4
INVESTIGACIÓN REVISTA MEXICANA DE FislCA 4S(4) J~2-J.. t'j Metallie bchavior of Ni c1ustcrs J.L. Rodríguez-López and F. Aguilera-Granja Instituto de Física, U"h'ersidad Alltó"oma de Sa" Luis Potos[ 78000S111lLuis P01OS( s.L.P.. Mexico Recihido el 22 de junio de 1998; aceplado el 4 de febrero de 1999 AGOSTO 199'! We have studicd [he nonmetal-metal transition in small nickel c1usters (N < 38) for a large variely of differcnt struclures reportea in the Iiterature. A. sclf-consistcnt tight-binding method for the .'1. ]l. and d va1cll('e electrons in the mean f¡cld approximation has been used to C<llclllatethe dellsity of statcs. The prescription employed to identify [he nonmctal-melaltransition was Kubo's criterion. ¡hat establish that the small clllsters may remain insulating untillhe density of states at [he Fermi Icvd exceeds l/(ksT). We compare our resulls with sorne experimental results. Kl'yword.~: NOlllnetal-metallransition; small Ni c1usters En este trJhajo hemos estudiado la transición no metal a metal en clímulos pequeños uc níquel (N < 38) para una amplia variedad ue estructuras reportadas en la literatura. Un método auto-consilcnle de amarre fuerte para los electrones de valencia s. p y el en la aproximación de campo medio se utiliza para el cálculo de In densidad de estauos. La condición empIcada para identificar la transición no metal a metal ha sido el critcrio de Kuho, el cllal establcce que cúmulos pequeños sc mantcndrtín como aislantes hasta que la densidad de estados en el nivel de Ferrni excede el factor l/(kuT). Comparamos nuestrus rcsultados con algunos rcsultados experimentales. [)(,Jcril,rorn: Transición no mctal a mctal; cúmulos pequeilos de Ni. PAes: J6AO.Cg: 65.90.+i 1. Introduction Nowadays. in the case of slllall cluster sizcs, Lhere are Illany Il1corclic<l1 reslllts inlhc litcrature aholll Ni clusters lha( pro- vide a great variely 01" slructures, depenJing on the inler- i.ltolllic pOlenliai ami on Ihe Illethod used in the calculation. in general Ihesc structurcs are diffcrent in sizcs and in gcolllct- rical sllape. A general discussion on lhe gcometrical shape 01' Ni c1ustcrs can he l'Ollnd in Refs. 1-12, and papers ljuoted therein. Hov.. 'ever. rOl' small atomic c1uslcrs there are olller in- Icresting prohlellls rcgardless of the kno\' •. 'lcdge of the slruc- ture. One (lf lhese Jeal .••with Ihe fTlctallic hchavior 01'slleh ag- gregates. alld can he l'orlllulatcJ in the following wa)' ..wha! is the cluster size at which lhe atoJllic c1uslers hccollles metal- lic? The lInderstanding of the development 01' the lIletallic heha\'ior wilh increasing parlicle size has heen olle 01' the kcy questiuns in the physics 01' atomic aggrcgates 1'01'Illany years sinee i( was forlllula(cd hy Frühlich more than sixly )'ears a~o [1:11. A \..cy slep to undersland the metallic hehavior 01"alomic c1usters was f1rsl given hy Kuhn anJ co-workers 11.11. who poinLed oul Ihal a cluster presents Illetallic hehavior whcn Ihe average spacing helwecn the eieclronic levels hecoll1es smallcr Ihan k[1 T and Ihe discrele energy levels hegin (o fmm a quaSi-l'lllltinuous hallJ. 01" formulaled in lcrms PI' Lhe del1- Sil)' uf e!cc(ronic slales D(E): a cluster prescllts mctallic hehavior wllen 'P(E) al the Fcrmi level excceds 1/(kIJT). Although the Kubo criterion is in principie simple 10 apply, Ihel"c ;lrI: rnany malerials for \',:hicll Ihe critical cluster si/e is still unknown, that is mainly due to lhe ahscncc of calcula- Jions of D( E,,) a",llo Ihe lack of a precise knowledge of Ihe c1usler geometry, as it was quoted ahoye. Recentl)'. il has pointed out lhat the devclopmcnt al' Ihe mctallic characler of slllall alomic clusters is driven primarily hy the mean coordination numher 115]. \\'ilh lhe aim to c1ar- ir)' this dependence on rhe me!allic hehavior, a theoretical cal- culalion [161 has heen carried out within Friedel's modcl amI Kuho's critcrion; the main conclusioll of this work is that crit- ic.JI cluster sizc No (sil.e al which the cluster develops metal- Iie hchavior) for the Ilonrnelal-Illelal transition is proportional lo JZ(S,)G(T), where Z(N,.) is Ihe average coordination IlUIIlOer of an N -alorns cluster at the crilical si/e and G(T) is a fUllction Lha! depends on Ihe lempcraturc alHI hulk proper- ties of Ihe sysLcll1. i\lthough (he calclllation quo(ed he1'ore is hascd on a vl'ry crude approxima(ion ror Ihe D(E) il shows thal the IHHllllClal-lllelallransilioll dcpends Illainly 011the gc- olllclrica! StlllcturC and panicularl)' on its avcragc coordina- tion nurnher. An cxcellcnt rcvicw orthe experimental and the- orclical works 011 IIlctallic hehavior of finile sizc particles can he fountl in ReL 17. In the case 01' nickcl clusters, and in spitc of the panial agreclllenl in the geornctrical struclurcs prcdicted hy recent caklllatiolls 1[;-121. some discrepancics exis{ hclween them. ('.,s.:. inter-alomic distance. local coordination numhcr, aver- age magnetic moment, etc. Thcse discrepancics are mainly dile to the high Ilumoer 01"parameters that have to be takcn ill(o aCCOllll( in (he cakulaliolls. lhe Illclhods 01' calculation, and Ihe variotls Iypl.:'s 01"polcntials used lO ohtain geollletrical

