23
Metallurgical Model Presentation Maximizing metallurgical yields at minimal environmental cost Processing Technologies, Metal Recoveries & Economic Feasibility of Deep Sea Mining Monday, September 3 – Wednesday, September 5 Ministry of Environment, Warsaw, Poland Simon Boel, GSR NV.

Metallurgical Model Presentation Maximizing metallurgical ... · Metallurgical Model Presentation Maximizing metallurgical yields at minimal environmental cost Processing Technologies,

  • Upload
    others

  • View
    52

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Metallurgical Model Presentation Maximizing metallurgical ... · Metallurgical Model Presentation Maximizing metallurgical yields at minimal environmental cost Processing Technologies,

Metallurgical Model Presentation

Maximizing metallurgical yields at minimal environmental cost

ProcessingTechnologies,MetalRecoveries&EconomicFeasibilityofDeepSeaMining

Monday,September3–Wednesday,September5

MinistryofEnvironment,Warsaw,Poland

SimonBoel,GSRNV.

Page 2: Metallurgical Model Presentation Maximizing metallurgical ... · Metallurgical Model Presentation Maximizing metallurgical yields at minimal environmental cost Processing Technologies,

1. Base thought

• Mining–transport–processingshouldhavelowerimpactthanland-basedalternatives•  Leadingtoanenvironmentalimpactoptimisation–E.gTheuseofanenvironmentalcostcurve

Nickelminescarbonemissionperkgnickel

Page 3: Metallurgical Model Presentation Maximizing metallurgical ... · Metallurgical Model Presentation Maximizing metallurgical yields at minimal environmental cost Processing Technologies,

2. Applied on nodule processing

• CO2impact(energyuse)•  Toxicityreagents• Wasteproduced•  Efficiencyofprocess/irrevocablelossofmetals

Page 4: Metallurgical Model Presentation Maximizing metallurgical ... · Metallurgical Model Presentation Maximizing metallurgical yields at minimal environmental cost Processing Technologies,

3. Choice of metallurgical route

1.  Cuprion+EMM–processdescription2.  Overviewenergy&reagentiaimpact3.  Waste

Page 5: Metallurgical Model Presentation Maximizing metallurgical ... · Metallurgical Model Presentation Maximizing metallurgical yields at minimal environmental cost Processing Technologies,

3.1. Cuprion + EMM – Winning of Ni-Cu-Co

•  Selectivemetalrecovery• Notoxicreagentia•  Lowpressure(patm)•  Lowtemperature(40°C)

Optimalenergyuse

Page 6: Metallurgical Model Presentation Maximizing metallurgical ... · Metallurgical Model Presentation Maximizing metallurgical yields at minimal environmental cost Processing Technologies,

3.1. Cuprion + EMM – Winning of Ni-Cu-Co Selectivepickingofmetalsfrompoly-metallicinflow

Page 7: Metallurgical Model Presentation Maximizing metallurgical ... · Metallurgical Model Presentation Maximizing metallurgical yields at minimal environmental cost Processing Technologies,

3.1. Cuprion + EMM – Winning of Ni-Cu-Co

• Physicalbreakdown• Chemicalbreakdown

MnO2(s)+CO(g)→MnCO3(aq)

Ni,Cu,Co:liberatedfromcrystalstructureOthertraceelements

• Recoveryoftracemetals(SX/EW)Organicacid:selectivebindingofNiandCuStripping:H2SO4/recoveryRR2Cuorg+H2SO4→2R-Horg+CuSO4(aq)EW→Nimetal&CumetalCu2++2e-→CuRemaining:Mn,Co,traceelements

Page 8: Metallurgical Model Presentation Maximizing metallurgical ... · Metallurgical Model Presentation Maximizing metallurgical yields at minimal environmental cost Processing Technologies,

3.1. Cuprion + EMM – Winning of Ni-Cu-Co

• RecoveryofCoCo2++impurities(aq)+H2S→CoS(s)↓CoS+H2SO4→CoSO4(aq)

EW→CometalRemaining:MnCO3(majorfraction!)&traceelements

Page 9: Metallurgical Model Presentation Maximizing metallurgical ... · Metallurgical Model Presentation Maximizing metallurgical yields at minimal environmental cost Processing Technologies,

