12
S1 Supporting information Magnetic transitions and isotropic versus anisotropic magnetic behaviour of [CH 3 NH 3 ][M(HCOO) 3 ] M = Mn 2+ , Co 2+ , Ni 2+ , Cu 2+ metal-organic perovskites B. Pato-Doldán,‡ a† L. C. Gómez-Aguirre,‡ a A. P. Hansen, b J. Mira, c S. Castro-García, a M. Sánchez-Andújar, a M. A. Señarís-Rodríguez, a V. Zapf b and J. Singleton b a. QuiMolMat Group, CICA, Department of Fundamental Chemistry, Faculty of Sciences, University of A Coruña, Campus A Coruña, 15071 A Coruña, Spain. b. National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States. c. Department of Applied Physics, University of Santiago de Compostela, 15782, Spain. Present Address University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway. ‡These two authors contributed equally. Email: Table S1. Suppliers and purities of the chemicals employed in the synthesis of the [CH 3 NH 3 ][M(HCOO) 3 ] series. Reagent Supplier and purity Metallic Salt: MnCl 2 ·4H 2 O Sigma-Aldrich ≥98% CoCl 2 ·6H 2 O Sigma-Aldrich 98% NiCl 2 Sigma-Aldrich 98% Cu(ClO 4 ) 2 Sigma-Aldrich 98% Organic reagents NaHCOO Sigma-Aldrich ≥99% CH 3 NH 3 Cl Sigma-Aldrich ≥99% HCONHCH 3 Sigma-Aldrich 99% Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2016

metal-organic perovskites behaviour of [CH3NHSupporting ... · [AH]Co(HCOO)3 AH:CH3NH3 AHref.viii: (CH3)2NH2 AHref.ix: C(NH2)3 Tt / K 15.7 14.9 14.2 C / cm3 K mol-1 3.42a 3.80 3.76

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: metal-organic perovskites behaviour of [CH3NHSupporting ... · [AH]Co(HCOO)3 AH:CH3NH3 AHref.viii: (CH3)2NH2 AHref.ix: C(NH2)3 Tt / K 15.7 14.9 14.2 C / cm3 K mol-1 3.42a 3.80 3.76

S1

Supporting information

Magnetic transitions and isotropic versus anisotropic magnetic behaviour of [CH3NH3][M(HCOO)3] M = Mn2+, Co2+, Ni2+, Cu2+ metal-organic perovskitesB. Pato-Doldán,‡a† L. C. Gómez-Aguirre,‡a A. P. Hansen,b J. Mira,c S. Castro-García,a M. Sánchez-Andújar,a M. A. Señarís-Rodríguez,a V. Zapfb and J. Singletonb

a. QuiMolMat Group, CICA, Department of Fundamental Chemistry, Faculty of Sciences, University of A Coruña, Campus A Coruña, 15071 A Coruña, Spain.

b. National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.

c. Department of Applied Physics, University of Santiago de Compostela, 15782, Spain.† Present Address University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway.‡These two authors contributed equally.Email:

Table S1. Suppliers and purities of the chemicals employed in the synthesis of the [CH3NH3][M(HCOO)3] series.

Reagent Supplier and purity

Metallic Salt:

MnCl2·4H2O Sigma-Aldrich ≥98%

CoCl2·6H2O Sigma-Aldrich 98%

NiCl2 Sigma-Aldrich 98%

Cu(ClO4)2 Sigma-Aldrich 98%

Organic reagents

NaHCOO Sigma-Aldrich ≥99%

CH3NH3Cl Sigma-Aldrich ≥99%

HCONHCH3 Sigma-Aldrich 99%

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C.This journal is © The Royal Society of Chemistry 2016

Page 2: metal-organic perovskites behaviour of [CH3NHSupporting ... · [AH]Co(HCOO)3 AH:CH3NH3 AHref.viii: (CH3)2NH2 AHref.ix: C(NH2)3 Tt / K 15.7 14.9 14.2 C / cm3 K mol-1 3.42a 3.80 3.76

S2

Iobs

Icalc

Iobs-Icalc

Bragg Position

M: Mn2+

Inte

nsity

(a.u

.)

(040

), (2

02)

(031

)

(121

)

(020

), (1

01) Iobs

Icalc

Iobs-Icalc

Bragg Position

Inte

nsity

(a.u

.)