Metallie bchavior of Nic1ustcrs - SMF · used inthe ealeulalion are those ealeulated hy Nayak elal. [5] (represented hy • in the ligure) who had ealculated them os-ing a scmi-empirical

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Metallie bchavior of Nic1ustcrs - SMF · used inthe ealeulalion are those ealeulated hy Nayak elal. [5] (represented hy • in the ligure) who had ealculated them os-ing a scmi-empirical

INVESTIGACIÓN REVISTA MEXICANA DE FislCA 4S(4) J~2-J ..t'j

Metallie bchavior of Ni c1ustcrs

J.L. Rodríguez-López and F. Aguilera-GranjaInstituto de Física, U"h'ersidad Alltó"oma de Sa" Luis Potos[

78000S111lLuis P01OS( s.L.P.. Mexico

Recihido el 22 de junio de 1998; aceplado el 4 de febrero de 1999

AGOSTO 199'!

We have studicd [he nonmetal-metal transition in small nickel c1usters (N < 38) for a large variely of differcnt struclures reportea in theIiterature. A. sclf-consistcnt tight-binding method for the .'1. ]l. and d va1cll('e electrons in the mean f¡cld approximation has been used toC<llclllatethe dellsity of statcs. The prescription employed to identify [he nonmctal-melaltransition was Kubo's criterion. ¡hat establish thatthe small clllsters may remain insulating untillhe density of states at [he Fermi Icvd exceeds l/(ksT). We compare our resulls with sorneexperimental results.

Kl'yword.~: NOlllnetal-metallransition; small Ni c1usters

En este trJhajo hemos estudiado la transición no metal a metal en clímulos pequeños uc níquel (N < 38) para una amplia variedad ueestructuras reportadas en la literatura. Un método auto-consilcnle de amarre fuerte para los electrones de valencia s. p y el en la aproximaciónde campo medio se utiliza para el cálculo de In densidad de estauos. La condición empIcada para identificar la transición no metal a metal hasido el critcrio de Kuho, el cllal establcce que cúmulos pequeños sc mantcndrtín como aislantes hasta que la densidad de estados en el nivelde Ferrni excede el factor l/(kuT). Comparamos nuestrus rcsultados con algunos rcsultados experimentales.

[)(,Jcril,rorn: Transición no mctal a mctal; cúmulos pequeilos de Ni.

