57
Metric learning for diffeomorphic image registration. Fran¸cois-Xavier Vialard Metric learning for diffeomorphic image registration. Fran¸cois-XavierVialard Universit´ e Paris-Est Marne-la-Vall´ ee joint work with M. Niethammer and R. Kwitt. IHP, March 2019.

Metric learning for diffeomorphic image registration. · Vialard Introduction to di eomorphisms group and Riemannian tools Choice of the metric Spatially dependent metrics Metric

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Metric learning for diffeomorphic imageregistration.

    François-Xavier Vialard

    Université Paris-Est Marne-la-Vallée

    joint work with M. Niethammer and R. Kwitt.

    IHP, March 2019.

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Outline

    1 Introduction to diffeomorphisms group and Riemannian tools

    2 Choice of the metric

    3 Spatially dependent metrics

    4 Metric learning

    5 SVF metric learning

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Example of problems of interest

    Given two shapes, find a diffeomorphism of R3 that maps oneshape onto the other

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Example of problems of interest

    Given two shapes, find a diffeomorphism of R3 that maps oneshape onto the other

    Different data types and different way of representing them.

    Figure – Two slices of 3D brain images of the same subject at differentages

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Example of problems of interestGiven two shapes, find a diffeomorphism of R3 that maps oneshape onto the other

    Deformation by a diffeomorphism

    Figure – Diffeomorphic deformation of the image

    SimulationBrain.mp4Media File (video/mp4)

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Variety of shapes

    Figure – Different anatomical structures extracted from MRI data

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Variety of shapes

    Figure – Different anatomical structures extracted from MRI data

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    A Riemannian approach to diffeomorphicregistration

    Several diffeomorphic registration methods are available:

    • Free-form deformations B-spline-based diffeomorphisms by D.Rueckert

    • Log-demons (X.Pennec et al.)• Large Deformations by Diffeomorphisms (M. Miller,A.

    Trouvé, L. Younes)

    • ANTSOnly the two last ones provide a Riemannian framework.

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    A Riemannian approach to diffeomorphicregistration

    • vt ∈ V a time dependent vector field on Rn.• ϕt ∈ Diff , the flow defined by

    ∂tϕt = vt(ϕt) . (1)

    Action of the group of diffeomorphism G0 (flow at time 1):

    Π : G0 × C → C ,Π(ϕ,X )

    .= ϕ.X

    Right-invariant metric on G0: d(ϕ0,1, Id)2 = 12

    ∫ 10|vt |2V dt.

    −→ Strong metric needed on V(Mumford and Michor: Vanishing Geodesic Distance on...)

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Matching problems in a diffeomorphic framework

    1 U a domain in Rn

    2 V a Hilbert space of C 1 vector fields such that:

    ‖v‖1,∞ 6 C |v |V .

    V is a Reproducing kernel Hilbert Space (RKHS): (pointwiseevaluation continuous)=⇒ Existence of a matrix function kV (kernel) defined on U × Usuch that:

    〈v(x), a〉 = 〈kV (., x)a, v〉V .

    Right invariant distance on G0

    d(Id, ϕ)2 = infv∈L2([0,1],V )

    ∫ 10

    |vt |2V dt ,

    −→ geodesics on G0.

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Matching problems in a diffeomorphic framework

    1 U a domain in Rn

    2 V a Hilbert space of C 1 vector fields such that:

    ‖v‖1,∞ 6 C |v |V .

    V is a Reproducing kernel Hilbert Space (RKHS): (pointwiseevaluation continuous)=⇒ Existence of a matrix function kV (kernel) defined on U × Usuch that:

    〈v(x), a〉 = 〈kV (., x)a, v〉V .

    Right invariant distance on G0

    d(Id, ϕ)2 = infv∈L2([0,1],V )

    ∫ 10

    |vt |2V dt ,

    −→ geodesics on G0.

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Matching problems in a diffeomorphic framework

    1 U a domain in Rn

    2 V a Hilbert space of C 1 vector fields such that:

    ‖v‖1,∞ 6 C |v |V .

    V is a Reproducing kernel Hilbert Space (RKHS): (pointwiseevaluation continuous)=⇒ Existence of a matrix function kV (kernel) defined on U × Usuch that:

    〈v(x), a〉 = 〈kV (., x)a, v〉V .

