253.6

129.2

77.5

5.0

5.0

103.8

139.6

TRIP

 ALARM

OUT OF SERVICE

HEALTHY

EDIT MODE

Mi

Pa

CO

ra

M

me

P1

te

32

rs

434.8

464.0

481.6

257.1

TRIP

 ALARM

OUTOF SERVICE

HEALTHY

EDITMODE

Mi

Pa

CO

ra

M

me

P1

te

32

rs

Page 34: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 34/44

[One-Box Solutions for Protection and Control] MiCOM P132  34 

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

Dimensional drawings

Flush-mounted case 40T with panel cutout, version 1 (without angle brackets)

Flush-mounted case 84T with panel cutout, version 1 (without angle brackets)

227.9

253.6

213.4

203.0

155.4

5.0

5.0

181.3

TRIP

 ALARM

OUTOF SERVICE

HEALTHY

EDITMODE

Mi

Pa

CO

ra

M

me

P1

te

32

rs

227.9

253.6

434.8

284.9

259.0

5.0

5.0

25.9

410.0

TRIP

 ALARM

OUTOFSERVICE

HEALTHY

EDITMODE

Mi

Pa

CO

ra

M

me

P1

te

32

rs

Page 35: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 35/44

[One-Box Solutions for Protection and Control] MiCOM P132  35 

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

Dimensional drawings

Flush-mounted case 24T with panel cutout, Version 2 (with angle brackets and frame)

Flush-mounted case 40T with panel cutout, Version 2 (with angle brackets and frame)

227.9

253.6

139.6

168.8

186.4

6.4

150.7

168.8

TRIP

 ALARM

OUT OF SERVICE

HEALTHY

EDIT MODE

Mi

Pa

CO

ra

M

me

P1

te

32

rs

227.9

253.6

6.4

224.5

242.6

213.4

242.6

260.2

TRIP

 ALARM

OUT OFSERVICE

HEALTHY

EDIT MODE

Mi

Pa

CO

ra

M

me

P1

te

32

rs

Page 36: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 36/44

[One-Box Solutions for Protection and Control] MiCOM P132  36 

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

Dimensional drawings

Flush-mounted case 84T with panel cutout, Version 2 (with angle brackets and frame)

227.9

253.6

   1   7   7 .   5

   1   0   1 .   6

6.4

445.9

464.0

   1   0   1 .   6

   1   8   6 .   5

434.8

464.0

481.6

TRIP

 ALARM

OUT OF SERVICE

HEALTHY

EDITMODE

Mi

Pa

CO

ra

M

me

P1

te

32

rs

Page 37: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 37/44

[One-Box Solutions for Protection and Control] MiCOM P132  37 

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

Detachable HMI with panel cutout

Front view 40T case for connection of a detachable HMI

Dimensional drawings

Front view 84T case for connection of a detachable HMI

TRIP

 ALARM

OUT OFSERVICE

HEALTHY

WARNING:Connectionforremotecontrolpanel only.Not fornetworkconnection!

TRIP

 ALARM

OUTOFSERVICE

HEALTHY

WARNING:Connectionforremotecontrolpanel only.Not fornetworkconnection!

206.0 20.7

46.3

   1   7   7 .   5

197.5

3.0

181.3

   1   4   8 .   0

   1   6   8 .   0

   1   0   7 .   3

192.5

 Aus-Kommando

Warnung

Block./Störung

Betrieb

 Änderungsmod.

MiPa

COra

Mme

P1te

32rs

Page 38: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 38/44

[One-Box Solutions for Protection and Control] MiCOM P132  38 

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

X_1

1

2

3

4

5

6

7

8

9

X_1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Ring

Type X

High-break

contacts

Pin

X_3

1

2

3

4

5

6

7

8

9

X_2

1

2

3

4

5

6

7

8

9

K_01

  4H

K_02

K_04

K_03

+

+

+

+

Binary

module

X_1

1

2

3

4

5

6

7

8

9

X_1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Ring

Output relays

Pin

X_3

1

2

3

4

5

6

7

8

9

X_2

1

2

3

4

5

6

7

8

9

K_01

K_02

K_03

K_04

K_05

K_06

1)

1)

1)

1)

