21
Melted discommensuration in charge density waves T. Matsuura 1 , J. Hara 1 , K. Inagaki 2 , M. Tsubota 1 , T. Hosokawa 1 , and S. Tanda 1 1 Hokkaido University, Sapporo, Japan 2 Asahikawa Medical University, Asahikawa, Japan Ecrys2014, 21 st August arXiv:1410.8689 [cond-mat.mes-hall]

Melted discommensuration in charge density waveslptms.u-psud.fr/ecrys/files/2014/11/Matsuura.pdf · 2014. 11. 4. · Random DC Regular DC dc CDW bulk flow 2p soliton liquid reproduces

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Melted discommensuration in charge density waves

    T. Matsuura1, J. Hara1, K. Inagaki2, M. Tsubota1, T. Hosokawa1, and S. Tanda1

    1Hokkaido University, Sapporo, Japan

    2Asahikawa Medical University, Asahikawa, Japan

    Ecrys2014, 21st August

    arXiv:1410.8689 [cond-mat.mes-hall]

    http://arxiv.org/abs/1410.8689

  • Charge density wave in o-TaS3 systems

    1. Aharonov-Bohm oscillation with current switching in CDW ring, M. Tsubota, et al., Europhys. Lett. 97, 57011 (2012).

    2. Coexistence of incommensurate and commensurate CDWs, K. Inagaki, et al., J. Phys. Soc. Jpn. 77, 093708 (2008).

    a = 36.804 Å b = 15.173 Å c = 3.34 Å

    Orthorhombic unit cell of TaS3

    C. Roucau, el al., Phys. Stat. Solidi A (1980)

    • Peierls gap is fully opened at TP (218 K)

    • Commensurate CDW (commensurability M = 4)

    (Qc= 0.5a*, 0.125b*, 0.25c*)

    A. H. Thompson, et al., PRB (1981)

    Typical CDW

    Introduction

    con

    du

    ctiv

    ity

    1000/T

    218 K

  • Synchrotron X-ray diffraction experiment for o-TaS3 crystal

    0 200 400

    0

    0.05

    0 200 400

    50

    100

    0.96 1 1.040

    10

    20

    30

    0.96 1 1.04

    d = 5c

    z / c

    d/d

    z

    d = 7c (ra

    d)

    kz / Qc

    Fo

    uri

    er

    Ma

    g. (a

    .u.)

    Qc QicQc

    2d / c

    (a) (b)

    (c) (d)

    z

    Edc < Eth

    Edc > Eth

    dc soliton flow(e)

    Random DC

    Regular DC

    dc CDW bulk flow

    Ith

    K. Inagaki, et al., J. Phys. Soc. Jpn. 77, 093708 (2008).

    Discommensurate CDW is hidden

    Pinning state Sliding state

    c-CDW

    ic-CDW

    c ic c ic

    0.25c* 0.255c*

    1. Coexisting of commensurate(c) and incommensurate(ic) CDWs 2. CDW current enhances ic-CDW

    c-CDW

    ic-CDW

    Model

    ic-CDW ⇒ Discommensurate CDW

    Ith

    Sliding state Pinning state

    Qc= 0.25c*

    Qic= 0.255c*

    Sliding state Pinning state

  • Quantum interference of 2e charge soliton

    M. Tsubota, et al., Europhys. Lett. 97, 57011 (2012).

    M. Tsubota, et al., Physica B, 404, 416 (2009).

    Aharonov-Bohm oscillation in CDW ring

    o-TaS3 ring

    h/2e oscillation

  • Purpose: To reexamine CDW dynamics on o-TaS3

    Results: New-type spectrum was observed

    Discussions: Soliton liquid model is proposed

    Experiment: Ac-dc interference measurement on o-TaS3

  • Ac-dc interference measurement

    Zettel, Gruner Solid. State. Commnun (1983) O. Hoffmann, et al., Phys. Rev. B9 3746(1974)

    impurity

    r = r 0 + rCDW sin(2kF x + )

    V = Vdc + VRF sin(2pfRFt) V

    The internal degrees of CDW must affect ac-dc interference spectrum

    po

    ten

    tial

    E=0

    EET

    Pinning

    Sliding

    one-particle model

    a strong evidence of an electronic crystal sliding

    Shapiro steps at ICDW = NefRF

    Vdc

    Dif

    fere

    nti

    al r

    esis

    tan

    ce d

    V/d

    I

  • −0.1 0 0.1 0.20

    0.005

    0.01

    0.015

    −1 0 10.005

    0.01

    0.015

    Idc (mA)

    dI/d

    V (

    S)

    −0.2 0 0.20

    0.005

    0.01

    0.015

    −1 0 10.005

    0.01

    0.015

    Idc(mA)

    dI/

    dV

    (S

    )

    −1/1−2/1

    1/12/1

    fRF = 1 MHz

    0 mV50 mV100 mV120 mV140 mV160 mV180 mV200 mV

    Differential conductance under ac+dc voltages VRF dependence

    Some samples show strange ac-dc interference peaks!