    Right invariant distance on G0

    d(Id, ϕ)2 = infv∈L2([0,1],V )

    ∫ 10

    |vt |2V dt ,

    −→ geodesics on G0.

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Variational formulation

    Find the best deformation, minimize

    J (ϕ) = infϕ∈GV

    d(ϕ.A,B)2︸ ︷︷ ︸similarity measure

    (2)

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Variational formulation

    Find the best deformation, minimize

    ������

    ������J (ϕ) = inf

    ϕ∈GVd(ϕ.A,B)2︸ ︷︷ ︸

    similarity measure

    (2)

    Tychonov regularization:

    J (ϕ) = R(ϕ)︸ ︷︷ ︸Regularization

    +1

    2σ2d(ϕ.A,B)2︸ ︷︷ ︸

    similarity measure

    . (3)

    Riemannian metric on GV :

    R(ϕ) =1

    2

    ∫ 10

    |vt |2V dt (4)

    is a right-invariant metric on GV .

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Optimization problem

    Minimizing

    J (v) = 12

    ∫ 10

    |vt |2V dt +1

    2σ2d(ϕ0,1.A,B)

    2 .

    In the case of landmarks:

    J (ϕ) = 12

    ∫ 10

    |vt |2V dt +1

    2σ2

    k∑i=1

    ‖ϕ(xi )− yi‖2 ,

    In the case of images:

    d(ϕ0,1.I0, Itarget)2 =

    ∫U

    |I0 ◦ ϕ1,0 − Itarget |2dx .

    Main issues for practical applications:

    • choice of the metric (prior),• choice of the similarity measure.

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Optimization problem

    Minimizing

    J (v) = 12

    ∫ 10

    |vt |2V dt +1

    2σ2d(ϕ0,1.A,B)

    2 .

    In the case of landmarks:

    J (ϕ) = 12

    ∫ 10

    |vt |2V dt +1

    2σ2

    k∑i=1

    ‖ϕ(xi )− yi‖2 ,

    In the case of images:

    d(ϕ0,1.I0, Itarget)2 =

    ∫U

    |I0 ◦ ϕ1,0 − Itarget |2dx .

    Main issues for practical applications:

    • choice of the metric (prior),• choice of the similarity measure.

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Why does the Riemannian framework matter?

    Generalizations of statistical tools in Euclidean space:

    • Distance often given by a Riemannian metric.• Straight lines → geodesic defined by

    Variational definition: arg minc(t)

    ∫ 10

    ‖ċ‖2c(t) dt = 0 ,

    Equivalent (local) definition: ∇ċ ċ = c̈ + Γ(c)(ċ , ċ) = 0 .

    • Average → Fréchet/Karcher mean.

    Variational definition: arg min{x → E [d2(x , y)]dµ(y)}Critical point definition: E [∇x d2(x , y)]dµ(y)] = 0 .

    • PCA → Tangent PCA or PGA.• Geodesic regression, cubic regression...(variational or

    algebraic)

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Karcher mean on 3D images

    Init. guesses

    1 iteration

    2 iterations

    3 iterationsA1i A

    2i A

    3i A

    4i

    Figure – Average image estimates Ami , m ∈ {1, · · · , 4} after i =0, 1, 2and 3 iterations.

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Interpolation, Extrapolation

    Figure – Geodesic regression (MICCAI 2011)

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Interpolation, Extrapolation

    Figure – Extrapolation of happiness

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learningWhat metric to choose?

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Choosing the right-invariant metricRight-invariant metric: Eulerian fluid dynamic viewpoint onregularization.Space V of vector fields is defined equivalently by

    • its kernel K such as Gaussian kernel,• its differential operator, for instance (Id−σ∆)n for Sobolev

    spaces.

    The norm on V is simply

    ‖v‖2V =∫

    〈v(x), (Lv)(x)〉 dx =∫

    (L1/2v)2(x) dx .

    Scale parameter important!

    kσ(x , y) = e− ‖x−y‖

    2

    σ2 kernel/operator (Id−σ∆)n (5)

    • σ small: good matching but non regular deformations andmore local minima.

    • σ large: poor matching but regular deformations and moreglobal minima.