M: Co2+

(040

), (2

02)

(031

)(1

21)

(020

), (1

01)

10 20 30 40 50 60

Iobs

Icalc

Iobs-Icalc

Bragg Position

Inte

nsity

(a.u

.)

2 (°)

M: Ni2+

(040

), (2

02)

(031

)

(121

)

(020

), (1

01)

10 20 30 40 50 60

Iobs

Icalc

Iobs-Icalc

Bragg Position

Inte

nsity

(a.u

.)

2 (°)

(002

)

(202

)

(121

)(2

00)

(020

)(1

01) M: Cu2+

Figure S1. Le Bail refinement of the room temperature PXRD patterns for the [CH3NH3][M(HCOO)3] series. Key: observed data (•) and calculated profile (solid line); the difference plot is drawn below the profile. Tick marks indicate peak positions of the [CH3NH3][M(HCOO)3] phase.

Page 3: metal-organic perovskites behaviour of [CH3NHSupporting ... · [AH]Co(HCOO)3 AH:CH3NH3 AHref.viii: (CH3)2NH2 AHref.ix: C(NH2)3 Tt / K 15.7 14.9 14.2 C / cm3 K mol-1 3.42a 3.80 3.76

S3

Table S2. [CH3NH3][M(HCOO)3] series cell parameters and cell volume obtained by Le Bail refinements of powder X ray diffraction patterns at room temperature.

[CH3NH3][M(HCOO)3] Cell parameters (Å) R-factors

M2+ a b c Rp Rwp Rexp χ2

Mn2+ 8.6835(1) 11.9512(1) 8.166(1) 12.3 16.6 10.34 2.59

Co2+ 8.3911(2) 11.7010(3) 8.1051(2) 18.1 25.0 12.88 3.78

Ni2+ 8.3088(1) 11.6001(2) 8.0512(2) 15.8 23.2 17.34 1.79

Cu2+ 8.5587(1) 8.110(1) 11.4466(1) 5.98 8.92 9.76 0.84

Page 4: metal-organic perovskites behaviour of [CH3NHSupporting ... · [AH]Co(HCOO)3 AH:CH3NH3 AHref.viii: (CH3)2NH2 AHref.ix: C(NH2)3 Tt / K 15.7 14.9 14.2 C / cm3 K mol-1 3.42a 3.80 3.76

S4

Figure S2a. TGA curves of the [CH3NH3][M(HCOO)3] formates under nitrogen atmosphere

10 20 30 40 50 60

Experimental

Inten

sity (

a.u.)

2 (deg)

Simulated Mn(HCOO)2 2H2O

a.

30 40 50 60 70 80

c.

Experimental

Simulated CoO

Simulated Co

Inten

sity (

a.u.)

2 (deg.)

30 40 50 60 70 80

b.Int

ensit

y (a.u

.)

2 (deg)

Simulated MnO

Experimental

30 40 50 60 70 80

d.

Inten

sity (

a.u.)

2 (deg)

Simulated Cu

Experimental

FigureS2b: PXRD patterns of the products obtained after heating these M-MOFs at different temperatures. a) Mn-MOF 300 °C compared with the PXRD simulated for Mn(HCOO)2·2H2O;1 b) Mn-MOF at 600 °C compared with the PXRD simulated for MnO;2 c) Co-MOF at 600 °C

compared with the PXRD simulated for CoO3 and Co;4 d) Cu-MOF at 600 °C compared with the PXRD simulated for Cu.5

1 K. Osaki, Y. Nakai and T. Watanabe, J. Phys. Soc. Japan, 1964, 19, 717–723.2 R. E. Pacalo and E. K. Graham, Phys. Chem. Miner., 1991, 18, 69–80.3 A. Taylor and R. W. Floyd, Acta Crystallogr., 1950, 3, 285–289.4 R. W. G. Wyckoff, Crystal Structures, Interscience Publishers, New York, 1963, vol. 15 I.-K. Suh, H. Ohta and Y. Waseda, J. Mater. Sci., 1988, 23, 757–760.