PAes: J6AO.Cg: 65.90.+i

1. Introduction

Nowadays. in the case of slllall cluster sizcs, Lhere are IllanyIl1corclic<l1 reslllts inlhc litcrature aholll Ni clusters lha( pro-vide a great variely 01" slructures, depenJing on the inler-i.ltolllic pOlenliai ami on Ihe Illethod used in the calculation. ingeneral Ihesc structurcs are diffcrent in sizcs and in gcolllct-rical sllape. A general discussion on lhe gcometrical shape01' Ni c1ustcrs can he l'Ollnd in Refs. 1-12, and papers ljuotedtherein. Hov..'ever. rOl' small atomic c1uslcrs there are olller in-Icresting prohlellls rcgardless of the kno\' •.'lcdge of the slruc-ture. One (lf lhese Jeal .••with Ihe fTlctallic hchavior 01' slleh ag-gregates. alld can he l'orlllulatcJ in the following wa)' ..wha! isthe cluster size at which lhe atoJllic c1uslers hccollles metal-lic? The lInderstanding of the development 01' the lIletallicheha\'ior wilh increasing parlicle size has heen olle 01' the kcyquestiuns in the physics 01' atomic aggrcgates 1'01'Illany yearssinee i( was forlllula(cd hy Frühlich more than sixly )'earsa~o [1:11.

A \..cy slep to undersland the metallic hehavior 01"alomicc1usters was f1rsl given hy Kuhn anJ co-workers 11.11. whopoinLed oul Ihal a cluster presents Illetallic hehavior whcnIhe average spacing helwecn the eieclronic levels hecoll1essmallcr Ihan k[1 T and Ihe discrele energy levels hegin (o fmma quaSi-l'lllltinuous hallJ. 01" formulaled in lcrms PI' Lhe del1-Sil)' uf e!cc(ronic slales D(E): a cluster prescllts mctallichehavior wllen 'P(E) al the Fcrmi level excceds 1/(kIJT).Although the Kubo criterion is in principie simple 10 apply,Ihel"c ;lrI: rnany malerials for \',:hicll Ihe critical cluster si/e is

still unknown, that is mainly due to lhe ahscncc of calcula-Jions of D( E,,) a",llo Ihe lack of a precise knowledge of Ihec1usler geometry, as it was quoted ahoye.

Recentl)'. il has pointed out lhat the devclopmcnt al' Ihemctallic characler of slllall alomic clusters is driven primarilyhy the mean coordination numher 115]. \\'ilh lhe aim to c1ar-ir)' this dependence on rhe me!allic hehavior, a theoretical cal-culalion [161 has heen carried out within Friedel's modcl amIKuho's critcrion; the main conclusioll of this work is that crit-ic.JI cluster sizc No (sil.e al which the cluster develops metal-Iie hchavior) for the Ilonrnelal-Illelal transition is proportional

lo JZ(S,)G(T), where Z(N,.) is Ihe average coordinationIlUIIlOer of an N -alorns cluster at the crilical si/e and G(T) isa fUllction Lha! depends on Ihe lempcraturc alHI hulk proper-ties of Ihe sysLcll1. i\lthough (he calclllation quo(ed he1'ore ishascd on a vl'ry crude approxima(ion ror Ihe D(E) il showsthal the IHHllllClal-lllelallransilioll dcpends Illainly 011the gc-olllclrica! StlllcturC and panicularl)' on its avcragc coordina-tion nurnher. An cxcellcnt rcvicw orthe experimental and the-orclical works 011 IIlctallic hehavior of finile sizc particles canhe fountl in ReL 17.

In the case 01' nickcl clusters, and in spitc of the panialagreclllenl in the geornctrical struclurcs prcdicted hy recentcaklllatiolls 1[;-121. some discrepancics exis{ hclween them.('.,s.:. inter-alomic distance. local coordination numhcr, aver-age magnetic moment, etc. Thcse discrepancics are mainlydile to the high Ilumoer 01"parameters that have to be takcnill(o aCCOllll( in (he cakulaliolls. lhe Illclhods 01' calculation,and Ihe variotls Iypl.:'s 01"polcntials used lO ohtain geollletrical

Page 2: Metallie bchavior of Nic1ustcrs - SMF · used inthe ealeulalion are those ealeulated hy Nayak elal. [5] (represented hy • in the ligure) who had ealculated them os-ing a scmi-empirical

METALLlC BEHAVIOR OF NI CLUSTER S 343

shapcs and clcctronic propertics such as the spin polarizcd~talc. Thc maio goal of this work is to tlnd out how theseJiscrcpancics rnodify lhe rnctallic charactcr of Ni c1usters.