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Choosing the right-invariant metricRight-invariant metric: Eulerian fluid dynamic viewpoint onregularization.Space V of vector fields is defined equivalently by

    • its kernel K such as Gaussian kernel,• its differential operator, for instance (Id−σ∆)n for Sobolev

    spaces.

    The norm on V is simply

    ‖v‖2V =∫

    〈v(x), (Lv)(x)〉 dx =∫

    (L1/2v)2(x) dx .

    Scale parameter important!

    kσ(x , y) = e− ‖x−y‖

    2

    σ2 kernel/operator (Id−σ∆)n (5)

    • σ small: good matching but non regular deformations andmore local minima.

    • σ large: poor matching but regular deformations and moreglobal minima.

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Choosing the right-invariant metricRight-invariant metric: Eulerian fluid dynamic viewpoint onregularization.Space V of vector fields is defined equivalently by

    • its kernel K such as Gaussian kernel,• its differential operator, for instance (Id−σ∆)n for Sobolev

    spaces.

    The norm on V is simply

    ‖v‖2V =∫

    〈v(x), (Lv)(x)〉 dx =∫

    (L1/2v)2(x) dx .

    Scale parameter important!

    kσ(x , y) = e− ‖x−y‖

    2

    σ2 kernel/operator (Id−σ∆)n (5)

    • σ small: good matching but non regular deformations andmore local minima.

    • σ large: poor matching but regular deformations and moreglobal minima.

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Sum of kernels and multiscaleChoice of mixture of Gaussian kernels: (Risser, Vialard et al. 2011)

    K (x , y) =n∑

    i=1

    αi e− ‖x−y‖

    2

    σ2i (6)

    Figure – Left to right: Small scale, large scale and multi scale.

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Sum of kernels and multiscaleChoice of mixture of Gaussian kernels: (Risser, Vialard et al. 2011)

    K (x , y) =n∑

    i=1

    αi e− ‖x−y‖

    2

    σ2i (6)

    Figure – Left to right: Small scale, large scale and multi scale.

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Decomposition over different scales

    Try to disentangle contributions at each scale: (Bruveris, Risser,Vialard, 2012, Siam MMS) using semi-direct product of groups.Consider Gσ1 ,Gσ2 two diffeomorphism groups at different scalesassociated with Vσ1 and Vσ2 .

    Semi-direct product of groups Gσ1 n Gσ2 .

    Non-linear extension of the infimal convolution of norms:

    ‖v‖2 = min(v1,v2)∈V1×V2

    {‖v1‖2V1 + ‖v2‖

    2V2

    ∣∣∣ v = v1 + v2} . (7)Non-linear extension −→ semi-direct product of groups.

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    From Eulerian to Lagrangian viewpoints

    Spatial correlation of the deformation: need for local deformabilityon the tissues.Toward a more Lagrangian point of view.

    How to introduce spatially varying metric?

    Using kernels: χi being a partition of unity of the domain.

    K =n∑

    i=1

    χi Kiχi , . (8)

    This kernel is associated to the following variational interpretation:

    ‖v‖2 = min(v1,...,vn)∈V1×...×Vn

    {n∑

    i=1

    ‖vi‖2Vi∣∣∣ n∑

    i=1

    χi vi = v

    }. (9)

    −→ possibility to introduce soft-symmetries...

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    From Eulerian to Lagrangian viewpoints

    Spatial correlation of the deformation: need for local deformabilityon the tissues.Toward a more Lagrangian point of view.

    How to introduce spatially varying metric?

    Using kernels: χi being a partition of unity of the domain.

    K =n∑

    i=1

    χi Kiχi , . (8)

    This kernel is associated to the following variational interpretation:

    ‖v‖2 = min(v1,...,vn)∈V1×...×Vn

    {n∑

    i=1

    ‖vi‖2Vi∣∣∣ n∑

    i=1

    χi vi = v

    }. (9)

    −→ possibility to introduce soft-symmetries...

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Left-invariant metrics

    Miccai 2013, Marsden’s Fields volume, Schmah, Risser, VialardChange of point of view: choose body-coordinates and convectivevelocity:

    J (ϕ) = 12

    ∫ 10

    ‖v(t)‖2V dt + E (ϕ(1) · I , J), (10)

    under the convective velocity constraint:

    ∂tϕ(t) = dϕ(t) · v(t) , (11)

    where dϕ(t) is the tangent map of ϕ(t).

