33
Michael Frenklach UC Berkeley & LBNL MECHANISM OF SOOT FORMATION: OXIDATION MACCCR Fuel Summit September 17, extra: aromatic-edge size

Michael Frenklach UC Berkeley & LBNL

  • Upload
    amos

  • View
    30

  • Download
    6

Embed Size (px)

DESCRIPTION

MECHANISM OF SOOT FORMATION: OXIDATION. Michael Frenklach UC Berkeley & LBNL. MACCCR Fuel Summit September 17, 2012. extra: aromatic-edge size. +. +. Precursor Chemistry. fuel + O 2. Homogeneous Nucleation. Coagulation. Particle Dynamics. Agglomeration. C 2 H 2 , …. Growth. - PowerPoint PPT Presentation

Citation preview

Page 1: Michael  Frenklach UC  Berkeley &  LBNL

Michael FrenklachUC Berkeley & LBNL

MECHANISM OF SOOT FORMATION: OXIDATION

MACCCR Fuel SummitSeptember 17, 2012extra: aromatic-edge size

Page 2: Michael  Frenklach UC  Berkeley &  LBNL

Coagulation +

Agglomeration +

Precursor Chemistry fuel + O2

Homogeneous Nucleation

ParticleDynamics

SurfaceReactions

C2H2, …Growth

Page 3: Michael  Frenklach UC  Berkeley &  LBNL

SURFACE REACTIONS

H-abstraction

H-additionO2

oxidationoxidation

OH

C2H2•

Frenklach 1989; Frenklach & Wang 1991:

• assumed analogous to gaseous aromatics• assumed armchair sites

Page 4: Michael  Frenklach UC  Berkeley &  LBNL

Graphene Edges

zigzag

armchair

Page 5: Michael  Frenklach UC  Berkeley &  LBNL

+C2H2

-H

-H

+H

+C2H2

+C2H2

-H

-C2H2

+H

+H

-C2H2

-H

+H

+H

-H

-H

-C2H2

-H

-H

-H

-C2H2

+C2H2

-H

+C2H2

+C2H2

-H

-H

+C2H2

-H

-H

-H

DETAILED KINETIC MONTE-CARLO MODELWhitesides & Frenklach, JPC A 2010

rate coefficients: Schuetz, Whitesides, You, Frenklach, Kollias, Domin, Zubarev, Lester, … 2005-10

Page 6: Michael  Frenklach UC  Berkeley &  LBNL

1500 K

2000 K

2500 K

DEVELOPED MORPHOLOGIES

Page 7: Michael  Frenklach UC  Berkeley &  LBNL

Coagulation +

Agglomeration +

Precursor Chemistry fuel + O2

Homogeneous Nucleation

ParticleDynamics

SurfaceReactions

C2H2, …Growth

O2, OH, …Oxidation

Page 8: Michael  Frenklach UC  Berkeley &  LBNL

Oxidation of Aromatics

O+ CO

(+ O2, OH, ...)

OO

Oxyradicals are likely key intermediates

(Lin and Lin, JPC 1986)(Carstensen and Dean, IJCK 2012)

O+ CO

(+ O2, OH, ...)

(Zhou, Kislov, Mebel, JPC A 2012)

Page 9: Michael  Frenklach UC  Berkeley &  LBNL

Computational DetailsQuantum chemistry calculations DFT - B3LYP/6-311G(d,p)

Reaction kinetics 1500-2500 K, 0.01- atm using MultiWell 2011.3

Comparison to experiments

Computational results: You, Zubarev, Lester, Frenklach, JPC A 2011

101

102

103

104

105

106

107

0.6 0.7 0.8 0.9 1

1000/T(K)

2 atm

0.5 atm

k (s

-1)

T(K)1600 1300 1000

O

+ CO

P

Lin and Lin (1986) 0.4 – 0.9 atm

Frank et al. (1994) 1.3 – 2.5 atm

Page 10: Michael  Frenklach UC  Berkeley &  LBNL

B3LYP, M05-2X and M06-2X

47.8(45.4)[43.2]

36.5(34.7)[33.0] 24.7

(22.9)[21.9]

+ CO

0(0)[0]

50.8

(50.5)[49.3]

55.3

(54.6)[52.3]

39.7

(38.6)[36.5]

