27
Laser IFE Workshop NRL, Washington DC February 6-7, 2001 Camille Bibeau Project Leader Laser Science and Technology C:\Mercury\Powerpoint\CANRL.ppt Mercury Laser

Mercury Laser - University of California, San Diegoaries.ucsd.edu/LIB/MEETINGS/0102-NRL-LASER-DP/Bibeau.pdfMercury and IRE Components 5 cm S-FAP Crystals 15 cm S-FAP Crystals and Edge

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Mercury Laser - University of California, San Diegoaries.ucsd.edu/LIB/MEETINGS/0102-NRL-LASER-DP/Bibeau.pdfMercury and IRE Components 5 cm S-FAP Crystals 15 cm S-FAP Crystals and Edge

Laser IFE WorkshopNRL, Washington DC

February 6-7, 2001

Camille BibeauProject Leader

Laser Science and Technology

C:\Mercury\Powerpoint\CANRL.ppt

Mercury Laser

Page 2: Mercury Laser - University of California, San Diegoaries.ucsd.edu/LIB/MEETINGS/0102-NRL-LASER-DP/Bibeau.pdfMercury and IRE Components 5 cm S-FAP Crystals 15 cm S-FAP Crystals and Edge

This will be accomplished through 6 objectives:

• Build two pump delivery systems• Fabricate Yb:S-FAP crystals• Design and build wedged amplifier head• Build injection and reverser hardware• Integrated tests and code benchmarking• Advanced Yb:S-FAP growth

The budget allocation for these tasks is $8250k

The short term goal is to develop a 100 J/1.05µm/10 Hz/10% laser capableof generating 2-10 ns pulses for IFE-related experiments for example:

x-ray generation, rep-rate targets, beam-smoothing, optical damage, etc.

The short term goal is to develop a 100 J/1.05µm/10 Hz/10% laser capableof generating 2-10 ns pulses for IFE-related experiments for example:

x-ray generation, rep-rate targets, beam-smoothing, optical damage, etc.

The FY-2001 goals are to build and characterizeMercury laser system with one amplifier and twopump modules

Page 3: Mercury Laser - University of California, San Diegoaries.ucsd.edu/LIB/MEETINGS/0102-NRL-LASER-DP/Bibeau.pdfMercury and IRE Components 5 cm S-FAP Crystals 15 cm S-FAP Crystals and Edge

Output

Gas-cooledamplifier heads• He gas flow at 0.1 Mach

Diode arrays• 6400 diodes total (900 nm)• 640 kW peak power

Crystals• 7 Yb3+:Sr5(PO4)3F slabs in each amplifier head

Front-end• 300 mJ, M2=1.8

Page 4: Mercury Laser - University of California, San Diegoaries.ucsd.edu/LIB/MEETINGS/0102-NRL-LASER-DP/Bibeau.pdfMercury and IRE Components 5 cm S-FAP Crystals 15 cm S-FAP Crystals and Edge

Spectral Sculpting

Average Power 3ω Generation

Deformable Mirror

Beam-Smoothing

3ω Mercury Laser with Beam Smoothing

Mercury and IRE Components

5 cm S-FAP Crystals

15 cm S-FAP Crystals and Edge Cladding

> 200 W IFE Diode bars100 W Diode bars

Average Power Pockels cell

Code Development and Modeling of System

IRE Architecture

Short-Pulses

Design

1ω Mercury Laser (100J, 10Hz, 10% η, 1/10 scale, 2-10ns)

Ηalf-Mercury (10-20J, 1 amplifier, 1-7 crystals, 2 pump arrays)

Full 1ω Mercury (100J, 2 amplifiers, 14 crystals, 4 pump arrays)

1ω Activation (Beam line characterization)

The 5 Year Plan for Mercury Laser Development

FY 2001 FY 2002 FY 2003 FY 2004 FY 2005

Page 5: Mercury Laser - University of California, San Diegoaries.ucsd.edu/LIB/MEETINGS/0102-NRL-LASER-DP/Bibeau.pdfMercury and IRE Components 5 cm S-FAP Crystals 15 cm S-FAP Crystals and Edge

IFE driver would be composed of ~ 600 such subunits

deformablemirrors

gas-cooled amplifiers

diode pump array

transport spatialfilter

frequencyconverter beam

splittergasflow injection/

reversoroptics beam

smoothingoptics

IRE laser is envisioned as a 4 x 1 beam bundlewhich is split after frequency conversion to a 4 x 4beam array (~4 kJ)