As an altempt to shed sorne light inlo lhe prohlem of lhenOllmctal-rnClal transition in Ni clustcrs, in Ihis work wc pcr-forms eleclronic struclure calculations lIsing a tight.hindingHamíltonian for diffcrcnt gcornctrical slructures proposed forNi c1ustcrs in lhe I¡(crature. We use structures ealculated hy:Nayak el al. using a I'innis and Sinelair (FS) many hody pu-tenlial [5J. Hu el "l. using Lennard-Jones (U) and Morse (M)pair pOlenlials 16J. ami López and Jellinek using a Gupta (G)Iypc potcnliai [11]; aH these structurcs has becn suggcstcdfm Ni cluslcrs hasco on diffcrcnt cncrgy criterion. Allhough,the applieatiun of the pair potenlials (as U and M) for melalssuch as Ni has heen criticizcd. we do not discuss Ihis pointhefe, howcver the readcr can gel more details in Rcfs. 2, 3,6 and papcrs quotcd therein. The eleclronic density of stateswas calculalcd using a sclf-consistent tight-binding mcthod,formulated for the 3d, 48, and 4p clcctrons ami applyingKuho's cr¡tcrion to determine the critical cluster sizc.

In Sect. 2 we descrihe the thcory uscd in lhis work, the rc-sults are prcsented in Sect. 3, and a summary and conclusionsarc given in Seclo 4.

2. Theor)'

The spin.polarizco c¡eetranic slructure of nickel c1usters isdctcrlllincd hy solving a self-consistent light-hinding Halllil-tonian for the 3d, 4s, and 4p valcnce electrons in a mean licldapproximalion. In the usual second quanlizalion notation, lhisHallliltonian has the following expression:

1I = :L>'jtll1HiQU + L t.~tc!QUCj¡J(J' (1)IOU n/3u;c¡t;j

where eLo (cJ(lu) is the creation (annihilation) opcrator of anclectron wilh spin a ano orhital state (\ al the atomie sitc i,anJ Fljoo is the numhcr opcrator.

The hopping inlcgrals t~j bclwccn orhilals n: and f3al sitcs i and j are assumcd to be spin-indepcndcnt amiare ohtained using the Slater.Kosler approximation takinglhe two-ccnlcr hopping integrals from Papaconslantopoulos,who fiued them to reproduce the band strueture of f ce hulkniekel [18J. The variation of the hopping inlegrals wilh Iheinter-atomic oistance '"ij is assumed to follow the typicalpower law (ro/rij)I+I'+l, where ro is the bulk cquilibriumdistance ami l, and l' are the orbital angular momcnta of the(ioa) and (j¡3a) states involved in the hopping proeess. Thespin~dependent diagonal tenns takc account for the cleetron-e1ectron interaetion through a conection shift 01' the energylevels

(2)

Berc, t7n arc lhe barc orbital cnergies of paramagnctic bulkNi. Thc second lerm is Ihe correetion shift due to the spin-polarization ofthe c1cclrons at site i (¡tif1 = (nif11) - (ni.8J.»).

In this term. loó are the exchange integrals and Zu is lhe signfunclion (Zt = l. z¡ = -1). The exehange integrals involv-ing s ami ]J c¡cclrons are neglecteJ and .Jdd is determined inorder lo reproduce the hulk magnetie moment [19J. The sile-ano orhital-dependen! self-consistent correction f2io assuresthe I£lcal eleclronic occupation, fixed in this model hy inter-polating hetween the isolated alom and the bulk accordingto the actual local numher of neighhors. The spin-dependentlocal electronic occupalions are sclf-consistently determinedfrom the local den sities of slates

(3)

which are calculated at caeh iteration hy using the rccursionl11ethod [201. In this way, the dislrihution of Ihe local mag-netie momcnls (¡Ii =eLo ¡ijo) and the average magnetic mo-ment (ji = L, ¡,;iN) of Ni" e1usters are ohlained at the endof the self-eonsistent cyele. The total densily of slales (DOS)allhe Fermi level. D,v(E,,) = Linu Dino(E,,) results alsofrom lhe self consistent calculati£ln and we have used it to de-termine [he Ilonmctal-Illetal transilion aecording to the Kuhoeriterion [141, Ihat is D,v(E,,) 2: l(kuT forthedevelopmenlof metallie bchavior.