70.2

(73.4)[69.2] 63.0

(67.6)[63.3]

73.8(77.3)[74.9]

B3LYP:

(M05-2X):

[M06-2X]:

105

106

107

108

109

1010

0.4 0.45 0.5 0.55 0.6 0.65

k(s-1

)

1000/T(K)

B3LYP

M05-2X

M06-2X

+ COP

1 atm

Basis set: 6-311G(d,p)

Page 11: Michael  Frenklach UC  Berkeley &  LBNL

0 0.0001 0.0002

10-3

10-2

10-1

100

Spe

cies

Fra

ctio

n

Time (sec)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Ave

rage

Vib

ratio

nal E

nerg

y (c

m-1

)

Multiwell

+ CO

O

Solves time-dependent 1-D energy transfer master equations

Solved stochastically using the Gillespie algorithm

-Argon was the bath gas collider

average vibrational energy of reactant

kT,P= slope

kT,P

Page 12: Michael  Frenklach UC  Berkeley &  LBNL

Temperature dependent Edown expression from Hippler, Troe, Wendelken, JCP 1983.

Edown

Edown = 260 cm-1 Edown = 439-545 cm-1

Lin and Lin (1986)

O

+ CO

Page 13: Michael  Frenklach UC  Berkeley &  LBNL

4321

4321

12

3 4

123

4

zigzag armchair

OXYRADICALS

Page 14: Michael  Frenklach UC  Berkeley &  LBNL

2

CC CC-aromatic1

257.71

n

i

r rn

Correlation with Aromaticity

Harmonic Oscillator Measure of Aromaticity

HOMA = 1 (aromatic form of benzene)

HOMA = 0 (Kekulè form of benzene)

HOMA =

HOMA limiting values

Page 15: Michael  Frenklach UC  Berkeley &  LBNL

Thermodynamic Stability

Page 16: Michael  Frenklach UC  Berkeley &  LBNL

0

5

10

15

20

2.3 2.4 2.5 2.6 2.7 2.8

Rel

ativ

e E

ner

gy

Cumulative HOMA

kcal/mol

Energy Correlation with Aromaticity

Zubarev, Robertson, Domin, McClean, Wang, Lester, Whitesides, You, Frenklach, JPC C 2010

O

O

O

O

Page 17: Michael  Frenklach UC  Berkeley &  LBNL

LARGER OXYRADICALS

Page 18: Michael  Frenklach UC  Berkeley &  LBNL

COMBINING ALL OXYRADICAL

Zubarev, You, Domin, McClean, Lester, Frenklach, J Mater Chem 2011

Page 19: Michael  Frenklach UC  Berkeley &  LBNL

Decomposition of Zigzag Oxyradicals

Page 20: Michael  Frenklach UC  Berkeley &  LBNL

THERMAL DECOMPOSITION OF OXYRADICALS:

OUTER-RING ZIGZAG EDGES

kcal/mol

Page 21: Michael  Frenklach UC  Berkeley &  LBNL

THERMAL DECOMPOSITION OF OXYRADICALS:

OUTER-RING ZIGZAG EDGES

Page 22: Michael  Frenklach UC  Berkeley &  LBNL

THERMAL DECOMPOSITION OF OXYRADICALS:

INNER-RING ZIGZAG EDGES

kcal/mol

Page 23: Michael  Frenklach UC  Berkeley &  LBNL

inner rings of zigzag edges do not oxidize fastO

+ CO

O

+ CO

+ CO

O

+ CO

O

(You, Zubarev, Lester, Frenklach, JPC A 2011)

Page 24: Michael  Frenklach UC  Berkeley &  LBNL

Decomposition of Armchair

Oxyradicals

Page 25: Michael  Frenklach UC  Berkeley &  LBNL

Potential Energy Surfaces

kcal/mol

Page 26: Michael  Frenklach UC  Berkeley &  LBNL

Decomposition Rate

103

104

105

106

107

108

109

0.4 0.45 0.5 0.55 0.6 0.65

k(s-1

)

1000/T(K)

T(K)2000 15002500

O

+ COP

103

104

105

106

107

108

109

0.4 0.45 0.5 0.55 0.6 0.65

k(s-1

)

1000/T(K)

T(K)2000 15002500

O

+ COP

104

105

106

107

108

109

1010

0.4 0.45 0.5 0.55 0.6 0.65

k(s-1

)