Type X  6O

Binary

module

Binary

module

Type X6I / 3O

X_1

1

2

3

4

5

6

7

8

9

X_1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Ring Pin

X_3

1

2

3

4

5

6

7

8

9

X_2

1

2

3

4

5

6

7

8

9

Signal-

inputs

U_01

U_02

U_03

U_04

U_05

U_06

Output relays

K_01

K_02

K_03

Vin

Vin

Vin

Vin

Vin

Vin

X_1

1

2

3

4

5

6

7

8

9

X_1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Ring

K_01

K_02

K_03

K_04

K_05

K_06

K_07

K_08

Power supply

Type V

U100

Power supply

module

Signal inputs

U_01

U_02

U_03

U_04

Output relays

Pin

X_3

1

2

3

4

5

6

7

8

9

X_2

1

2

3

4

5

6

7

8

9Vin

Vin

Vin

Vin

PE

Vaux

4I / 8O

+-

X041

13

14

15

16

17

18

11

12

1

2

3

4

5

6

7

8

Ring

Type T

Pin

X042

1

2

3

4

5

6

7

8

Current measuring

inputs

VA

VB

VC

VNG

VRef 

IA

IB

IC

IN

T1

T2

T3

T4

Voltage measuring

inputs

4J / 4/5V

Transformer

module

T5

T6

T7

T90

T15

X041

1

2

3

4

5

6

7

8

Option:

Connection of the modules

 ’_’ is used as a wildcard for the location (slot number)

1) Binary module X (6O) optional with 4 static outputs, in parallel with closer contact K_02.2, K_03.1, K_04, K_05

 

Page 39: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 39/44

[One-Box Solutions for Protection and Control] MiCOM P132  39 

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

X8

TX

Type A

IEC 61850

optical fiber link ST

Per order 

COMM2

wire link

or 

optical fiber link SC

X//Y

RS 485

D2[R]

X10

1

2

3

4

5 D1[T]

U20

U17X/Y

U18X/Y

X7

RX

Communication

module ETH / CH2

X12

1

U26

X/Y

U25X//Y

X13

RX

TX

and wire link

RJ45

X11

1

X8

1

Type A

Channel 1

optical fiber link

Per order 

##

IRIG-B

time synchronization

Channel 2

wire link only

or wire link

X//Y

RS 485

D2[R]

X10

1

2

3

4

5 D1[T]

U20

X//Y

RS 485

D2[R]

X9

1

2

3

4

5 D1[T]

U19

U17X//Y

U18X//Y

X7

1

U21

Communication

module CH1 / CH2

X_3

1

2

3

4

5

6

X_2

1

2

3

4

5

6

7

8

9

X_11

2

3

4

5

6

7

8

9

X_11

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Ring

 Analog

module

U_01

U_02

U_03

U_04

Pin

Type Y4I

Signal and measuring

inputs

Measuring outputs

K_01

U_080..20 mA

valid

K_02

U_090..20 mA

valid

     U

#     U

#

U_05

U_06

     U

#

     U

#

0..20 mA

PT100

Vin

Vin

Vin

Vin

X_1

1

2

3

4

5

6

7

8

9

X_1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Ring

Binary

module

Signal inputs

Pin

X_3

1

2

3

4

5

6

7

8

9

X_2

1

2

3

4

5

6

7

8

9

Type X24I

U_17

U_18

U_19

U_20

U_21

U_22

U_23

U_24

U_01

U_02

U_03

U_04

U_05

U_06

U_07

U_08

U_09

U_10

U_11

U_12

U_13

U_14

U_15

U_16

Vin

Vin

Vin

X_11

2

3

4

5

6

7

8

9

X_11

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Ring

Type X

Pin

X_3

X_2

1

2

3

4

5

6

7

8

9

6I / 6H

Binary

module

19

20

21

22

23

24

25

26

27

 _

1

2

3

4

5

6

7

8

9

High-break

contacts

K_01

K_02

K_03

K_04

K_05

K_06

U_01

U_02

U_03

U_04

U_05

U_06

UE

UE

UE

UE

UE

UE

Signal inputs

+

+

+

+

+

+

X_11

2

3

4

5

6

7

8

9

X_11

2

3

4

5

6

7

8

9

10

11

12

13

14

15

15

17

18

19

20

21

22

23

24

25

26

27

Output relays

X_3

1

2

3

4

5

6

7

8

9

X_2

1

2

3

4

5

6

7

8

9

K_01

K_02

K_03

K_04

K_05

K_06

Signal inputs

U_01

U_02

U_03

U_04

U_05

U_06

Ring Pin

Vin

Vin

Vin

Vin

Vin

Vin

Binary

module

Type X6I / 6O

Connection of the modules

X_11

2

3

4

5

6

7

8

9

Type YRTD

module

Temperature

measuring inputs

Pin

X_3

1

2

3

4

5

6

7

8

9

X_2

1

2

3

4

5

6

7

8

9

U81

U82

U83

U84

U85

U86

U87

U88

U89

9T

     U

#     U

#     U

#

     U

#     U

#     U

#

     U

#     U

#     U

#

T1

T2

T3

T4

T5

T6

T7

T8

T9

X_11

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Ring

X32

1

Type A

COMM3optical fiber link

Per order 

or wire link

or wire link

X//Y

RS 485

D2[R]

