5
Page 1 of 5 Memorandum: Hollowcore slabs & compliance with fire safety regulations Hollowcore slab is a term for a concrete slab with longitudinal holes/channels. The concept covers at least 4 constructions with widely different fire resistance levels. 1. 1.2 m wide slabs with holes made with a mandrel. These original hollowcore slabs were dominant for the first many years and they were reinforced with normal slack (nonprestressed) reinforcement and a mesh of transverse reinforcement in the bottom, so that the under flange was reinforced across the holes see drawing below. 2. 1.2 m wide hollowcore slabs with slip form casting. These had prestressed reinforcement and were produced with transverse reinforcement in the bottom flange. 3. 1.2 m wide extruded hollowcore slabs with prestressed reinforcement cut in lengths. The first of these decks were introduced on a European level in the 1970s. In Denmark, Spæncom first introduced extruded decks in the 00s. Extruded decks are the most widely used type of decks in Denmark today. 4. 2.4 m wide extruded hollowcore slabs with prestressed reinforcement cut in lengths, which have appeared during the last 5 8 years and is thus a new product. Hollowcore slabs with slack transverse reinforcement Date 10 April 2015 Authors Hertz, Kristian Professor, Technical University of Denmark (DTU) Rasmussen, Morten S. Chief Technical Officer, Abeo A/S Background This memorandum has been prepared following several cases of premature failures of hollow core slabs during fire. The memorandum builds on research performed by the authors of the available fire documentation of hollowcore slabs as well as personal experi ences from incidents (tests and real fires), where hollowcore slabs failed to achieve the re quired level of fire resistance. In 2014 the International Hol lowCore Association (IPHA) and the European Precast Concrete Federation (BIBM) published the Holcofire project giving a com plete overview of 162 fire tests conducted in Europe between 1966 and 2010. The memorandum concludes on a series of vital problems of hollowcore slabs’ fire resistance based on findings from the Holcofire publication as well as the authors’s experience from actual fire tests. One of the main conclusions is that some instructions, which the product standard EN1168 prescribes for dimensioning of the fire resistance of hollowcore slabs, doesn’t comply with EN 199212 for extruded hollow core slabs as the underflange does not preserve its integrity and the steel temperature in the prestressed reinforcement is not calculated correctly.

Memorandum:!Hollow/coreslabs&!compliance withfire ... › media › 20736 › memorandum-hollow-core-slab… · Page1%of%5%!! Memorandum:!Hollow/coreslabs&!compliance withfire safetyregulations!

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Memorandum:!Hollow/coreslabs&!compliance withfire ... › media › 20736 › memorandum-hollow-core-slab… · Page1%of%5%!! Memorandum:!Hollow/coreslabs&!compliance withfire safetyregulations!

Page  1  of  5  

 

 

Memorandum:   Hollow-­‐core   slabs   &   compliance   with   fire  safety  regulations          

Hollow-­‐core   slab   is   a   term   for   a   concrete   slab   with   longitudinal  holes/channels.   The   concept   covers   at   least   4   constructions   with   widely  different  fire  resistance  levels.  

1. 1.2   m   wide   slabs   with   holes   made   with   a   mandrel.   These   original  hollow-­‐core   slabs  were  dominant   for   the   first  many   years   and   they  were   reinforced  with   normal   slack   (non-­‐prestressed)   reinforcement  and  a  mesh  of   transverse   reinforcement   in   the  bottom,   so   that   the  under  flange  was  reinforced  across  the  holes  -­‐  see  drawing  below.    

2. 1.2   m   wide   hollow-­‐core   slabs   with   slip   form   casting.   These   had  prestressed   reinforcement   and   were   produced   with   transverse  reinforcement  in  the  bottom  flange.  

 3. 1.2   m   wide   extruded   hollow-­‐core   slabs   with   prestressed  

reinforcement   cut   in   lengths.   The   first   of   these   decks   were  introduced  on  a  European  level  in  the  1970s.  In  Denmark,  Spæncom  first   introduced   extruded   decks   in   the   00s.   Extruded   decks   are   the  most  widely  used  type  of  decks  in  Denmark  today.  

 4. 2.4   m   wide   extruded   hollow-­‐core   slabs   with   prestressed  

reinforcement  cut  in  lengths,  which  have  appeared  during  the  last  5-­‐8  years  and  is  thus  a  new  product.  