Page 6: Mercury Laser - University of California, San Diegoaries.ucsd.edu/LIB/MEETINGS/0102-NRL-LASER-DP/Bibeau.pdfMercury and IRE Components 5 cm S-FAP Crystals 15 cm S-FAP Crystals and Edge

Objective 1: Build two pump delivery systems

beam

diode package on split backplanes

gas-cooledamplifier head

vacuumenclosure

pump duct and homogenizer

Goal

Status

• 80 V-BASIS 23-bar 900 nm tiles fabricated

• Two backplanes fabricated

• Remaining power supplies/pulsers purchased

• Pump delivery hardware being assembled - lens duct - homogenizer - telescope - vacuum enclosure

Page 7: Mercury Laser - University of California, San Diegoaries.ucsd.edu/LIB/MEETINGS/0102-NRL-LASER-DP/Bibeau.pdfMercury and IRE Components 5 cm S-FAP Crystals 15 cm S-FAP Crystals and Edge

20 40 60 800.90

0.92

0.94

0.96

0.98

1.00

Ref

lect

ivit

y (%

)

Incident Angle (deg)

Reflectivity measurements of the silver-coatedhollow lens duct show a >98% loss per bounce

Diodes

Laser beam

Gas-cooledslabs

Hollow pump lighthomogenizer

Hollow pump lightconcentrator

DiodesHe gas in

Reflectance Data

Page 8: Mercury Laser - University of California, San Diegoaries.ucsd.edu/LIB/MEETINGS/0102-NRL-LASER-DP/Bibeau.pdfMercury and IRE Components 5 cm S-FAP Crystals 15 cm S-FAP Crystals and Edge

V-BASIS package components

Microlensarray and frame

Metalized silicon

AlNlayer

Molybdenumbase

v-sp

ring

notchSi submount

Mo block

Si lensframe

AlN sheet

microlens

diode

spring

v-sp

ring

notchSi submount

Mo block

Si lensframe

AlN sheet

microlens

diode

spring

Page 9: Mercury Laser - University of California, San Diegoaries.ucsd.edu/LIB/MEETINGS/0102-NRL-LASER-DP/Bibeau.pdfMercury and IRE Components 5 cm S-FAP Crystals 15 cm S-FAP Crystals and Edge

Pulse-Integrated Diode Spectrum

0

0.2

0.4

0.6

0.8

1

880 885 890 895 900 905 910 915 920

nm

Original (~8.5 nm)

Simulated (~4.7 nm)

The V-BASIS packaged diode bars meet the opticalspecifications of the Mercury Laser System

0 20 40 60 80 100 120 1400

500

1000

1500

2000

2500

3000

Power(W)

Current (A)

2.75 kW(23 bars)

Mercury require

897 898 899 900 901 9020

5

10

15

20

Wavelength Distribution of 80 V-BASIS Packages

Num

ber

of V

-BA

SIS

Pac

kage

s

nmDemonstrated 4.7 nm FWHM on tiles for one split

backplane

Pulse -integrated

linewidth < 8.5 nm FWHM

Work is ongoing to finish 1 full backplane array (72

mounted tiles)

Assemble tiles on

split backplane

5% droop demonstrated Power droop during

pulse < 15%

Testing is ongoing, but currently demonstrated 1.4x10 8 shots without

problems

Reliability of

> 2x10 8 shots

almost44% demonstrated45% electrical tooptical efficiency

Completed Fabrication of 80 tiles

115 Wpeak / 1 cm bar demonstrated with good

lifetime

100 Wpeak /1 cm bar

StatusRequirement

Demonstrated 4.7 nm FWHM on tiles for one split

backplane

Pulse -integrated

linewidth < 8.5 nm FWHM

Work is ongoing to finish 1 full backplane array (72

mounted tiles)

Assemble tiles on

split backplane

5% droop demonstrated Power droop during

pulse < 15%

Testing is ongoing, but currently demonstrated 1.4x10 8 shots without

problems

Reliability of

> 2x10 8 shots

almost44% demonstrated45% electrical tooptical efficiency

Completed Fabrication of 80 tiles

115 Wpeak / 1 cm bar demonstrated with good

lifetime

100 Wpeak /1 cm bar

StatusRequirement

Page 10: Mercury Laser - University of California, San Diegoaries.ucsd.edu/LIB/MEETINGS/0102-NRL-LASER-DP/Bibeau.pdfMercury and IRE Components 5 cm S-FAP Crystals 15 cm S-FAP Crystals and Edge

Objective 2: Fabricate S-FAP crystals

Goal

Status

Litton boule (4x6 cm slab):