1000/T(K)

T(K)150020002500

O+ COP

10 atm

1 atm

0.1 atm

0.01 atm

10 atm

1 atm

0.1 atm

0.01 atm

10 atm

1 atm

0.1 atm

0.01 atm

Page 27: Michael  Frenklach UC  Berkeley &  LBNL

+ CO

O

+ CO

O

105

106

107

108

109

1010

0.4 0.45 0.5 0.55 0.6 0.65

k(s-1

)

1000/T(K)

T(K)2000 15002500

105

106

107

108

109

1010

0.4 0.45 0.5 0.55 0.6 0.65

k(s-1

)

1000/T(K)

T(K)2000 15002500

O

+ CO

Armchair Decomposition

O

+ CO

kcal/mol

P

1 atm

Free EdgeNon-Free Edge

“Free Edges”2 Free Edge

1 Free Edge

1 Free Edge

Page 28: Michael  Frenklach UC  Berkeley &  LBNL

104

105

106

107

108

109

1010

0.4 0.45 0.5 0.55 0.6 0.65

k(s-1

)

1000/T(K)

T(K)2000 15002500

104

105

106

107

108

109

1010

0.4 0.45 0.5 0.55 0.6 0.65

k(s-1

)

1000/T(K)

T(K)2000 15002500

Substrate Size

+ CO

O

+ CO

O

O

+ CO

P

1 atm

Page 29: Michael  Frenklach UC  Berkeley &  LBNL

104

105

106

107

0.4 0.45 0.5 0.55 0.6 0.65

k(s-1

)

1000/T(K)

T(K)20002500 1500

104

105

106

107

108

109

1010

0.4 0.45 0.5 0.55 0.6 0.65

k(s-1

)

1000/T(K)

T(K)20002500 1500

Zigzag vs Armchair

O

+ CO

Armchair I

+ CO

OArmchair II

O+ CO

O

+ CO

Zigzag I

Zigzag II

P1 atm

ZZ I

ZZ II

AC II

AC I

ZZ I

ZZ IIAC II

AC I

Page 30: Michael  Frenklach UC  Berkeley &  LBNL

104

105

106

107

108

109

1010

0.4 0.45 0.5 0.55 0.6 0.65

k(s-1

)

1000/T(K)

20002500 1500T(K)

104

105

106

107

108

109

1010

0.4 0.45 0.5 0.55 0.6 0.65

k(s-1

)

1000/T(K)

20002500 1500T(K)

104

105

106

107

108

109

1010

0.4 0.45 0.5 0.55 0.6 0.65

k(s-1

)

1000/T(K)

20002500 1500T(K)

104

105

106

107

108

109

1010

0.4 0.45 0.5 0.55 0.6 0.65

k(s-1

)

1000/T(K)

20002500 1500T(K)

O

O

O

O

O

O

O

R O CO + ProductO

Oxyradical Decomposition

P

Page 31: Michael  Frenklach UC  Berkeley &  LBNL

∆HOMAHOMA oxyradical ri

ng

46

48

50

52

54

56

58

60

62

-0.6 -0.4 -0.2 0 0.2

Bar

rier

heig

ht (

kcal

/mol

)

106

107

108

-0.6 -0.4 -0.2 0 0.2

kT

= 2

00

0 K

, P =

∞ (s-

1)

O

O

O

O

O

O

O

Kinetics Correlation with HOMA?

TS, reactant,HOMA HOMA HOMAn

i ii 2

Page 32: Michael  Frenklach UC  Berkeley &  LBNL

Conclusions

The decomposition of oxyradicals: temperature, pressure, substrate-size, site dependent

armchair rates are close to those of a zigzag-edge

correlated with aromaticity

The following generalization can be made:

O2 free edges

free edge

free edge

O1 free edge

free edgeOno free edges

> >>

Proliferation of zigzag-edges in flames

Page 33: Michael  Frenklach UC  Berkeley &  LBNL

ACKNOWLEDGEMENTS

DOE-BES

Prof. William A. Lester, Jr.Dr. Dmitry Zubarev (moving to Harvard U.)Dr. Russell Whitesides (now at LLNL)Prof. Xiaoqing You (now at Tsinghua U.)David Edwards