               

 

 

 

 

Hollow-­‐core  slabs  with  slack  transverse  reinforcement  

Date  10  April  2015    Authors  Hertz,  Kristian  Professor,  Technical  University  of  Denmark  (DTU)    Rasmussen,  Morten  S.  Chief  Technical  Officer,  Abeo  A/S      Background  This   memorandum   has   been  prepared  following  several  cases  of   premature   failures   of   hollow-­‐core  slabs  during  fire.    The   memorandum   builds   on  research   performed   by   the  authors   of   the   available   fire  documentation   of   hollow-­‐core  slabs  as  well   as  personal  experi-­‐ences   from   incidents   (tests   and  real   fires),   where   hollow-­‐core  slabs   failed   to   achieve   the   re-­‐quired  level  of  fire  resistance.    In   2014   the   International   Hol-­‐low-­‐Core  Association   (IPHA)   and  the   European   Precast   Concrete  Federation  (BIBM)  published  the  Holcofire   project   giving   a   com-­‐plete   overview   of   162   fire   tests  conducted   in   Europe   between  1966  and  2010.    The  memorandum  concludes  on  a   series   of   vital   problems   of  hollow-­‐core  slabs’  fire  resistance  based   on   findings   from   the  Holcofire   publication   as   well   as  the   authors’s   experience   from  actual  fire  tests.    One   of   the   main   conclusions   is  that   some   instructions,   which  the   product   standard   EN1168  prescribes   for   dimensioning   of  the  fire  resistance  of  hollow-­‐core  slabs,   doesn’t   comply   with   EN  1992-­‐1-­‐2   for   extruded   hollow-­‐core   slabs   as   the   underflange  does   not   preserve   its   integrity  and  the  steel  temperature  in  the  prestressed  reinforcement  is  not  calculated  correctly.  

Page 2: Memorandum:!Hollow/coreslabs&!compliance withfire ... › media › 20736 › memorandum-hollow-core-slab… · Page1%of%5%!! Memorandum:!Hollow/coreslabs&!compliance withfire safetyregulations!

Page  2  of  5  

The   experience   gained   from   fire   tests   of   1.2   m   wide   hollow-­‐core   slabs  therefore   covers   very   different  methods   of   production   and   is   more   or   less  non-­‐existent  for  2.4  m  wide  hollow-­‐core  slabs.  

Danish   fire   tested   hollow-­‐core   slabs   with   moment   load   have,   as   far   as   we  know,  only  been  performed  on   three  decks   in  1999  and  again   in  2004  on  a  single   element   –   and   all   tests   had   to   be   stopped   after   approximately   25  minutes  due  to  very  large  deformations.  

In   a  Danish   context,   no   subsequent   fire   tests  with  moment   load  have  been  conducted  on  hollow-­‐core  slabs.  

 The  Holco-­‐fire  project  In   the   spring   of   2014,   the   International   Prestressed   Hollowcore   Association  (IPHA)   published   the   Holcofire   report.   This   report   lists   162   fire   tests  performed   during   1966   and   2010   in   order   to   account   for   the   available  documentation  for  the  fire  resistance  of  hollow-­‐core  slabs.      The  report  does  not  distinguish  between  the  various  production  methods  of  hollow-­‐core  slabs.  The  associated  test  reports  are  not  enclosed  as  annexes,  so  it   is   not   possible   for   the   reader   to   assess   the   test   setup   and   how   the   tests  were  performed.  However,  an  overview  of  the  main  types  of  tests  that  were  carried  out  is  given  in  table  form.  The  table  shows,  among  other  things,  that  a  number   of   tests   were   performed   on   slices   of   hollow-­‐core   slabs,   on   very  narrow   elements   and   on   systems   of   beams   and   decks.   Furthermore,   some  tests   were   performed   on   decks   with   fire   insulation,   with   concrete   topping,  with  reduced  hole  sizes  or  with  deck  thicknesses  or  cover  thicknesses  greater  than  commonly  used  (Deck  thicknesses  >  350  mm  or  cover  thicknesses  >  50  mm).  

Finally,  a  large  number  of  tests  were  performed  on  decks  with  short  spans,  so  that   the   decks   were   not   loaded   in   bending.   The   product   standard   EN1168  prescribes   that   the  elements  must  have  a   length  of   at   least   4  meters  when  testing.    