This one particle Hamiltonian neglects correlation cffectshcyond the mean ficld approximation and lhe depenJence ofthe DOS with the tempcrature. This assumption seems to headequate since previous ealculations at finite temperature in-c:luding correlalions cfTcCISfor hulk Ni [21] dcmonstratc lhatlhe DOS does not ehange appreeiahle near lhe Fermi energyfor tcmpcraturcs lower than 640 K: The Fermi cncrgy alwayslies on a pronounced peak characteristic of the/ce structure.Thcrefore, changes in lhe DOS are expectco to occur onlyas a conscqucncc 01' lhe finite size ano geometry of lhe c1us-terso Jt is also important to mention Ihat it is assuming lhatlhere are not structural IransitiollS in the temperalure rangehere cOllsidered.

3. Resllll~

Considcring lhat the numher of elcctrons that contri bu tes toestahlish the Illclallic hehavior is proportional to the nUITI-

bcr of atoms N in the aggregatc and thal such depcndenccmight hide 50ll1e effects, we show in Fig. I the normalizcdDOS at Ihe I'ermi level, Ihal is D,v(E,,)( N. The geometriesused in the ealeulalion are those ealeulated hy Nayak el al. [5](represented hy • in the ligure) who had ealculated them os-ing a scmi-empirical pair potential Jeveloped hy Finnis andSinelair (FS) hased on lighl-hinding total energy ealculationsand containing many-hody terms. A seeond set of geornetriesin lhis work are those ealeulated hy Hu and eo-workers 16J.thcsc structures had hecn obtaincd combining molecular dy-namies and Monle-Carlo method with a Lcnnard-Jones (e)amI Morse (x) pair potcntials. A lhird ser oí" gcometrics arethose calculalcd hy Lópe7. and Jellinek fmm molecular dy-namics simulatiuns with a Gupta type potential (6) [11l.

Rl'l'. Me),". Fí.\ .. 45 (4) (1999) 342-345

Page 3: Metallie bchavior of Nic1ustcrs - SMF · used inthe ealeulalion are those ealeulated hy Nayak elal. [5] (represented hy • in the ligure) who had ealculated them os-ing a scmi-empirical

J.L. RODRíGUEZ-LÓPEZ AND F. AGUILERA-GRANJA

TAB!.E 1. The live diffcrcnl structures for c1ustcrs with N = 8 Ihal shO\\'s diffcrcnt reslllts ohtained using diffcrcnI pararnclcrs. rnelhods androtelllials. Slructure wilh (e) symhoJ corrcsponds 10Ref. 5 oh!ained hy molecular dynamics. Thosc quotcd wilh (.) and (x) wcre obtaincd hy;\1olltc-Carlo rnethod. rcspcclivcly (6]. Symhol (.) is a rroposed struclure hy Parks and co.workcrs {22J from cxpcrimcnlal work. Struclurequoted hy < ••• ) was ohtained lIsing molecular dynarnics [111. Ser sprl:ilic rcfcrcnccs for dClails.

Idcntitlcd strlJ(,:turc (Potcnlial)

• Bicappcd Ol:I¡¡hcJral (r:innis and Sinl:lair) [5)

•ClppcJ pClllagonaJ hipyramid (Lennard.Joncs) [G 1

)< Dcformed (':clllra! tetrahcJron (Mor!ooc)¡5)

t> Bicappcd ol:lahedml (Gupla) (11)

.Satura(cd letrahcdron (Suggestcd hy the cxpcrimenl) [22J

/Ir (Z,)

4(4).4(5)

1(.1)..1(4 ).2(5).1 (6).1 (7)

4(4).4(6)

4(4).4(5)

4(3).4(6)

Z4.5

4.75

5.0

4.5

4.5

dn(Á)

2.25

2.48

2.48

2.462.4.1

Metaltic

•x

~~." '"" • X. ,. •.