100 200 300 400 50020

40

60

80

100

M

Wei

ght (

%)

T (oC)

Mn Co Ni Cu

[CH3NH3][M(HCOO)3]

MnO

Page 5: metal-organic perovskites behaviour of [CH3NHSupporting ... · [AH]Co(HCOO)3 AH:CH3NH3 AHref.viii: (CH3)2NH2 AHref.ix: C(NH2)3 Tt / K 15.7 14.9 14.2 C / cm3 K mol-1 3.42a 3.80 3.76

S5

Table S3. Data collection, cell and refinement parameters from the single-crystal X-ray diffraction study of the [CH3NH3][M(HCOO)3] compounds.

Chemical formula

Formula Mass Cr

ysta

lsy

stem a/Å b/Å c/Å

α, β, γ/°

Unit cell volume/

Å3

T/KSpace group

Z

No.

of r

efle

ctio

ns

mea

sure

d

No.

of i

ndep

ende

nt

refle

ctio

ns

Rint

Fina

l R1 v

alue

s (I>

(I))

Fina

l wR(F2

) val

ues (I>

(I))

Fina

l R1 v

alue

s (al

l da

ta)

Fina

l wR(F2

) val

ues (

all

data

)

Goo

dnes

s of f

it on

F2

C4H9MnNO6 214.98 8.6659(3) 11.9298(3) 8.1529(2) 90.00 842.87(4) 293(2) Pnma 4 10868 1098 0.0431 0.0524 0.1381 0.0608 0.1464 1.204

C4H9CoNO6 226.05 8.2499(4) 11.6336(6) 8.1398(4) 90.00 781.23(7) 100(2) Pnma 4 7244 979 0.0539 0.0395 0.1058 0.0490 0.1117 1.071

C4H9NiNO6 225.83 8.2914(4) 11.5758(6) 8.0379(4) 90.00 771.47(7) 296(2) Pnma 4 9885 965 0.04040.0362

0.0951 0.0472 0.1015 1.221

C4H9CuNO6 230.66 8.5473(3) 11.4362(4) 8.1022(3) 90.00 791.98(5) 296(2) Pnma 4 8115 682 0.0458 0.0246 0.0649 0.0348 0.0722 1.076

C4H9CuNO6 230.66

Ort

horh

ombi

c

8.459(5) 11.391(5) 8.133(5) 90.00 783.73(8) 100(2) Pnma 4 10474 1007 0.0189 0.0230 0.0585 0.0263 0.0609 1.099

Page 6: metal-organic perovskites behaviour of [CH3NHSupporting ... · [AH]Co(HCOO)3 AH:CH3NH3 AHref.viii: (CH3)2NH2 AHref.ix: C(NH2)3 Tt / K 15.7 14.9 14.2 C / cm3 K mol-1 3.42a 3.80 3.76

S6

Table S4. [CH3NH3][M(HCOO)3] series cell parameters and cell volume obtained by single crystal X ray diffraction at room temperature.

Cell parameters (Å)M2+ Ionic radius

(Å)a b c

Cell volume (Å3)

Mn2+ 0.83 8.6659(3) 11.9298(3) 8.1529(2) 842.87(4)viCo2+ 0.75 8.4069(9) 11.710(1) 8.1075(9) 798.1(1)Ni2+ 0.69 8.2914(4) 11.5758(6) 8.0379(4) 771.47(7)Cu2+ 0.73 8.5473(3) 11.4362(4) 8.1022(3) 791.98(5)

Table S5. [CH3NH3]M(HCOO)3 series M-O and M-M distances (Å), obtained by single crystal X ray diffraction at room temperature.

dM-O (Å) dM-M (Å)M2+ Ionic radius (Å)

da dm dl d1 d2

Mn2+ 0.83 2.173(1) 2.182(1) 2.194(1) 5.9649(2) 5.9491(1)iCo2+ 0.75 2.092(2) 2.106(2) 2.116(2) 5.8550(5) 5.8397(4)Ni2+ 0.69 2.056(2) 2.059(2) 2.071(2) 5.7879(3) 5.7740(2)Cu2+ 0.73 1.952(1) 2.008(1) 2.382(1) 5.7181(2) 5.8886(2)

Figure S3. Cooperative orbital ordering of the dz2 orbital within the ac plane in [CH3NH3][Cu(HCOO)3].

vi Data taken from M. Boča, I. Svoboda, F. Renz and H. Fuess, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2004, 60, m631–m633.