    • More natural interpretation of spatially varying metrics.• Left action + left invariant metric =⇒ no induced

    Riemannian metric.

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Left-invariant metrics

    Miccai 2013, Marsden’s Fields volume, Schmah, Risser, VialardChange of point of view: choose body-coordinates and convectivevelocity:

    J (ϕ) = 12

    ∫ 10

    ‖v(t)‖2V dt + E (ϕ(1) · I , J), (10)

    under the convective velocity constraint:

    ∂tϕ(t) = dϕ(t) · v(t) , (11)

    where dϕ(t) is the tangent map of ϕ(t).

    • More natural interpretation of spatially varying metrics.• Left action + left invariant metric =⇒ no induced

    Riemannian metric.

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Difference with LDDMMThe path look different:

    Figure – The green curves Right-LDM geodesic path, The blue curvesLeft-LDM geodesic path.

    LDDMM LIDM

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    What’s next

    Left-invariance is more Lagrangian but the metric is fixed as in theEulerian situation!

    • On a template, learning the metric.

    Motivation:

    • Better matching results: i.e better regularization or matching.• Better matching quality for organs with (segmented) tumors.

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Metric learning

    Figure – Given a collection of shape and a template, learn the metric.

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Metric learning: High-dimensional inverseproblem

    (Miccai 2014: Vialard, Risser)

    • (In)n=1,...,N be a population of N images.• T be a template (Karcher mean for instance).

    Registering the template T onto the image In consists inminimizing:

    JIn,K (v) =1

    2

    ∫ 10

    ‖v(t)‖2V dt + d(T ◦ ϕ(1)−1, In) , (12)

    where∂tϕ(t) = v(t) ◦ ϕ(t) .

    Equivalent to minimize

    JIn,K (v) =1

    2

    ∫ 10

    〈P(t)∇I (t),K?(P(t)∇I (t)〉 dt+d(T◦ϕ(1)−1, In) ,

    (13)

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Metric learning: High-dimensional inverseproblem

    (Miccai 2014: Vialard, Risser)

    • (In)n=1,...,N be a population of N images.• T be a template (Karcher mean for instance).

    Registering the template T onto the image In consists inminimizing:

    JIn,K (v) =1

    2

    ∫ 10

    ‖v(t)‖2V dt + d(T ◦ ϕ(1)−1, In) , (12)

    where∂tϕ(t) = v(t) ◦ ϕ(t) .

    Equivalent to minimize

    JIn,K (v) =1

    2

    ∫ 10

    〈P(t)∇I (t),K?(P(t)∇I (t)〉 dt+d(T◦ϕ(1)−1, In) ,

    (13)

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Metric learning: High-dimensional inverseproblem

    (Miccai 2014: Vialard, Risser)

    • (In)n=1,...,N be a population of N images.• T be a template (Karcher mean for instance).

    Registering the template T onto the image In consists inminimizing:

    JIn,K (v) =1

    2

    ∫ 10

    ‖v(t)‖2V dt + d(T ◦ ϕ(1)−1, In) , (12)

    where∂tϕ(t) = v(t) ◦ ϕ(t) .

    Equivalent to minimize

    JIn,K (v) =1

    2

    ∫ 10

    〈P(t)∇I (t),K?(P(t)∇I (t)〉 dt+d(T◦ϕ(1)−1, In) ,

    (13)

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Optimize over K? Ill posed!• Incorporate the smoothness constraint by defining

    K = {K̂ MK̂ |M SDP operator on L2(Rd ,Rd )} , (14)

    M symmetric positive definite matrix.

    • Regularization on M. Prior for M close to Id. Minimize

    F(M) = β2

    d2S++ (M, Id) +1

    N

    N∑n=1

    minvJIn (v ,M) , (15)

    where d2 can be chosen as

    • Affine invariant metric (Pennec et al.)g1 = Tr(M

    −1(δM)M−1(δM)).

    • (Modified) Wasserstein metric.