LLNL boules (3x5 cm slab):• 3 boules are being cut and polished in preparation for diffusion bonding and slab fabrication

• One LLNL furnace converted to Litton design - improve control of: atmospheric growth conditions thermal gradients - anticipated first growth 2/11

• Alternative bonding methods being explored: - Stanford - LETI and Crystal Laser, France

A axis

~2.3 cm

6.0 cm

4 cm

6 cm

C axis

Page 11: Mercury Laser - University of California, San Diegoaries.ucsd.edu/LIB/MEETINGS/0102-NRL-LASER-DP/Bibeau.pdfMercury and IRE Components 5 cm S-FAP Crystals 15 cm S-FAP Crystals and Edge

The emission cross section and doping have beenmeasured for the LLNL and Litton crystals

Litton spectra: LLNL spectra:

900 950 1000 1050 1100 1150 12000.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Abs

orpt

ion

Coe

ffic

ient

(cm

-1

)

Wavelength (nm)900 950 1000 1050 1100 1150 1200

0.0

0.2

0.4

0.6

0.8

1.0

Abs

orpt

ion

Coe

ffic

ient

(cm

-1

)

Wavelength (nm)

Page 12: Mercury Laser - University of California, San Diegoaries.ucsd.edu/LIB/MEETINGS/0102-NRL-LASER-DP/Bibeau.pdfMercury and IRE Components 5 cm S-FAP Crystals 15 cm S-FAP Crystals and Edge

Roles Issue Fundamental Cause Resolution

LLNL Airtron

Cloudiness Precipitation on line defects

⟨ excess SrF2 in melt ⟨ annealing over melt Under

control Under control

Anomalous absorption

Yb3+ in a different site

⟨ c-axis along growth direction

⟨ thermal gradients of <70ϒC/cm

Under control

Nearly resolved

Grain boundaries Dislocations from the seed

⟨ seed extensions to grow out boundaries Under

control Under control

Bubble Core Constitutional supercooling

⟨ growth stability ⟨ maximize thermal

gradients

Under control

Under control

Cracking Internal stresses

⟨ cool crystals attached to melt Under

control Nearly

resolved

Size Control of defects

⟨ diffusion bond half-size slabs Under

control Under control

Sparkle inclusions Limited Yb solubility in melt

⟨ Yb-doping of <0.75 At% in melt

Nearly resolved

Under control

R&D ... Lead Backup

Production . . Backup Lead

A pathway for producing 3.2 cm diameter crystals has beendefined

Page 13: Mercury Laser - University of California, San Diegoaries.ucsd.edu/LIB/MEETINGS/0102-NRL-LASER-DP/Bibeau.pdfMercury and IRE Components 5 cm S-FAP Crystals 15 cm S-FAP Crystals and Edge

Objective 3: Design and build wedged amplifier headGoal

Status~0.5 deg wedged slabs

~1 degwedgedwindows

window

7 slabsBackwardreflections

Extractionbeam path

0.7, 1.05, 1.4 and 1.75 mmdiameter pinholes

Backward and forwardreflections from slabs,windows, lenses,...

1.75 cm (10 mrad) dia. circle

1

4

3

2

Wedging elements of amplifier head verticallydistributes reflections away from the extraction beam

• Ray trace code written in OPTICAD

• 0.5 degree slab wedge amplifier design in progress

Page 14: Mercury Laser - University of California, San Diegoaries.ucsd.edu/LIB/MEETINGS/0102-NRL-LASER-DP/Bibeau.pdfMercury and IRE Components 5 cm S-FAP Crystals 15 cm S-FAP Crystals and Edge

Heliumgas

Slabmetalvanes

Channelsection

Diffusersection

Nozzlesection

Edge claddingWindow

Gas cooled head and vanes

1/8 λ

0 λ

0.1 Machgas flow

4 atmpressure

static

Pressure and gas flow contributes 1/16 wave towavefront distortion

Page 15: Mercury Laser - University of California, San Diegoaries.ucsd.edu/LIB/MEETINGS/0102-NRL-LASER-DP/Bibeau.pdfMercury and IRE Components 5 cm S-FAP Crystals 15 cm S-FAP Crystals and Edge

Objective 4: Build reverser and injection hardware

Goal

Status

• Injection hardware fabricated

• Half aperture Pockels cell being tested - 1.5 x 2.5cm2

- Full aperture parts on order - 100 W goal (10J, 10Hz, <1J/cm2)