Page 7: metal-organic perovskites behaviour of [CH3NHSupporting ... · [AH]Co(HCOO)3 AH:CH3NH3 AHref.viii: (CH3)2NH2 AHref.ix: C(NH2)3 Tt / K 15.7 14.9 14.2 C / cm3 K mol-1 3.42a 3.80 3.76

S7

Table S6. Summary of magnetic properties of [CH3NH3][Mn(HCOO)3] compared with the ones reported in the literature. Curie constant, Curie-Weiss temperature, χmT value, and fitted parameters were calculated from susceptibility data under a 1000 Oe field.

[CH3NH3]Mn(HCOO)3 This work Referencevii

Tt / K 8 K 7.8 KC / cm3 K mol-1 4.36a 4.36

θ/ K -11.1a -11.2χmT(300K) / cm3 K mol-1 4.19 4.19

μeff / μB 5.91 5.91J / cm-1 -0.42b -0.44

g 1.99b 2.00Spin-flop / Tesla 0.60 0.45

a. From the best-fit using Curie-Weiss law (20-300 K, R2= 0.9998).b. From the best-fit using Lines model (10-300 K, R2= 0.9995).

Table S7. Summary of [CH3NH3][Co(HCOO)3] magnetic properties compared with the ones reported in the literature for other perovskite metal–formates with anti–anti formate bridges. Curie constant, Curie-Weiss temperature, χmT value, and fitted

parameters were calculated from susceptibility data under a 1000 Oe field.

[AH]Co(HCOO)3 AH:CH3NH3 AHref.viii: (CH3)2NH2 AHref.ix: C(NH2)3

Tt / K 15.7 14.9 14.2C / cm3 K mol-1 3.42a 3.80 3.76

θ / K -41.3 a -49.4 -53.3χmT (300K) / cm3 K mol-1 2.96 3.30 3.19

μeff / μB 5.23 5.52 5.49J / cm-1 -3.5b -2.3 -4.26

g 2.69 b -- 2.80a. From the best-fit using Curie-Weiss law (20-300 K, R2= 0.9997).b. From the best-fit using Lines model (40-300 K, R2= 0.996).

Table S8. Summary of [CH3NH3][Ni(HCOO)3] magnetic properties compared with the ones reported in the literature for other perovskite metal–formates with anti–anti formate bridges. Curie constant, Curie-Weiss temperature, χmT value, and fitted

parameters were calculated from susceptibility data under a 1000 Oe field.

[AH]Ni(HCOO)3 AH: CH3NH3 AHref.iii: (CH3)2NH2 AHref.iv: C(NH2)3

Tt / K 34 35 34.2C / cm3 K mol-1 1.40a 1.27 1.53

θ / K -64.96 a -55.78 -71.7χmT (300K) / cm3 K mol-1 1.15 1.03 1.24

μeff / μB 3.35 3.19 3.50J / cm-1 -9.38b -4.85 -10.5

g 2.33 -- 2.44a. From the best-fit using Curie-Weiss law (50-300 K, R2= 0.9997).b. From the best-fit using Lines model (65-300 K, R2= 0.996).

Table S9. Summary of [CH3NH3][Cu(HCOO)3] magnetic properties compared with the ones reported in the literature for other perovskite metal–formates with anti–anti formate bridges. Curie constant, Curie-Weiss temperature, χmT value, and fitted

parameters were calculated from susceptibility data under a 1000 Oe field.

[AH][Cu(HCOO)3] AH: CH3NH3 AHref.iv: C(NH2)3

Tt / K 45 & 4 45 & 4.5C / cm3 K mol-1 0.49a 0.65

θ / K -59.95 a -87.5χmT (300K) / cm3 K mol-1 0.41 0.51

μeff / μB 1.98 2.28J / cm-1 -48.8 b -47.3

g 2.21 b 2.42a. From the best-fit using Curie-Weiss law (50-300 K, R2= 0.9997).b. From the best-fit using Lines model (65-300 K, R2= 0.996).

vii Z. Wang, B. Zhang, T. Otsuka, K. Inoue, H. Kobayashi and M. Kurmoo, Dalton Trans., 2004, 2209–2216viii X.-Y. Y. Wang, L. Gan, S.-W. W. Zhang and S. Gao, Inorg. Chem., 2004, 43, 4615–4625.ix K.-L. Hu, M. Kurmoo, Z. Wang and S. Gao, Chem. Eur. J., 2009, 15, 12050–12064.