    Problem

    Problem: matrix M is huge: (dn)2 where d = 2, 3 dimension andn number of voxels.Computing the logarithm is costly.

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Optimize over K? Ill posed!• Incorporate the smoothness constraint by defining

    K = {K̂ MK̂ |M SDP operator on L2(Rd ,Rd )} , (14)

    M symmetric positive definite matrix.• Regularization on M. Prior for M close to Id. Minimize

    F(M) = β2

    d2S++ (M, Id) +1

    N

    N∑n=1

    minvJIn (v ,M) , (15)

    where d2 can be chosen as

    • Affine invariant metric (Pennec et al.)g1 = Tr(M

    −1(δM)M−1(δM)).

    • (Modified) Wasserstein metric.

    Problem

    Problem: matrix M is huge: (dn)2 where d = 2, 3 dimension andn number of voxels.Computing the logarithm is costly.

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Wasserstein metric

    Pros: Easy to computeCons: Non complete metric.

    Trick

    The map N 7→ NNT is a Riemannian submersion from Mn(R)equipped with the Frobenius norm to the space of SDP matricesequipped with the Wasserstein metric

    Encode the symmetric matrix as NNT and perform theoptimization on N. The regularization reads 12‖N − Id‖

    2

    The gradient is

    ∇L2F(N) = β(N − Id)− (16)

    1

    2N

    N∑n=1

    ∫ 10

    (K̂ ? Pn(t))⊗ (NK̂ ? Pn(t)) + (NK̂ ? Pn(t))⊗ (K̂ ? Pn(t))dt ,

    (17)

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Wasserstein metric

    Pros: Easy to computeCons: Non complete metric.

    Trick

    The map N 7→ NNT is a Riemannian submersion from Mn(R)equipped with the Frobenius norm to the space of SDP matricesequipped with the Wasserstein metric

    Encode the symmetric matrix as NNT and perform theoptimization on N. The regularization reads 12‖N − Id‖

    2

    The gradient is

    ∇L2F(N) = β(N − Id)− (16)

    1

    2N

    N∑n=1

    ∫ 10

    (K̂ ? Pn(t))⊗ (NK̂ ? Pn(t)) + (NK̂ ? Pn(t))⊗ (K̂ ? Pn(t))dt ,

    (17)

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Reducing the problem dimension

    IdeaLearn at large scales and not at fine scale.

    Introduce:

    K = {K̂ MΠK̂ + K̂ (Id − Π)K̂ |M SDP operator on L2(Rd ,Rd )} .(18)

    with Π an orthogonal projection on a finite dimensionalparametrization of vector fields: use of splines.

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Experiments• 40 subjects of the LONI Probabilistic Brain Atlas (LPBA40).• All 3D images were affinely aligned to subject 5 using ANTS.

    Table – Reference results

    No Reg SyN Kfine Kref

    TO 0.665 0.750 0.732 0.712

    DetJMax 1 3.17 4.65 1.66DetJMin 1 0.047 0.46 0.67DetJStd 0 0.17 0.11 0.063

    Table – Average results.

    DiagM GridM1 GridM2 K20 K30

    TO 0.711 0.710 0.704 0.710 0.704

    DetJMax 1.66 1.61 1.41 1.62 1.50DetJMin 0.68 0.70 0.67 0.73 0.66DetJStd 0.062 0.059 0.049 0.056 0.063

    For a given quality of overlap, better smoothness of thedeformations.

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Experiments• 40 subjects of the LONI Probabilistic Brain Atlas (LPBA40).• All 3D images were affinely aligned to subject 5 using ANTS.

    Table – Reference results

    No Reg SyN Kfine Kref

    TO 0.665 0.750 0.732 0.712

    DetJMax 1 3.17 4.65 1.66DetJMin 1 0.047 0.46 0.67DetJStd 0 0.17 0.11 0.063

    Table – Average results.

    DiagM GridM1 GridM2 K20 K30

    TO 0.711 0.710 0.704 0.710 0.704

    DetJMax 1.66 1.61 1.41 1.62 1.50DetJMin 0.68 0.70 0.67 0.73 0.66DetJStd 0.062 0.059 0.049 0.056 0.063

    For a given quality of overlap, better smoothness of thedeformations.