• Front end assembled - YLF oscillator and two amplifiers installed

• Vacuum transport telescopes assembled

Page 16: Mercury Laser - University of California, San Diegoaries.ucsd.edu/LIB/MEETINGS/0102-NRL-LASER-DP/Bibeau.pdfMercury and IRE Components 5 cm S-FAP Crystals 15 cm S-FAP Crystals and Edge

¥ Dual crystal configuration allows compensation for thermally-induced birefrigence

¥ Operating fluence of 0.5 J/cm2 is below damage limit

¥ Water cooled housing will be employed

unwanted backreflection switched

out of chain

SiO

2

KD

*P

KD

*P

off off

unwantedback

reflection

¥+λ/2 +ϕ-ϕ

SiO

2

KD

*P

KD

*P

on on

mainbeam

main beam isunaltered

¥ ¥+λ/2

+λ/4+λ/4

A half aperture (1.5 x 2.5cm2) average powerPockels cell is being assembled and tested

Page 17: Mercury Laser - University of California, San Diegoaries.ucsd.edu/LIB/MEETINGS/0102-NRL-LASER-DP/Bibeau.pdfMercury and IRE Components 5 cm S-FAP Crystals 15 cm S-FAP Crystals and Edge

1 Pinhole

Pencil beam Main beam

Ghost beam reflection

lens

Pencil beams are generated at every lensand will require isolation to control their growth

4 pencil beams

Pockelscell

Reverser

To outputTo frontend

To reverser

To reverser

Output

Front End1

23

4

4 Pinholes

Page 18: Mercury Laser - University of California, San Diegoaries.ucsd.edu/LIB/MEETINGS/0102-NRL-LASER-DP/Bibeau.pdfMercury and IRE Components 5 cm S-FAP Crystals 15 cm S-FAP Crystals and Edge

Amplifier 1

Injection

Deformable Mirror

Reverser

Pockel s Cell

Amplifier 2

Relay plane

1.5 x outputtelescope lens

The Mercury laser system minimizes damagingfluences by maximizing the number of amplifiersand optics near the relay plane

Page 19: Mercury Laser - University of California, San Diegoaries.ucsd.edu/LIB/MEETINGS/0102-NRL-LASER-DP/Bibeau.pdfMercury and IRE Components 5 cm S-FAP Crystals 15 cm S-FAP Crystals and Edge

Beam Quality M2 = 1.8

0 20 40 60 80 100 1200.0

0.2

0.4

0.6

0.8

1.0 FWHM = 23.3 ns

Nor

mal

ized

Int

ensi

ty

Time (ns)

Pulse length = 23 ns

0 2 4 6 8 10 12 14 16 18 20 221

2

3

4

5

6

7

8 gain1 gain2

Gai

n

Input (mJ)

Gain measurements

Amplifier 1

Amplifier 2

The front end currently produces 300 mJwith a beam quality of M2 < 2

Page 20: Mercury Laser - University of California, San Diegoaries.ucsd.edu/LIB/MEETINGS/0102-NRL-LASER-DP/Bibeau.pdfMercury and IRE Components 5 cm S-FAP Crystals 15 cm S-FAP Crystals and Edge

Objective 5: Integrated tests and benchmarking

Goal

Status

MIRO propagation code

Temporal Energy FarField

Near Field

WavefrontSchlieren

Diagnostics

¥ 96 % light in 5x diffraction limited beam

¥ 37% light in a 1x diffraction limited beam

• Backplane and pump delivery tests: 4/1 - Power, droop, chirp, polarization - efficiency, far/near field, uniformity

• One of two diagnostics packages built

• Miro prop. code written to model half Mercury - measured wavefront files - gain files from ray trace code - angular multiplexing - 4 unequally sized pinholes

Page 21: Mercury Laser - University of California, San Diegoaries.ucsd.edu/LIB/MEETINGS/0102-NRL-LASER-DP/Bibeau.pdfMercury and IRE Components 5 cm S-FAP Crystals 15 cm S-FAP Crystals and Edge

Goal

Status

10 cm

15 cm

A axis

C axis

~2.3 cm

Czochralski: LLNL/Litton Airtron

HEM: Crystal Systems

• Contract written and to be awarded to Crystal Systems to demonstrate feasibility of growing large diameter Yb:S-FAP crystals by heat exchanger method (HEM)

• LLNL/Litton will investigate feasibility of flat interface growth

Objective 6: Advanced S-FAP growth

Page 22: Mercury Laser - University of California, San Diegoaries.ucsd.edu/LIB/MEETINGS/0102-NRL-LASER-DP/Bibeau.pdfMercury and IRE Components 5 cm S-FAP Crystals 15 cm S-FAP Crystals and Edge