    1st Shapiro

    ? ?

    Temperature dependence

    • Two probe measurement with gold film contacts

    • Cross section: 16 x 7 μm2 • Length: 110 μm

    • dI/dV was measured using Lock-in

    Amplifier technique with low-frequency ac current of 13 Hz.

    o-TaS3 whisker sample

    Results 1

  • −0.4 −0.2 0 0.2 0.4

    0 100 2000

    0.2

    0.4

    0 2 4

    Idc (mA)

    dI/

    dV

    [r

    ela

    tive]

    5MHz3.5MHz2.7MHz2.1MHz1MHz

    VRF = 200 mV

    50 mS

    Ha

    lf o

    f cu

    rre

    nt in

    terv

    al

    be

    twe

    en

    pe

    aks (

    mA

    )

    VRF (mV) fRF (MHz)

    (a)

    (b) (c)

    −1/11/1

    new peak

    1/1 Shapiro peak

    new peak1/1 Shapiro peak

    Frequency (fRF) dependence

    integer): chains, ofnumber the:(

    2RFNBN

    CDW

    nN

    nffeN

    I↑ (Black) peaks

    New ac-dc interference effects! ↑ (Red) peaks

    ⇒Normal Shapiro peaks

    0 100 2000

    0.1

    0.2

    0 2 4

    (I(+

    )C

    DW

    − I

    (−)

    CD

    W)/

    2 (

    mA

    )

    VRF (mV) fRF (MHz)

    (a) (b)

    new peak

    1st Shapiro peak

    new peak

    1st Shapiro peak

    Differential conductance under ac+dc voltages Results 2

  • T-dependence of the ac –dc interference

    0.48

    0.5

    0.52

    0.54

    0.16

    0.18

    0.03

    0.04

    −2e−05 0 2e−050.006

    0.007

    0.008

    0.009

    dI/d

    V (

    mS

    )Idc (A)

    VRF = 600 mV, fRF = 1 MHz

    T = 150 K

    T = 100 K

    T = 80 K

    T = 60 K

    Different sample

  • Inhomogeneous CDW current?

    Inhomogeneous CDW current may make split of threshold field and Shapiro peaks… • However, they must follow the Shapiro step

    manners. • No dip of differential conductance on the zero

    bias peak.

    New ac-dc interference peaks must originate from hidden internal degrees of freedom of CDW!!

    Yu. I. Latyshev, et al., JETP Lett. 46, 10 (1987)

    v1

    v2

    Discussions

    Inhomogeneous current is not the origin of new ac-dc interference peaks!

  • 1st Shapiro

    Mixed Density Wave Model

    CDW

    SDW

    r

    r

    r

    r

    totr

    totr

    CDW+SDW

    mSDW ~ m0

    mCDW ~ 1000 m0

    CDW+SDW

    State

    CDW State CDW State

    mSDW < mMDW < mCDW

  • c-CDW

    ic-CDW

    Pinning state Sliding state

    Return to discommensuration model

    0 100 2000

    0.2

    0.4

    30

    40

    50

    60

    −1

    0

    1

    Position z

    r(z

    ,(z

    ))

    (z

    )

    d/d

    z

    ),(sin),( 0 tzzQtz C rr *25.0 cQC

    Pinning state Sliding state

    c-CDW

    ic-CDW

    c ic c ic

    0.25c* 0.255c*

    ic-CDW ⇒ Discommensurate CDW

    K. Inagaki, et al., J. Phys. Soc. Jpn. 77, 093708 (2008).

    Soliton solution

    Phase dynamics equation (sine-Gordon equation)

    Fourier transform reproduce the split diffraction??

    2p/M

  • 0 200 400

    0

    0.05

    0 200 400

    50

    100

    0.96 1 1.040

    10

    20

    30

    0.96 1 1.04

    d = 5c

    z / c

    d/d

    z

    d = 7c (ra

    d)

    kz / Qc

    Fo

    uri

    er

    Ma

    g. (a

    .u.)