• -~l(

-~~---~• X

• X

••

Nonmetallic

5 10 15 20 25Cluster Size

30 35 5 10 15 20 25Cluster Size

30 35

Fl{jl 'RE \. ;\:ormali/eJ dcnsity 01' states al Ihe Fcrmi level as aI"undioll 01"the dusler SilC. Thc sharply anJ oscil1a(ory tlchaviorthat all the sySICIllSsho\\'. spccially al small size c1uSlcrs. rcncctsthe strong dependel1cc 01"the 1"l1(EF)jN] \\'ith Ihe geolllctricalstrudure in thi!oorangl'. Here. (e) corresponJs lo slruclures calcu-lalL'd with Finnis ami Sincbir typc pOlcnlial[51. (*) anJ (xl aregcornclric:-; ohtaincd wilh Lcnnard-Jones ano f\lorsc pair potcntialsrCS¡lL'Clively.whik the (.) is a slrul:turc propnscd hy Riley (" al. inRl'!".22. The Iriangles (¿~.)correspond lo slnKtures hy LÚPC/,¡¡ndJcllinl'k [11]. lIsing ¡¡GUpt3 Iypc potential.

As an exal1lple nI' the discrepancies in the geolllelricaishapcs of lhe c1ustcrs and olhcrs prohlcms mentioncd in theintroductinn. consider for instance the difTcrent cluslers pro.poscd ror Ni" in Fig. 1; lhe ditTerenl geoTllc(rical proper-t¡es are summaril.cd in Tahle 1. Al! the structures are ditTer.enl <Jmong lhcmselves. £' . .': .• if (WO01' thcm (FS and G) havethc same slruclure. lhey have different inter-atomic distance(¡{II)' (Ir if they have the same coordin<llioll numhcr (2) (FSand M). they diller hy the structurc. ami so on. Such distTcp-andes are rel1cl.:ted in the clcclronic propcrlies 01' thcsc sys-Icms. This can he ohservcd in Ihe normalil.cd dcnsily of slales[J1x(Er)¡X] sho\V1l in rig. l. and in lhe rhasediagram ofIltlllllll'lai-lllctal hchavior at Fig. 2 (T ¡'S. N). \vhcrc \Ve have

Fl(jURE 2. Plot orlhe nOllmClal-metal phase diagram calculated forNi clustcrs in this work. The conlinllOUS ¡ine is a guide lo the cye 1'01'the nonmelal.metal transition. The poinls brlo ••.•..this [ine could hel'Onsidcrcd as non-rnctallil: dustcrs. whercas Ihose ahoye (he lineprescnt Illelallic hchavior. The hJad Iriangle (,) is Jerived fmma ioni7.atioll pOlential llleasurement hy Ihe experimenlal resuhs byPark.s t't (/1. 12;JJ.

applied the Kuho's crilerion to stlldy thc Illclallic behavior.In Fig. l. wc observe in general an overall tlccreasing in lheIPs (E r) / ¡VI as a function 01'the e1uster size for all the dif-ferent gcolllelries hcre cOllsidcrcd. Thc normalized densily 01'si ates shows an oscillatory hehavior for slllall N, thal clcarlyrcf1ccts strong dependcnce on the geolllelry anu is not easy tocxplain in simple lerms. It is relaled lo the detailcu changcs01' the structurc ami inler-alomic dislance wilh N. In partic-ular. we not;c" thatthe ¡P.dEd/NI for the e1usters hasedun the Morse (x) potenlial is the one that prescnls the most¡,:omplcx heha\'ior.

figlln: :2shows Ihe lIIain n:slI1t 01"(his work: Ihe rhase di-agram rOl" lhe nOllmcwl-IllClallransitioll. The solid.line is jusI;In aid lo Ihc cye lo visualize lhe htlunuary 01"the nonmelai-melal trallsilioll. Thl' region belo\\' Ihe houndary descrihes1l0lHllclallic cluslcrs \",hile Ihe rcgion ahove corresponds loIhc mctallic state l"ur atolllic cluslers. The houndary hecollles