X33

1

2

3

4

5 D1[T]

U24

U22X//Y

U23X//Y

X31

1

Communication

module   CH3

U27

D1[T]

D2[R]

RS 232

E2[G]

X//Y

M5[DCD]

+UB

X34

1

2

3

4

5

7

E

X_1

1

2

3

4

5

6

7

8

9

X_1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Ring

K_01

K_02

K_03

K_04K_05K_06K_07

K_08

Binary

module

U_01

U_02

U_03

U_04

U_05

U_06

Output relaysPin

X_3

1

2

3

4

5

6

7

8

9

X_2

1

2

3

4

5

6

7

8

9

Type X6I / 8O

Signal inputs

Vin

Vin

Vin

Vin

Vin

Vin

Page 40: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 40/44

[One-Box Solutions for Protection and Control] MiCOM P132  4

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

Connection Examples

Voltage and Current Transformer 

Optional Control Function

I >

L1

L2

L3

I >I >

I >

U

V

W

N

e

n

1I 1

1I 2

1I 3

1IE

P 132( Detail)

X 042 :

X 041 :

X 091 :

X 091 :

2

4

1

3

1

5

8

4

7

3

6

2

1

5

4

3

6

2

( Detail)

UE

UE

UE

UE

OPEN

 X 061 :

 X 061 :

 X 061 :

 X 061 :

5

6

3

4

1

2

CLOSE

 X 063 :

 X 063 :

 X 063 :

 X 063 :

 X 063 :

 X 063 :

 X 063 :

 X 063 :

 X 063 :

1

2

7

6

5

4

3

8

9

Dashed lines: recommended for GFDSS only(GFDSS: ground fault direction determination using steady-state values)

Gen. trip command 1

Power supply 

Power supply 

 

Page 41: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 41/44

[One-Box Solutions for Protection and Control] MiCOM P132  41 

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

Feeder Management and Bay Control P132 P 1 3 2 9 0 308 4xx 632 47x 46x 9x x 9x x 8xx

Basic device:

Basic device 24TE, pin-terminal connection, 1 -420

Basic device 24TE, CT/VT ring-, I/O pin-terminal connection, 2 -421

Basic device 40TE, pin-terminal connection, 3 -425

Basic device 40TE, CT/VT ring-, I/O pin-terminal connection, 5 -426

Basic device 84TE, ring-terminal connection, 8 -427

  basic complement with 4 binary inputs, 8 output relays

  and 6 function keys16)

Mounting option and display:

Surface-mounted, local control panel with text display 3

Flush-mounted, local control panel with text display 4

Surface-mounted, with detachable HMI16) 7

Flush-mounted, with detachable HMI16)

9

Current transformer:

Without11)

0

Inom = 1 A / 5 A (T1...T4) 2)

9

Voltage transformer:

Without11)

0

Vnom = 50 ... 130 V (4-pole) 4

Vnom = 50 ... 130 V (5-pole) for automatic synchronism control20)

5

Additional binary I/O options16)

:

Without 0

With 1 binary module (add. 6 binary inputs and 8 output relays) 1

With 2 binary modules (add. 12 binary inputs and 16 output relays) 2

With 1 binary module (add. 6 binary inputs and 6 output relays (2-pole)) 5

  for the control of up to 3 additional switchgear units

With 1 binary module (add. 6 binary inputs and 6 output relays (2-pole)) 6

  and 1 binary module (add. 6 binary inputs and 6 output relays (2-pole))

  for the control of up to 3 switchgear units

With 1 binary module (add. 6 binary inputs and 8 output relays) 8

  and 1 binary module (add. 6 binary inputs and 6 output relays (2-pole))  for the control of up to 3 switchgear units

Power supply and additional binary I/O options:

VA,nom = 24 VDC 3

VA,nom = 48 ... 250 VDC / 100 ... 230 VAC 4

VA,nom = 24 VDC and 6 output relays, 4 with thyristor 6

VA,nom = 48 ... 250 VDC / 100 ... 230 VAC 7

  and 6 output relays, 4 with thyristor

VA,nom = 24 VDC and 6 output relays 8

VA,nom = 48 ... 250 VDC / 100 ... 230 VAC and 6 output relays 9

VA,nom = 24 VDC and 6 binary inputs and 3 output relays  A 

VA,nom = 48 ... 250 VDC / 100 ... 230 VAC B

  and 6 binary inputs and 3 output relays

VA,nom = 24 VDC and 4 high break contacts C

VA,nom = 48 ... 250 VDC / 100 ... 230 VAC and 4 high break contactsD

Further add options

16):

Without 0

With TGF (transient ground fault direction determination) module3) 10)

1

With analog module 2

With TGF and analog module 3) 10)

3

With binary module (add. 24 binary inputs) 4

With TGF and binary module (add. 24 binary inputs)3) 10)

5

With RTD module 3) 20)

7

With RTD and analog module3) 20)

8

With RTD module and binary module (add. 24 binary inputs)3) 20) 9

Ordering information MiCOM P132

 

Page 42: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 42/44

[One-Box Solutions for Protection and Control] MiCOM P132  42 

P132_TechnicalDataSheet_EN_32_B.doc Schneider Electric Energy  P132 -308 -420/-421/-425/-426/-427 -632 ff

Feeder Management and Bay Control P132 P 1 3 2 9 0 308 4xx 632 47x 46x 9x x 9x x 8xx

Binary modules with single pole high break contacts for control

19):

Without high break contact characteristic Without order extension No.

With 1 module with high break contacts (1-pole) -471

With 2 modules with high break contacts (1-pole) -472

Switching threshold on binary inputs:

>18 V (standard variant) Without order extension No.

>90 V (60...70% of VA,nom = 125...150 V)8) -461

>155 V (60...70% of VA,nom = 220...250 V)8) -462

>73 V (67% of VA,nom = 110 V)8) -463

>73 V (67% of VA,nom = 110 V)8) -463

>146 V (67% of VA,nom = 220 V)8) -464

With communication / information interface:

Without Without order extension No.

Protocol can be switched between: -92

  IEC 60870-5-101/-103, Modbus, DNP3, Courier

  and IRIG-B input for clock synchronization

  and 2nd interface (RS485, IEC 60870-5-103)

For connection to wire, RS485, isolated 1

For connection to plastic fiber, FSMA connector 2

For connection to glass fiber, ST connector 4

Protocol IEC61850 -94

For connection to 100 MHz Ethernet, glass fiber SC and wire RJ45 6

  and 2nd interface (RS485, IEC 60870-5-103)

For connection to 100 MHz Ethernet, glass fiber ST and wire RJ45 7

  and 2nd interface (RS485, IEC 60870-5-103)

With guidance / protection interface

16):

Without Without order extension No.

Protocol InterMiCOM -95

For connection to wire, RS485, isolated 1

For connection to plastic fiber, FSMA connector 2

For connection to glass fiber, ST connector 4

For connection to wire, RS232, isolated 5

Language:

English (German) 4)

Without order extension No.

Px40 English (English) 4)

Not yet available - on request -800

German (English) 4) -801

French (English) 4)

Not yet available - on request -802

Spanish (English) 4) Not yet available - on request -803

Polish (English) 4)

Not yet available - on request -804

Russian (English) 4) 7) Not yet available - on request -805

2) Switching via parameter, default setting is underlined!

3) This option is excluded if the InterMiCOM (-95x) is ordered

4) Second included language in brackets

7) Hardware option, supports Cyrillic letters instead of special West. European characters

8) Standard variant recommended if higher pickup threshold not explicitly required by the application

10) Transient ground fault option for variants with current and voltage transformers only

11) Option without current transformers and without voltage transformers not possible

16) Options for basic device 24 TE not possible

20) Option without current transformers not possible

Ordering information MiCOM P132

19) Depend on the selected numbers of binary modules (6 binary inputs and 6 output relays); Use of High break ouputs: 1-pole only

Page 43: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 43/44

 

Page 44: MiCOM P132_TechnicalDataSheet

7/24/2019 MiCOM P132_TechnicalDataSheet

http://slidepdf.com/reader/full/micom-p132technicaldatasheet 44/44

 

©     2

    0    1    1    S   c     h   n   e     i     d   e   r    E     l   e   c    t   r     i   c .

    A     l     l   r     i   g     h    t   s   r   e   s   e   r

   e   v   e     d