3.1. Cuprion + EMM – EMM substitution

• MassbalanceBulkofinflow:wastestockpile/low-gradeproduct(MnCO3:6-7USD/DMTU)

NeedforfurtherprocessingofMnCO3

•  EMM:highvalue,knownprocess•  EW→ElectrolyticManganeseMetal(EMM)•  At3Mtpanodules:729000tEMM•  AnnualEMMmarket:1400000tEMM

MnCO3 MnCO3 MnCO3

Ni Ni Ni 370kgCu Cu Cu Co MnCO3

Co Co Co

12.35 kgNimetal 9.9 kgCumetal 1.68 kgCometal

aquoussolution

Cuprionroute

→aquoussolution

↓H2S→H2SO4→EW

aquoussolution

→aquoussolution

↓SX/EW↓

CuCo

↓SX/EW

MnO2-structure

elementslockedinstructure

1000kgnodules

MnO2breaksdown→dissolvedMnCO3

elementsfreeinsolution

CO,NH3

Marketingstrategyrequired

Page 10: Metallurgical Model Presentation Maximizing metallurgical ... · Metallurgical Model Presentation Maximizing metallurgical yields at minimal environmental cost Processing Technologies,

3.1. Cuprion + EMM – Processing of MnCO3

•  Substitutiontheory•  SellingEMMintootherMnmarkets•  TherebyavoidingdisruptionofMnprices

Page 11: Metallurgical Model Presentation Maximizing metallurgical ... · Metallurgical Model Presentation Maximizing metallurgical yields at minimal environmental cost Processing Technologies,

3.2. Overview energy & reagents impact

•  Energyuse

ReferenceNickelelectrowinning 3,000 4,000 40 50 1-2-10Copperelectrowinning 2,000 3,000 20 30 1-2Cobaltelectrowinning 3,000 4,500 5 8 3-4-10EMMelectrowinning 1-5-10Auxiliaryprocesses 40 80 1-2Total 145 208

xx

ElectricityconsumptionCuprion+EMMProcesskWh/tonnemetal

10,000

kWh/tonnenodules

40

Page 12: Metallurgical Model Presentation Maximizing metallurgical ... · Metallurgical Model Presentation Maximizing metallurgical yields at minimal environmental cost Processing Technologies,

3.2. Overview energy & reagents impact

•  ImpactofenergyuseCoal Oil&Gas Renewable Nuclear Overall(kgCO2/kWh) Reference

CO2emissionsgeneration(kgCO2/kWh) 1.1 0.35 0.025 0.115 - 6

GenerationdistributionCanada 10% 10% 65% 15% 0.17 7GenerationdistributionMexico 10% 70% 20% 0% 0.35 8GenerationdistribtutionChina 65% 5% 25% 5% 0.71 9

ProcessinginCanada 25 36ProcessinginMexico 51 73ProcessinginChina 103 148

1kgCO2emitted=driving10kmbycar

ElectricityimpactCuprion+EMMProcesskgCO2/tonnenodules

Impactofelectricitygeneration

Coal Oil&Gas Renewable Nuclear Overall(kgCO2/kWh) ReferenceCO2emissionsgeneration(kgCO2/kWh) 1.1 0.35 0.025 0.115 - 6

GenerationdistributionCanada 10% 10% 65% 15% 0.17 7GenerationdistributionMexico 10% 70% 20% 0% 0.35 8GenerationdistribtutionChina 65% 5% 25% 5% 0.71 9

ProcessinginCanada 25 36ProcessinginMexico 51 73ProcessinginChina 103 148

1kgCO2emitted=driving10kmbycar

ElectricityimpactCuprion+EMMProcesskgCO2/tonnenodules

Impactofelectricitygeneration

Page 13: Metallurgical Model Presentation Maximizing metallurgical ... · Metallurgical Model Presentation Maximizing metallurgical yields at minimal environmental cost Processing Technologies,

Coal Oil&Gas Renewable Nuclear Overall(kgCO2/kWh) ReferenceCO2emissionsgeneration(kgCO2/kWh) 1.1 0.35 0.025 0.115 - 6