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Main issues

    • The metric is fixed in Eulerian coordinates.• The metric is template based.

    Make the method adaptive to any pairs of images on a simplermodel.

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    SVF model: A simple model

    Based on Metric learning for image registration, CVPR 2019,Niethammer, Kwitt, Vialard.Let v(x) be a vector field. Find a v minimizer of

    1

    2‖v‖2V + Sim(I ◦ ϕ−11 , J) (19)

    ∂tϕt = v(ϕt) . (20)

    Equivalent momentum formulation: Find m ∈ L2(Ω,Rd ) ⊂ V ∗such that

    1

    2〈m,K ?m〉+ Sim(I ◦ ϕ−11 , J) (21)

    s.t.∂tϕ−1(t, x) + Dϕ−1(t, x)(K ?m(t, x)) = 0 . (22)

    Numerical discretization: Central differences in space and 20timesteps in time of RK4.

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    SVF model: A simple model

    Based on Metric learning for image registration, CVPR 2019,Niethammer, Kwitt, Vialard.Let v(x) be a vector field. Find a v minimizer of

    1

    2‖v‖2V + Sim(I ◦ ϕ−11 , J) (19)

    ∂tϕt = v(ϕt) . (20)

    Equivalent momentum formulation: Find m ∈ L2(Ω,Rd ) ⊂ V ∗such that

    1

    2〈m,K ?m〉+ Sim(I ◦ ϕ−11 , J) (21)

    s.t.∂tϕ−1(t, x) + Dϕ−1(t, x)(K ?m(t, x)) = 0 . (22)

    Numerical discretization: Central differences in space and 20timesteps in time of RK4.

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Parametrization of the metricFix a collection of scales σ0 < . . . < σN−1 and set

    Gi (x) = e−|x|2/σ2i .

    v0(x)def.= (K (w) ?m0)(x)

    def.=

    N−1∑i=0

    √wi (x)

    ∫y

    Gi (|x − y |)√

    wi (y)m0(y) dy , (23)

    Problem: wi should be sufficiently smooth to guaranteediffeomorphisms.Introduce pre-weights ωi (x) and fix Kσ, with σ small:

    Kσ ? ωi = wi

    and ∑i

    wi (x) = 1 .

    Learning the metric is still ill-posed:

    ÔMT(w) =

    ∣∣∣∣log σN−1σ0∣∣∣∣−r N−1∑

    i=0

    wi

    ∣∣∣∣log σN−1σi∣∣∣∣r (24)

    Is 0 for (wi ) = (0, . . . , 0, 1).

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Objective function

    Optimize momentum + metric.

    Obj0,1(m, ω) = argminm0

    λ〈m0, v0〉 + Sim[I0 ◦ Φ−1(1), I1] +

    λOMT

    ∫ÔMT(w(x)) dx +

    λTV

    √√√√N−1∑l=0

    (∫γ(‖∇I0(x)‖)‖∇ωl (x)‖2 dx

    )2, (25)

    where γ(x) ∈ R+ is an edge indicator function

    γ(‖∇I‖) = (1 + α‖∇I‖)−1, α > 0 .

    Then, minimize ∑i,j

    Obj0,1(mi,j , ωi ) , (26)

    where ωi = fθ(Ii ).

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Parametrize and learn the pre-weights ωi

    The pre-weights are parametrized by a 2-layers net:

    (ωi )i=1,...,N = ShallowNet(I ) .

    Input: current image, Output: pre-weights.

    ShallowNet = conv(d , n1) → BatchNorm → lReLU →conv(n1,N) → BatchNorm → weighted-linear-softmax

    σw (z)j =clamp0,1(wj + zj − z)∑N−1

    i=0 clamp0,1(wi + zi − z), (27)

    The weights wj are reasonably initialized: wi = σ2i /(∑N−1

    j=0 σ2j )

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Optimization

    Shared parameters: ShallowNetwork parameters,Individual parameters: Momentum for each pair.

    1 (1) initialize with reasonable weights and optimize overmomentums,

    2 (2) Jointly optimize on the shared and individual parameters:use SGD with (Nesterov) momentum, different batch size in2d/3d, 50 epochs in 2d, less in 3D.