R('\'. M('x. Ft'.\.. 45 (4) (1999) J.l2-J45

Page 4: Metallie bchavior of Nic1ustcrs - SMF · used inthe ealeulalion are those ealeulated hy Nayak elal. [5] (represented hy • in the ligure) who had ealculated them os-ing a scmi-empirical

METALLlC BEIIAVIOR UF NI CLUSTERS

SICCP ano irregular for small size clustcrs. whcrcas for largcrcluster siles lhe houndary hccol1lcs less irregular wilh a slopeIhal dccrcilscs cOlltinuollsly as lhe cluster size incn:ascs. Us-illg Ihe solio line as a guidc \Ve can concIuJe tha! al roOIlltcmpcralurc Ni c1ustcrs larger than 1() aloms prcscnlmclallichchavior. whcrcas al I¡'luio nitrogcn (77 K) tcmpcralurc theTeare rcquircd al Icasl 50 atolTls lo gel lhe mctallic hchavior inalornic clusters.

\Vc are no! awarc ol' any direet experimental rncasurcrncnt01"lhe nOllmctal-rnctaltransition in Ni c1uslcrs, sincc l1los1 nfIhe experimental rcsults are for Pd, Fe, Hg, Ag. Au, ell, ele.cluster" [171. lIowcvcr. hascd on measurcmcnls of lhe ion.izalioll potcntial (IP) (lile enn cstimate the critical c1ustcr si/cfor thc nonmetal-mctal lmnsition r IG, 23J. It is wcll knownlh;}l the Illetallic oehavior in large c1usters implies lha! thesize variation orthc IP snlisfies the equation [2.1¡

IP(N) = IP" + CN-1/3, (4 )

caling the experimenlal uncertainty. COllsidcring this expcri-mcntal result. \Ve ohtain a fairly agrccmcnt wilh our work.

4. COIlc!lIsiolls ami sllll1l11ary

\Ve havc slUJicd thc nonmetal-mctal translllOn in Ni clus-Icrs for sOllle of the difTerent geomctrical shapes proposcJ inlhe lilerature. A sclf-c.:onsistcnl light-hinding mcthod for Ihe.>;. p. ami d valcnce cleclrons has oeen used lo calculatc theclcctronic dcnsily of states (DOS). The Kuoo's criterio n wasapplied to idcnlify the nonmctal-mctal transition in atomicc1usters. l\ktallic hehavior in atolllic clusters is presenlcdfor Ni c1l1stcrs \vilh I () atoms al room lemperatllre and withmorc than 50 atoms at lempef~Hurc of 77 K (liquid nitrogen).\Ve compme (lllr calculations with Pmk's cxperimental resultsanJ we found a good agrcement.

whcrc 1Po is thc oulk work function (ionization potcntial ofthe macroscopic mctal) ami e is a constant (lhe asymploticslopc in a plot rOl" largc size cluslers).ln the casc ofsmall ag-grcgates a linear fit in N-1/:1 'lIso often \,,'orks. although theslope and the constant tcrm are diffcrent. It can he cstimatedlhe nonmctal-mctal transition as a runction of lhe cluster sizewhere the two linear tilS intercept, sincc this is the sizc alwhich Eq. (4) starls 10 hold. The resull ofthis estimillioll us-ing the ionizillion potcntials measured hy Parks 1251 is ill-cluded in Fig. 2 as a hbck triangle (.), with error hars indi-

1. A. ('osadas-Amarillas ami!.!.. G;uzon. Phys. R('\'. 1l5-1 (199(1)Im(12.

2, J.P.K. Doye ;md D,J. \Vales. J. C1/l'I1I. ,'0,'0('. Fanu/l/.\" Tnlfls. t)J(1<)<)7)-1233.

J J .P,K. Doye ano D.J. \Vales. Clobal minil1la for tr(/fuilifJII melaleluslas d('seribed by SUf(OIl.Ch('/l Por('fllia!s. (prc.print) .

.1. N. Riisch. L. Ackcrmann. ano G. Pacchioni. Chem. Phy.\. L(,tl.JlJt) (1<)92) 275.

•J. S.K. Nayak. S.K Khanna. B.K. Rao. and P. lena. 1. PI1y.\.(1/('111. A IUI (997) 1072.