Page 8: metal-organic perovskites behaviour of [CH3NHSupporting ... · [AH]Co(HCOO)3 AH:CH3NH3 AHref.viii: (CH3)2NH2 AHref.ix: C(NH2)3 Tt / K 15.7 14.9 14.2 C / cm3 K mol-1 3.42a 3.80 3.76

S8

0 10 20 30 40 50

-0.4

-0.2

0.0

0.2

0.4

m(c

m3 /m

ol)

100 Oe1000 Oe

T (K)

Single crystal [010] ZFC FC

b.

0 10 20 30 40 50

0.004

0.008

0.012

0.016

m(c

m3 /m

ol)

100 Oe1000 Oe

T (K)

Single crystal [10-1] d.

ZFC FC

0 10 20 30 40 50

-0.2

-0.1

0.0

0.1

0.2

100 Oe1000 Oe

m(c

m3 /m

ol)

T (K)

polycrystals a.

ZFC FC

Figure S4. Temperature dependence of χm under 100 and 1000 Oe measured in a SQUID under zero-field cooled (ZFC) or field-cooled (FC) conditions for a [CH3NH3][Ni(HCOO)3] polycrystalline sample (a) and single crystal along [010] (b), [101] (c) and [10-1]

(d) orientations. The long-range magnetic ordering temperature is indicated by a dashed line.

-0.06

-0.03

0.00

0.03

0.06

100 Oe1000 Oe

m(c

m3 /m

ol)

Single crystal [101] ZFC FC

c.

Page 9: metal-organic perovskites behaviour of [CH3NHSupporting ... · [AH]Co(HCOO)3 AH:CH3NH3 AHref.viii: (CH3)2NH2 AHref.ix: C(NH2)3 Tt / K 15.7 14.9 14.2 C / cm3 K mol-1 3.42a 3.80 3.76

S9

0 50 100 150 200 250 3000.000

0.004

0.008

0.012 m

(cm

3 /mol

)100 Oe1000 Oe

T (K)

Polycrystals ZFC FC

a.

5 10 150.00

0.02

0.04

4 K

T (K)

m(c

m3 /m

ol)

0 30 60 90 120 150

0.006

0.009

0.012

0.015

0.018

T (K)

m

(cm

3 /mol

)

Single crystal perpendicular to [010]

c.

ZFC FC1000 Oe

2 3 4 5 6 7 8

0.008

0.012

0.016

0.020

T (K)

m(c

m3 /m

ol)

0 30 60 90 120 1500.000

0.002

0.004

0.006

0.008

0.010

m(c

m3 /m

ol)

100 Oe1000 Oe

T (K)

m(c

m3 /m

ol)

Single crystal [010] b. ZFC FC

2 3 4 5 6 7 80.0

0.3

0.6

m(c

m3 /m

ol)

T (K)

0 50 100 150 200 250 300

0.000

0.004

0.008

0.038

0.039

0.040

0.041

g= 2.21J= -48.8 cm-1

T (K)

m (c

m3 /m

ol)

b

Figure S5. Temperature dependence of χm under 100 and 1000 Oe measured in a SQUID under zero-field cooled (ZFC) or field-cooled (FC) conditions for a [CH3NH3][Cu(HCOO)3] polycrystalline samplex (a), a single crystal along [010] (b) and a single crystal perpendicular to [010] (d). The long-range magnetic ordering temperature is indicated by a dashed line. Best fit to the Bonner-

Fisher model of χm for a [CH3NH3][Cu(HCOO)3] powdered sample at H = 1000 Oe under FC conditions (d).

x The magnetic susceptibility curve for a polycrystalline sample (Figure S5a) shows three magnetic transitions: the first one as a

broad peak around 45 K, the second one as a subtle increase at 35 K, wherein the ZFC and FC curves diverge and the third one as

a sharp increase about 4 K, where the curves converge again. Meanwhile in the case of a single crystal, oriented parallel and

perpendicular to the [010] direction (Figures S5a and b), two transitions are observed at 45 K and 4 K, furthermore the ZFC and

FC curves converge in the whole measured range. These results indicate a strong dependence of the magnetic response on the

crystal size, since for the polycrystalline sample an additional transition at 35 K is observed, which could be related with the

magnetic response of the particle surface. However, the transitions observed at 45 K and 4 K for both poly and single crystal

samples are due to the bulk material.

a. b.

c. d.