If  tests  with  decks  shorter  than  4  meters  are  deselected  together  with  those  tests   that   for   the   above   mentioned   reasons   are   irrelevant,   a   systematic  review  of  the  tests  shows  that  only  4  out  of  the  162  tests  (H3,  H50,  H78,  H79)  have  been  tested   for  120  minutes,  but  all   these  are  more   than  20-­‐years-­‐old  and  with  unknown  construction,  load,  and  support  conditions.    

Within   the   last   20   years   there   have   only   been   6   relevant   tests   (H96,   H97,  H98,  H137,  H138,  and  H139),  of  which  none  demonstrated  a  fire  resistance  of  120   minutes.   Four   of   these   tests   were   performed   in   Denmark   with   fire  resistance  times  of  between  21  and  26  minutes  (H96,  H97,  H98,  H138)  

 

Page 3: Memorandum:!Hollow/coreslabs&!compliance withfire ... › media › 20736 › memorandum-hollow-core-slab… · Page1%of%5%!! Memorandum:!Hollow/coreslabs&!compliance withfire safetyregulations!

Page  3  of  5  

 

Problems  deducted  from  the  Holcofire  project  

In   our   view,   the   Holcofire   report   indicates   that   there   are   the   following  problematic  issues  with  the  way  EN1168  is  applied  in  practice:  

 

• New  production  methods  Different   methods   of   production   have   been   used   over   time   to  manufacture   hollow-­‐core   slabs.   Today   hollow-­‐core   slabs   are   typically  produced   by   extrusion,   which   does   not   allow   for   transverse  reinforcement   in   the   bottom   of   the   deck’s   cross-­‐section.  We   believe  that   the   available   documentation   for   the   hollow-­‐core   slab’s   fire  resistance   in   the   form   of   testing   is,   to   some   extent,   based   on  production   methods   that   are   no   longer   used   and   therefore   not  representative  as  basis  for  documentation.  

• Splitting  of  the  web  In  the  Netherlands  it  is  common  to  apply  an  in-­‐situ  cast  top  concrete  to  improve  the  performance  of  the  hollow-­‐core  slab  for  example  to  fulfill  the   acoustic   requirements.   Doing   so,   the   top   concrete   and   the   top  flange  acts  as  a  stiff  massive  slab  without  the  thermal  gradient  that   is  found   in   the   bottom   flange  of   the   fire   exposed  hollow-­‐core   slab.   The  bottom  flange  will  therefore  tend  to  deflect  more  than  the  stiff  top  slab  giving  rise  to  tensile  stresses   in  the  webs  between  the  holes  that  may  cause   splitting   and   delamination   of   the   hollow-­‐core   slab   so   that   the  bottom  flange  falls  down.  

In   some   cases   the   top   slab   seems   to   be   so   strong   and   stiff   that   it  remains  in  place,  but  obviously  the  deck  cannot  have  the  load-­‐bearing  capacity  intended.  

• Integrity  of  the  underflange  Hollow-­‐core   slab’s   load-­‐bearing   capacity   during   a   fire   is   in   practice  calculated   under   the   prerequisite   that   the   underflange   of   the   deck  remains   intact   despite   a   lack   of   transverse   reinforcement.   However,  many   tests   and   similar   observations   from   actual   fires   show   that   the  integrity   of   the   underflange   is   a   problem,   because   big   cracks   appear  along  the  deck  under  the  channels  and  often  the  underflange  even  falls  down.   Thus   the   prerequisites   for   the   theoretically   calculated   load-­‐bearing  capacity  are  no  longer  present,  as  the  increase  in  temperature  in   the   main   reinforcement   happens   much   faster   than   assumed.   This  seems  to  be  a  natural  consequence  of  the  fact  that  the  newer  extruded  hollow-­‐core   slabs   no   longer   has   a   transverse   reinforcement   in   the  underflange,  and  it  supports  the  relevance  of  requiring  documentation  for  the  dimensioning  methods,  which  requires  intact  underflanges.    

Page 4: Memorandum:!Hollow/coreslabs&!compliance withfire ... › media › 20736 › memorandum-hollow-core-slab… · Page1%of%5%!! Memorandum:!Hollow/coreslabs&!compliance withfire safetyregulations!