GenerationdistributionCanada 10% 10% 65% 15% 0.17 7GenerationdistributionMexico 10% 70% 20% 0% 0.35 8GenerationdistribtutionChina 65% 5% 25% 5% 0.71 9

ProcessinginCanada 25 36ProcessinginMexico 51 73ProcessinginChina 103 148

1kgCO2emitted=driving10kmbycar

ElectricityimpactCuprion+EMMProcesskgCO2/tonnenodules

Impactofelectricitygeneration

Coal Oil&Gas Renewable Nuclear Overall(kgCO2/kWh) ReferenceCO2emissionsgeneration(kgCO2/kWh) 1.1 0.35 0.025 0.115 - 6

GenerationdistributionCanada 10% 10% 65% 15% 0.17 7GenerationdistributionMexico 10% 70% 20% 0% 0.35 8GenerationdistribtutionChina 65% 5% 25% 5% 0.71 9

ProcessinginCanada 25 36ProcessinginMexico 51 73ProcessinginChina 103 148

1kgCO2emitted=driving10kmbycar

ElectricityimpactCuprion+EMMProcesskgCO2/tonnenodules

Impactofelectricitygeneration

3.2. Overview energy & reagents impact

•  Impactofenergyuse

Relativelyeasyoptimisationbyrelocation

Page 14: Metallurgical Model Presentation Maximizing metallurgical ... · Metallurgical Model Presentation Maximizing metallurgical yields at minimal environmental cost Processing Technologies,

3.2. Overview energy & reagents impact

• Consumptionofmainreagents

ReferenceNH3 90 100 2-5CaO 12 13 2H2SO4 240 550 2-5-11CO stoichiometrySteam 1-2Cross-checkedwithatmosphericsulphuricacidleachingoflimoniticlateriteore

148500

MainreagentiaconsumptionCuprion+EMMProcesskg/tonnenodules

Page 15: Metallurgical Model Presentation Maximizing metallurgical ... · Metallurgical Model Presentation Maximizing metallurgical yields at minimal environmental cost Processing Technologies,

3.2. Overview energy & reagents impact

•  Impactofreagentsconsumption

ReferenceNH3 12-13-14CaO 13-14H2SO4 13-14CO stoichiometrySteam

NH3 189 210CaO 14 14H2SO4 34 77COSteamTotal 774 839

1.57

233

ImpactofmainreagentiaconsumptionCuprion+EMMProcess

0.61

305

kgCO2/tonnenodules

kgCO2/kgreagens

0.141.22.1

ImpactofmainreagentiaCuprion+EMMProcess

Page 16: Metallurgical Model Presentation Maximizing metallurgical ... · Metallurgical Model Presentation Maximizing metallurgical yields at minimal environmental cost Processing Technologies,

ReferenceNH3 12-13-14CaO 13-14H2SO4 13-14CO stoichiometrySteam

NH3 189 210CaO 14 14H2SO4 34 77COSteamTotal 774 839

1.57

233

ImpactofmainreagentiaconsumptionCuprion+EMMProcess

0.61

305

kgCO2/tonnenodules

kgCO2/kgreagens

0.141.22.1

ImpactofmainreagentiaCuprion+EMMProcess

3.2. Overview energy & reagents impact

•  Impactofreagentsconsumption

Intrinsicto

process–

optimizatio

nmuchha

rder

Page 17: Metallurgical Model Presentation Maximizing metallurgical ... · Metallurgical Model Presentation Maximizing metallurgical yields at minimal environmental cost Processing Technologies,

3.2. Overview energy & reagents impact

•  Impactoftransport

sailingdistance gCO2/(tonnexkm) kgCO2/tonnenodules ReferenceVancouver,CA 4100 5 21 16Manzanillo,MX 2400 5 12 16Shanghai,CN 11400 5 57 16

Impactoftransportbybulkcarrier

Page 18: Metallurgical Model Presentation Maximizing metallurgical ... · Metallurgical Model Presentation Maximizing metallurgical yields at minimal environmental cost Processing Technologies,