Page 10: metal-organic perovskites behaviour of [CH3NHSupporting ... · [AH]Co(HCOO)3 AH:CH3NH3 AHref.viii: (CH3)2NH2 AHref.ix: C(NH2)3 Tt / K 15.7 14.9 14.2 C / cm3 K mol-1 3.42a 3.80 3.76

S10

Figure S6. Simplified overview of the magnetic structure of [CH3NH3][Cu(HCOO)3] highlighting the presence chains along the b axis.

-2 -1 0 1 2-0.003

-0.002

-0.001

0.000

0.001

0.002

0.003

M(

B)

0H (kOe)

-40 -20 0 20 40-0.04

-0.02

0.00

0.02

M(

B)

0H(kOe)

0 10 20 30 40 500.000.010.020.03

0H(kOe)

M(

B)

Figure S7. Field-dependent isothermal magnetization M(T, μ0H) for [CH3NH3][Cu(HCOO)3] for a polycrystalline sample at 5 K measured in a SQUID

Chains (b axis)

ac plane

Page 11: metal-organic perovskites behaviour of [CH3NHSupporting ... · [AH]Co(HCOO)3 AH:CH3NH3 AHref.viii: (CH3)2NH2 AHref.ix: C(NH2)3 Tt / K 15.7 14.9 14.2 C / cm3 K mol-1 3.42a 3.80 3.76

S11

-4 -2 0 2 4

-0.08

-0.04

0.00

0.04

0.08

ii)

i)

0H (T)

M(

B) T=5K

polycrystals a.

-1.0 -0.5 0.0 0.5 1.0-0.02-0.010.000.010.02

0H (T)

M(

B)

0 1 2 3 4 5-0.04

0.00

0.04

0.08

0H (T)M

(B)

-4 -2 0 2 4

-1.0

-0.5

0.0

0.5

1.0

ii)

i)T= 2K

M(

B)

0H (T)

Single crystal [010]

0 1 2 3 4 5

0.0

0.5

1.0

0H (T)

M(

B)

-0.6 -0.3 0.0 0.3 0.6-0.2

-0.1

0.0

0.1

0.2

0H (T)

M(

B)

b.

-4 -2 0 2 4-0.08

-0.04

0.00

0.04

0.08

ii)

i)

0H (T)

M(

B)

T= 2KSingle crystal [101] c.

-1.0 -0.5 0.0 0.5 1.0-0.01

0.00

0.01

0H (T)

M(

B)

0 1 2 3 4 50.00

0.04

0.08

0H (T)

M(

B)

-4 -2 0 2 4-0.08

-0.04

0.00

0.04

0.08

ii)

i)

0H (T)

M(

B)

T= 2KSingle crystal [10-1]

d.

0 1 2 3 4 50.00

0.02

0.04

0.06

0H (T)

M(

B)

-0.4 -0.2 0.0 0.2 0.4-0.003

0.000

0.003

0H (T)

M(

B)

Figure S8. Field-dependent isothermal magnetization M(T, μ0H) for [CH3NH3][Ni(HCOO)3] for a polycrystalline sample at 5 K (a) and a single crystal oriented along [010] (b), [101] (c) and [101] (c) at 2K

measured in a SQUID.

-0.50 -0.25 0.00 0.25 0.50-0.4

-0.2

0.0

0.2

0.4a.

M(

B)

0H(T)

2.5 K 5.0 K 10.0 K

Figure S9. Field-dependent isothermal magnetization M(T, μ0H) for [CH3NH3][Co(HCOO)3] along [010] at different temperatures measured in a VSM.

Page 12: metal-organic perovskites behaviour of [CH3NHSupporting ... · [AH]Co(HCOO)3 AH:CH3NH3 AHref.viii: (CH3)2NH2 AHref.ix: C(NH2)3 Tt / K 15.7 14.9 14.2 C / cm3 K mol-1 3.42a 3.80 3.76

S12

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0H(T)0H(T)0H(T)

M(

B)

2.5 K 4.0 K 6.0 K

b.

Figure S10. Field-dependent isothermal magnetization M(T, μ0H) for [CH3NH3][Co(HCOO)3] along [101] at different temperatures measured in a VSM.

Figure S11. Pulsed field magnetization of a [CH3NH3][Ni(HCOO)3] powdered sample at different temperatures. Inset: derivative of the magnetization.