Page  4  of  5  

• Calculation  methods  For   calculations   the  product   standard   refers   to   the   concrete   standard  EN  1992-­‐1-­‐2,  and   in  particular  herein  Figure  A2   for   temperatures   in  a  solid   slab   as   well   as   Annex   B.   Annex   B   consists   of   two   methods   for  reduced   cross-­‐section:   B1   was   originally   written   by   Yngve   Anderberg  and   is   based   on   the   500C   isotherm   from   Figure   A2.   B2,   which   is  considered   slightly   more   accurate,   was   originally   written   by   Kristian  Hertz.   The   two   methods   give   much   the   same   result   when   used   on  hollow-­‐core  slabs.    

According  to  Figure  B5b,  it  can  be  directly  seen  that  the  damaged  zone,  which  must  be  deducted  from  a  slab  with  a  thickness  of  150-­‐250  mm,  would  be  36  mm  after  a  120  minutes  standard  fire  and  20  mm  for  a  60  minutes   standard   fire.   This   means   that   the   underflange   of   a   hollow-­‐core   slab,   which   is   usually   about   34   mm   thick,   will   be   completely  covered  by  the  damaged  zone  after  120  minutes  and  the  majority  of  it  after  60  minutes.  The  time  from  which  the  integrity  of  the  flange  is  lost  and  the  ribs  should  be  regarded  3  sided  exposed  depends  on  the  me-­‐chanical  and  thermal  actions  on  the  flange  and  the  geometry  and  ma-­‐terial   properties   of   it.   A  more   precise   calculation  method   taking   into  account   the   simultaneous  effects  of  bending,   thermal  gradients,   ther-­‐mal  deformation,  and  horizontal  shear  on  such  a  flange  is  not  known  to  exit   and   if   it   emerge,   it   will   require   experimental   documentation   to  evaluate   it.  This  means  that  the  underflange  should  be  omitted  at  the  holes  and  the  ribs  between  the  holes  are  exposed  by  fire  from  3  sides  because  of  lack  of  integrity  of  the  bottom  flange.    

Calculations   according   to   EN1168   can   therefore   not   show   that   the  underflange  of  an  extruded  hollow-­‐core  slab  retains   its   integrity  when  exposed   to   fire   and   the   temperature   of   the   prestressing   tendons  cannot  be  determined  as  in  a  slab  by  means  of  Figure  A2  from  EN1992-­‐1-­‐2.  This  means   that  a   safe  calculation  of   the   fire   resistance  of  an  ex-­‐truded  hollow-­‐core  slab  according  to  EN1992-­‐1-­‐2  should  be  made  on  a  ribbed  cross-­‐section  without   taking   the  unreinforced  underflange   into  account.  

Furthermore,   the  prestressing   tendons  will   often  have  a  depth   to   the  centre  line  of  34  mm.  Thereby  the  prestressing  tendons  and  their  cover  thickness   will   be   comprised   by   the   damaged   zone,   which   is   why   the  structural   code  cannot  be  used   to  document   interaction  between   the  reinforcement  and  the  element.    

 

Page 5: Memorandum:!Hollow/coreslabs&!compliance withfire ... › media › 20736 › memorandum-hollow-core-slab… · Page1%of%5%!! Memorandum:!Hollow/coreslabs&!compliance withfire safetyregulations!

Page  5  of  5  

       

             

 Private  photo  of  a  hollow-­‐core  slab  element  after    

25  minutes  standard  fire  exposure.    

Conclusion  

It  is  our  conclusion  that  the  instructions,  where  the  product  standard  EN1168  allows   application   of   Figure   G.1   and   Table   G.1   for   dimensioning   of   the   fire  resistance  of  hollow-­‐core  slabs,  doesn’t  comply  with  EN  1992-­‐1-­‐2  for  extrud-­‐ed  hollow-­‐core   slabs   as   the   underflange   does   not   preserve   its   integrity   and  the   steel   temperature   in   the   prestressed   reinforcement   is   not   calculated  correctly.    Furthermore,   it   is   our   conclusion   that   calculations   according   to   the  product  standard  EN1168  with  reference  to  EN  1992-­‐1-­‐2  clause  4.2  and  4.3  with  An-­‐nex  B  must  consider  that  the  underflange  does  not  preserve   its   integrity   for  extruded   hollow-­‐core   slabs.   Such   calculations   seem   to   accord   well   with  findings  from  those  tests  in  the  Holcofire  report  that  are  made  in  accordance  with  the  product  standard  EN1168.