3.2. Overview energy & reagents impact

• Overallimpact•  Maindriver:chemicalreagents–definedbylawsofnature•  Secondarydriver:electricity–CO2optimizationbychoiceoflocation•  Transport:smallimpact–longerroutesjustifiedbygreenerelectricity•  Conservativefigures

kgCO2/tonnenodulesDestination:Canada 21 25 36 774 839 799 875 820 895Destination:Mexico 12 51 73 774 839 825 912 837 924Destination:China 57 103 148 774 839 877 987 934 1044

Transportimpact

Impactofchain"MiningshiptoMetal"

Processingimpact MiningshiptoMetal

kgCO2/tonnenodules kgCO2/tonnenoduleskgCO2/tonnenodulesMainreagentiaimpactElectricityimpact

Cuprion+EMM

kgCO2/tonnenodules

Page 19: Metallurgical Model Presentation Maximizing metallurgical ... · Metallurgical Model Presentation Maximizing metallurgical yields at minimal environmental cost Processing Technologies,

3.2. Overview energy & reagents impact

• Discussion/outstandingissues•  Consumptionofminorreagents•  Consumptionsteam:Dames&Moore(1977):1600kg/tonnenodules–CO2!

Page 20: Metallurgical Model Presentation Maximizing metallurgical ... · Metallurgical Model Presentation Maximizing metallurgical yields at minimal environmental cost Processing Technologies,

3.3. Waste

• Majormetalsrecovered•  Verylittleamounts•  Closedloopprocess•  PossibilityofMorecovery

•  Efficientprocess•  Veryhighrecoveryrateofmetals

Page 21: Metallurgical Model Presentation Maximizing metallurgical ... · Metallurgical Model Presentation Maximizing metallurgical yields at minimal environmental cost Processing Technologies,

4. Alternative routes (Blue Nodules)

•  EUHorizon2020programme• RWTHAachen:pyrometallurgicalroute• Underexamination• www.blue-nodules.eu

Page 22: Metallurgical Model Presentation Maximizing metallurgical ... · Metallurgical Model Presentation Maximizing metallurgical yields at minimal environmental cost Processing Technologies,

Questions?

Thank you

Page 23: Metallurgical Model Presentation Maximizing metallurgical ... · Metallurgical Model Presentation Maximizing metallurgical yields at minimal environmental cost Processing Technologies,

Bibliography 1 DamesandMoore.(1977).DescriptionofManganeseNoduleProcessingActivitiesforEnvironmentalStudies.

2 MonozRoyoCarlos.(2018).MITCostModel.PresentedatISAContractor'sWorkshop.

3 Lu,Jianming&Dreisinger,David&Glück,Thomas.(2013).BoleoCobaltElectrowinningDevelopment.

4 Sadoway,DonaldR.(1986)."Electrometallurgy,"EncyclopediaofMaterialsScienceandEngineering.

5 L'Huillier,Patrice.(2015).ConstructionandСommissioningofERAMETSiMn+EMMPlantinGabon

6 https://timeforchange.org/co2-emission-nuclear-power-stations-electricity

7 https://www.nrcan.gc.ca/energy/electricity-infrastructure/about-electricity/7359

8 https://www.statista.com/statistics/763072/electricity-generate-source-mexico/

9 https://chinaenergyportal.org/en/2016-detailed-electricity-statistics-updated/

10 USGS.(2011).EstimatesofElectricityRequirementsfortheRecoveryofMineralCommodities,withExamplesAppliedtoSub-SaharanAfrica

11 Crundwelletal.(2011).ExtractiveMetallurgyofNickel,CobaltandPlatinum-GroupMetals

12 https://ammoniaindustry.com/ammonia-production-causes-1-percent-of-total-global-ghg-emissions/

13 Bosch,Peter&Kuenen,Jeroen.(2009).GreenhousegasefficiencyofindustrialactivitiesinEUandnon-EU.

14 InternationalSustainability&CarbonCertification.(2011).GHGEmissionsCalculationMethodologyandGHGAudit.

15 VanNijen,Kris.(2018).Astochastictechno-economicassessmentofseabedminingofpolymetallicnodulesintheClarionClippertonFractureZone

16 ECTA.(2011).GuidelinesforMeasuringandManagingCO2EmissionfromFreightTransportOperations