Heat Exchanger Method Large Diameter, Flat-Interface Method

Growth is controlled by cooling the seed and slowly lowering the furnace temperature to maintain a stable interface

5 inch diameter Nd:GGG crystal grownby the flat interface method.13 inch diameter Sapphire crystal

Dead ZoneCore Generation

Convex Interface

T1 > T2 < T1

Dead ZoneCore Generation

Convex Interface

T1 > T2 < T1

Minimal Dead ZoneNo Core Generation

Flat InterfaceT1 > T 2 < T 1

Minimal Dead ZoneNo Core Generation

Flat InterfaceT1 > T 2 < T 1

Objective 6: Advanced S-FAP growth cont.

Page 23: Mercury Laser - University of California, San Diegoaries.ucsd.edu/LIB/MEETINGS/0102-NRL-LASER-DP/Bibeau.pdfMercury and IRE Components 5 cm S-FAP Crystals 15 cm S-FAP Crystals and Edge

Input

Output

Input

Output

Spectrally Flat Input

Spectrally Sculpted Input

-2.0 0 2.00.0

0.2

0.4

0.6

0.8

1.0

Time (ns)

0.0

0.2

0.4

0.6

0.8

1.0

Amplification

Resulting Output

-0.6 -0.4 -0.2 0.20.0 0.4 0.6UV Bandwidth (THz)

Resulting Output

AM

NoAM

LLE: Spectral Sculpting progress

By sculpting the input spectrum, Yb:S-FAP can generate 1 THz UV bandwidth without AM

Page 24: Mercury Laser - University of California, San Diegoaries.ucsd.edu/LIB/MEETINGS/0102-NRL-LASER-DP/Bibeau.pdfMercury and IRE Components 5 cm S-FAP Crystals 15 cm S-FAP Crystals and Edge

Telephoto ImagingSystem

LCM Light Valve

• Gratings: 1740 grooves/mm• Telephoto imaging system EFL ~ 800 mm

A compact spectral sculptor using a liquid-crystalmodulator light valve has been demonstrated

GratingGrating

Inte

ns

ity

Original FM

Sculp ted

0 100 200-100-200

Frequency (GHz)

Inte

ns

ity

Original FM

Sculp ted

0 100 200-100-200

Frequency (GHz)

0 100 200-100-200

Frequency (GHz)

Page 25: Mercury Laser - University of California, San Diegoaries.ucsd.edu/LIB/MEETINGS/0102-NRL-LASER-DP/Bibeau.pdfMercury and IRE Components 5 cm S-FAP Crystals 15 cm S-FAP Crystals and Edge

Telephoto ImagingSystem

LCM Light Valve

• Gratings: 1740 grooves/mm• Telephoto imaging system EFL ~ 800 mm

A compact spectral sculptor using a liquid-crystalmodulator light valve has been demonstrated

GratingGrating

0 100 200-100-200

Frequency (GHz)

Inte

nsi

ty

Original FM

Sculpted

0 100 200-100-200

Frequency (GHz)

Inte

nsi

ty

Original FM

Sculpted

Page 26: Mercury Laser - University of California, San Diegoaries.ucsd.edu/LIB/MEETINGS/0102-NRL-LASER-DP/Bibeau.pdfMercury and IRE Components 5 cm S-FAP Crystals 15 cm S-FAP Crystals and Edge

The spectral sculptor uses a liquid-crystalmodulator light valve

100 µm

3 µm

2 m

m

128 elements

• Each pixel serves as a computer controllable amplitude and phasemask for a single FM sideband.

• Commercially available unit uses two 128 pixel liquid-crystal modulators.

TopView

Glass

Glass

Liquid Crystal (I)

4.26 mm

Glass

Glass

Liquid Crystal (φ)

Page 27: Mercury Laser - University of California, San Diegoaries.ucsd.edu/LIB/MEETINGS/0102-NRL-LASER-DP/Bibeau.pdfMercury and IRE Components 5 cm S-FAP Crystals 15 cm S-FAP Crystals and Edge

Milestone budget breakout:

• $3030k Build two pump delivery systems• $1800k Fabricate Yb:S-FAP crystals• $825k Design and build wedged amplifier head• $1025k Build injection and reverser hardware• $1270k Integrated tests and code benchmarking• $300k Advanced Yb:S-FAP growth• $350k (LLE) Spectral sculpting experiments and evaluation of average-power frequency conversion design

Summary

We are on schedule to build half Mercury in FY01We are on schedule to build half Mercury in FY01