(j. W. 1I11.L.~1. Mei. <lno11.Li. Sofíd Slale Com/1/wl. IOU(1<)<)6)12<).

j. S. Bouarah l't (JI.. Phys. R('I'. H SS (1997) 13279.

8. A.N Andriolis. N.N. Lathiotakis. and M. Menoll. !:'uml'''Y.\.IÁ'u. J6 (1<)96) 37.

9 F. Aguilcra-Gmnja ('1 al .. Phys. Rn. H 57 (1998) 12469.

10. 1..\1. ,\lonlcj<lllo.Carrizalcs, M.P. lñiguez. 1.A. Alonso. amI,\1.1. L(¡pel. Phy .••.Rel: H 5-1(1996) 5961.

11. M.J.-López and 1. lcllinck. Phys. RC'I'. A 50 (1994) 1445.12. M.S.-Stavcand A. Oe Prislo.J. ClIt'III. Phy.\'. 105 (199() 572.13. 11.f-rilhlil:h. Phy.\'icll(Ulrcclll)4 (1937) 406.11. R. Kuhu. A. Kawahala. amJ S. Koh<lyashí. AmI. Rn'. mala Sá

14(I'!X~)~'!.

l;j. R.E. Aenllcld. 1. C/U'III. So('. FelTlu/llY TnUls. 8X (1992) 1107.

A ckllow Icd !(IlICllts

\Vc acknowlcdgc lo ProL P. lena and Dr. S.K. Nayak. amiDr. \V.J. Hu. for give us lheir cluster coordinatcs and let ususe them in this study. 1.L.R.L. acknowlcdged scholarshipsupport Imm CONACyT. This work is partialIy supportedhy CONACyT. México lInder Grant 25851-E. We are alsogrealflll aCkllO\\'ledgetl to Dr. A. Vega, Dr. 1.M. Montejano-Carrizales. and M.e. B<:lezrol' his cOl1lmenls and suggestionslo lhe 1I1<:lIlllsnipt.

16. F. Aguilera-Granja. 1.A. Alonso. and J.M. Montcj<lno-Carriz.¡lIes. l'roCl'c'cJillgs of lhe IlllnrwttoflaJ Workshof1 011Cur-H'/It Pmhlc'/II.\ in Condc'rlsc'd Mllllc'r: Thc'or.\' ami EXl'eri/1/l'III,Cocoyo(', MOl:. México, /998. cditeo hy J.L. t\1oran-Lópcz.(Plellllll1. New York. 1(98) p. 109.

1i. \V.P. lIalpcrin. HC'I'. Mot!. PhYJ. 58 (1986) 533.

18. O.A. Papaconstantopou1os.lI11fldhook oflhe Ralld StruClllrt' o/Elemelllal Solid.{. (Plcnul11. Ncw York. 1986) .

19. C. Killcl.llltmt!lIC/úm ro Solid Srare Physics. 61h cdition. (\Vi-rey. New York. 19(6).

20. R. f1aydod •. Salid Slale Phy.\"Íc.\', cdited hy E. Ehrenrcidl. F.Scitz. ano O. Turnhull. (Acaocmic Prcss. London. 1980) Vol.J5. p. 215.

21. \Y. Nolting. \Y. Borgiel. V. Oosc. ¡índ Th. Fauslcr. Ph:rs.Rel~ lJ411t In'!) 5015.

22. This SlflH,:lurehas hccn prcsclllcd <1m.!studicd hy Hu c'l al. (G)ano was propnsed initially hy E.K. Parks. B.J. \Vintcrs. T.O.Klots. alld J. Riley. 1. C/U'I1I. Phy.\'. t)-I (1991) 1882.

2.1. F. YOllclawa. S. Sakamolo. and F. \Vootcn. J. Non-crysralJineSofitls 117/111'1(1990) 477; F. Yonezawa ano H. Tanikawa. 1.IVoll-crr.\'lal/irw Salid\' 2051207 (r996) 793.

2.1. D.M. Wood. Phy.\ R('I~ L(,tt. 46 (19XI) 749.

25. E.K. P,nks. TO. Klols. and S.J. Riley. 1. Chnll. Phys. 92 (1990)JXU.

Nn'. Mf'\. Fú. 45 (4) (199<)) 3"¡2-3"¡5