    Qc QicQc

    2d / c

    (a) (b)

    (c) (d)

    z

    Edc < Eth

    Edc > Eth

    dc soliton flow(e)

    Random DC

    Regular DC

    dc CDW bulk flow

    Soliton lattice

    Solitons liquid ←Peaks appear at

    Fourier transform of Soliton lattice

    A 2p soliton exists in 50 CDW

    K. Inagaki, JPSJ (2008).

    ΔQ

    C=2p/QC : wavelength of c-CDW

    ←Peaks appear at

    Qic+nΔQ [ΔQ = M(Qic-Qc)]

    Mph / gMvd

    Qic

    ΔQ

  • 0 200 400

    0

    0.05

    0 200 400

    50

    100

    0.96 1 1.040

    10

    20

    30

    0.96 1 1.04

    d = 5c

    z / c

    d/d

    z

    d = 7c (ra

    d)

    kz / Qc

    Fo

    uri

    er

    Ma

    g. (a

    .u.)

    Qc QicQc

    2d / c

    (a) (b)

    (c) (d)

    z

    Edc < Eth

    Edc > Eth

    dc soliton flow(e)

    Random DC

    Regular DC

    dc CDW bulk flow

    2p soliton liquid reproduces the ic-c CDWs diffraction peaks

    Soliton lattice

    Solitons liquid ←Peaks appear at

    ←Qic and Qc peaks remain, if M = 1

    Fourier transform of Soliton liquid

    A 2p soliton exists in 50 CDW

    K. Inagaki, JPSJ (2008).

    ΔQ

    C=2p/QC : wavelength of c-CDW

    Mph / gMvd

    ←Peaks appear at

    Qic+nΔQ [ΔQ = M(Qic-Qc)]

    ΔQ

  • Reinterpretation of CDW in o-TaS3 K. Inagaki, et al., J. Phys. Soc. Jpn. 77, 093708 (2008).

    • A 2p soliton exists in 50 C • Randomness ∝ d-1

    0 200 400

    0

    2

    4

    0.95 1 1.05

    0

    2

    4

    d/d

    z

    FF

    T m

    ag

    nitu

    de

    z/C kz/QC

    c ic

    Ic-CDW to c-CDW ⇒ Decreasing of Soliton width d [ d=vph/gM

    0.5 and gM∝ r0 ]

  • Sliding of 2p solitons in o-TaS3 Numerical calculation with solitons

    M = 1

    A 2p soliton exists in 50 C

    Ith

    K. Inagaki, et al., J. Phys. Soc. Jpn. 77, 093708 (2008).

    K. Inagaki, et al., (2008).

    The one-dimensional soliton liquid model reproduces the current-induced enhancement of ic-CDW!

    • Soliton width d decreases when CDW sliding current increases ⇒ ic-CDW

    Ith

    Sliding state Pinning state

  • … So the soliton liquid model can explain the new ac-dc interference peaks?

    1st Shapiro

    ? ?

    1st Shapiro

    ? ?

  • IV characteristics is calculated from the SG equation

    )(),(sin impCPimp zztzzQgF M = 1 Local impurity potential

    0 100 2000

    0.2

    0.4

    30

    40

    50

    60

    −1

    0

    1

    Position z

    r(z

    ,(z

    ))

    (z

    )

    d/d

    z

    Effects of solitons and impurities are investigated

  • E=Edc E=Edc+ERF sin(2pfRFt)

    ERF=2

    IV characteristics with/without solitons and impurities

    No soliton No impurity

    No soliton With impurities

    With solitons No impurity

    With solitons With impurities

    )(),(sin impCPimp zztzzQgF M = 1 Local impurity potential

  • Soliton flow state under RF voltage

    • Pinning state (Edc < ES1): Both soliton and CDW do not contribute dc conduction

    • Soliton flow state (ES1 < Edc < ES2) : Solitons are depinned and contribute dc conduction

    • Sliding state (ES2 < Edc ) : Soliton and CDW contribute dc conduction

    With solitons With impurities

    E=Edc+ERF sin(2pfRFt) ERF=2

  • Conclusion

    • New type of ac-dc interference peaks is observed in o-TaS3 whiskers.

    • One-dimensional soliton liquid model provides a possible explanation of the experimental results.

    Thank you for your attention!

    Also the model is consistent with the AB oscillation in CDW rings