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Experiments on synthetic data1) Generate concentric circular regions with random radii and

    associate different multi-Gaussian weights to these regions.We associate a fixed multi-Gaussian weight to thebackground.

    2) Randomly create vector momenta at the borders of theconcentric circles.

    3) Add noise (for texture) and compute forward model, toobtain source image, similar for target image.

    0

    1

    2

    3

    disp

    erro

    r (es

    t-GT)

    [pix

    el]

    glob

    alt=

    0.01

    ;o=5

    _l

    t=0.

    01;o

    =15_

    l

    t=0.

    01;o

    =25_

    l

    t=0.

    01;o

    =50_

    l

    t=0.

    01;o

    =75_

    l

    t=0.

    01;o

    =100

    _l

    t=0.

    10;o

    =5_l

    t=0.

    10;o

    =15_

    l

    t=0.

    10;o

    =25_

    l

    t=0.

    10;o

    =50_

    l

    t=0.

    10;o

    =75_

    l

    t=0.

    10;o

    =100

    _l

    t=0.

    25;o

    =5_l

    t=0.

    25;o

    =15_

    l

    t=0.

    25;o

    =25_

    l

    t=0.

    25;o

    =50_

    l

    t=0.

    25;o

    =75_

    l

    t=0.

    25;o

    =100

    _l0.0

    0.5

    1.0

    1.5

    2.0

    disp

    erro

    r (es

    t-GT)

    [pix

    el]

    Figure – Displacement error (in pixel) with respect to the ground truthfor various values of the total variation penalty, λTV (t) and the OMTpenalty, λOMT (o). Results for the interior (top) and the exterior(bottom) rings show subpixel registration accuracy for all local metricoptimization results (* l). Overall, local metric optimizationsubstantially improves registrations over the results obtained via initialglobal multi-Gaussian regularization (global).

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Experiments on synthetic dataSource image Target image

    Warped source Deformation grid Std.dev.

    λOMT = 150.165

    0.170

    0.175

    0.180

    0.185

    0.190

    0.195

    λOMT = 500.170

    0.175

    0.180

    0.185

    0.190

    0.195

    λOMT = 100 0.1650.170

    0.175

    0.180

    0.185

    0.190

    0.195

    Figure – λTV = 0.1. Overall variance is similar but the true weights arenot recovered: weights on the outer ring [0.05, 0.55, 0.3, 0.1]

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Experimentsw0(σ = 0.01) w1(σ = 0.05) w2(σ = 0.10) w3(σ = 0.20)

    λOMT = 15

    λOMT = 50

    λOMT = 100

    Figure

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    On 2D real data: LPBA40

    Source image Target image

    Warped source Deformation grid Std. dev.

    λOMT = 15 0.1910.192

    0.193

    0.194

    0.195

    0.196

    0.197

    λOMT = 50 0.1920.193

    0.194

    0.195

    0.196

    0.197

    0.198

    λOMT = 1000.194

    0.195

    0.196

    0.197

    0.198

    0.199

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Performance on 3D data: CUMC12

    Training on different dataset:

    Trained on different dataset, test on CUMC12

    Training 132 image pairs on CUMC12, 90 image pairs onMGH10, 150 image pairs on IBSR18.

    Method mean std 1% 5% 50% 95% 99% p MW-stat sig?FLIRT 0.394 0.031 0.334 0.345 0.396 0.442 0.463

  • Metric learning fordiffeomorphic image

    registration.

    François-XavierVialard

    Introduction todiffeomorphisms groupand Riemannian tools

    Choice of the metric

    Spatially dependentmetrics

    Metric learning

    SVF metric learning

    Conclusion

    Summary

    Adaptive metric learning in SVF.

    Avoid end to end training for preserving diffeomorphicproperties.

    Diffeomorphic guarantees at test time (no guarantee for DLmethods: VoxelMorph).

    Perspectives

    Combine it with momentum prediction (QuickSilver like).

    Use it in LDDMM.

    Incorporate richer deformations descriptors.

    Paper to appear: Metric learning for image registration, CVPR2019, Niethammer, Kwitt, Vialard.

    Main TalkIntroduction to diffeomorphisms group and Riemannian toolsChoice of the metricSpatially dependent metricsMetric learningSVF metric learning

    anm0: anm1: