12
Mechanical design of the Pre-Production Detector Unit Model of KM3NeT Mario MUSUMECI and Riccardo PAPALEO KM3NeT PP DU subgroup coordinators on behalf of KM3NeT

Mechanical design of the Pre-Production Detector Unit Model of KM3NeT

  • Upload
    adanna

  • View
    48

  • Download
    0

Embed Size (px)

DESCRIPTION

Mechanical design of the Pre-Production Detector Unit Model of KM3NeT. Mario MUSUMECI and Riccardo PAPALEO KM3NeT PP DU subgroup coordinators on behalf of KM3NeT. KM3NeT Consortium. - PowerPoint PPT Presentation

Citation preview

Page 1: Mechanical design of the Pre-Production Detector Unit Model of KM3NeT

Mechanical design of thePre-Production Detector Unit Model of

KM3NeT

Mario MUSUMECI and Riccardo PAPALEOKM3NeT PP DU subgroup coordinators

on behalf of KM3NeT

Page 2: Mechanical design of the Pre-Production Detector Unit Model of KM3NeT

Mario MUSUMECI and Riccardo PAPALEO on behalf of KM3NeT

KM3NeT Consortium

“In March 2008 the Preparatory Phase of KM3NeT infrastructure started, funded by the EU FP7 framework. The primary objective of the KM3NeT Preparatory Phase is to pave the path to political and scientific convergence on the legal, governance, financial engineering and siting aspects of the infrastructure and to prepare rapid and efficient construction once approved”

see: http://www.km3net.org/preparatory.php

Page 3: Mechanical design of the Pre-Production Detector Unit Model of KM3NeT

Mario MUSUMECI and Riccardo PAPALEO on behalf of KM3NeT

why a Pre-Production Model

the Consortium converged to a common idea for the mechanical design by February 2011, starting from this event, a work group, aiming to produce and test a mechanical design of the prototype DU, has been constituted

Within the PP, to test the actual capability to perform an efficient and rapid construction, once the financing of the entire project is approved, it has been agreed to design, test and build a prototype of the Detection Unit that will be the core of the future detector

the convergence process led to a conceptual design that includes both the best features and “return of experience” of the previous deep see neutrino telescope pilot projects and the results of KM3NeT Design Study

Page 4: Mechanical design of the Pre-Production Detector Unit Model of KM3NeT

Mario MUSUMECI and Riccardo PAPALEO on behalf of KM3NeT

mechanical specifications of the preproduction model- mooring line, anchored to sea bed and tensioned by a top buoy;-Vertical storeys, hosting instrumentation necessary for deep sea water neutrino detection and tracking-storey design compliant (shadowing, lightweight, ...) with the Digital Optical Modules, hosting one DOM on each end- DOM horizontal spacing (storey length), 6 m- 20 storey, vertically spaced of 40 meters and rotated alternately by 90°, around the vertical axis-first storey @100/120m from the seabed-DU deployable in a compact (stake) configuration, unfurlable from the sea bed

6m

40m

Page 5: Mechanical design of the Pre-Production Detector Unit Model of KM3NeT

Mario MUSUMECI and Riccardo PAPALEO on behalf of KM3NeT

Designing an effective bracket to support the Digital Optical Module, due to its large active area, is a non trivial job.the system has, simultaneously to respect specifications for:•maximum shadowing (less than 2%)•accommodating glass sphere contraction due to the environmental pressure (250-400 bar)

Variants presently under study:A first prototype was built and tested last September and a further release is scheduled to be ready for testing within few weeks

DOM’s brackets

Page 6: Mechanical design of the Pre-Production Detector Unit Model of KM3NeT

Mario MUSUMECI and Riccardo PAPALEO on behalf of KM3NeT

once decided to design an unfurlable slender mooring line, to find out a way to store the ropes in a safe and efficient manner is fundamental for the reliability of the system both during the unfurling and the entire lifespan of the Detection Unit

at the same time, also the backbone has to be stored and maintained in position during the DU’s life

ropes management system

at the moment, the concept under testing is: to wind the 4 ropes of each storey around reels (2 on each storey’s side) and to arrange the 2 curled backbones around 2 of them (see Gertjan MUL, Nikhef, talk in this conference)

Page 7: Mechanical design of the Pre-Production Detector Unit Model of KM3NeT

Mario MUSUMECI and Riccardo PAPALEO on behalf of KM3NeT

the storeythe storey design fits with the following specifications:• maintain the DOMs at the assigned horizontal spacing• host the ropes management system and the backbone • keep the ropes system in the correct configuration• minimize the drag• stand to the stresses imposed by the surrounding environment and by the deployment• minimize the shadowing on the DOMs (less than 2%)

the storey are made of slender tubes (40mm OD) welded to made a lattice girder:sea water resistant alluminum alloy (5000 series, peralluman) chosen for the tubes

6m

two further simplified and non instrumented beams, called “separators”, will be installed between the anchor and the first storey to guarantee to the DU stiffness against torsion around the vertical axis

6m

The tapered shape of the beam aims to:• minimize the shadowing on the PMTs• maximize the strength of the girder• maintain the centre of buoyancy above the centre of gravity

the yellow bricks, made of syntactic foam, arranged in the middle of the storey are used to distribute the buoyancy over the DU, in accordance with the KM3NeT TDR, in order to avoid that a top buoy’s failure could have destructive effects.

Page 8: Mechanical design of the Pre-Production Detector Unit Model of KM3NeT

Mario MUSUMECI and Riccardo PAPALEO on behalf of KM3NeT

the storey design fits with the following specifications:• maintain the storeys in the packaging configuration during the assembly and deployment

phase• to host the tool necessary to unfurl the DU after the connection with the secondary JB• to permit the safe unfurling of the storey (protection of the DOM)• to host the top buoys • to maintain the DU in stable position after the unfurling phase

First prototype built at CPPM

the anchor

Page 9: Mechanical design of the Pre-Production Detector Unit Model of KM3NeT

Mario MUSUMECI and Riccardo PAPALEO on behalf of KM3NeT

assembly meeting, September 2011

mid September: the first so called “assembly meeting” was organized

• meeting aimed at verifying the interfaces between the single sub components, by using a full scale mock-up

• mock-up of the anchor used to assembly the storeys, the ropes management system, the backbone and the DOM’s brackets

• notes/remarks made on all the subsystems: currently engineers are working on improvements to optimize the design

Page 10: Mechanical design of the Pre-Production Detector Unit Model of KM3NeT

Mario MUSUMECI and Riccardo PAPALEO on behalf of KM3NeT

further dry tests/construction

- a further assembly meeting to be organized within the next two weeks

- construction of a mini-DU made by:- anchor- base- 2 separators- 8 storeys- cables and ropes management system- top and storey buoys

will be completed before the end of 2011, in order to allow to perform sea qualification tests

Page 11: Mechanical design of the Pre-Production Detector Unit Model of KM3NeT

Mario MUSUMECI and Riccardo PAPALEO on behalf of KM3NeT

sea qualification test

the sea qualification test of the mechanical structure (with the oil filled backbone) will be performed through different steps

program of work: to qualify each sub item (the most critical) in a dedicated deployment test. So that the complexity of the system under testing will be eased, in order to simplify the fault finding process

the qualification tests will be focused on three phases:- anchor item’s- DU bottom item’s (anchor + base + separators)- unfurling phase between 2 columns (5 storeys – 1 full column + 1 storey in the second column)

at the end of these three phases, if the concept idea would be qualified, the group will organize a full mechanical test with a complete DU made up of- anchor- base + 2 separators- 20 storeys fully equipped with dummy DOMs, dummy backbones and storey buoyancy- top buoy

Page 12: Mechanical design of the Pre-Production Detector Unit Model of KM3NeT

Mario MUSUMECI and Riccardo PAPALEO on behalf of KM3NeT

conclusions

• the current mechanical project fits the KM3NeT requirements

• the project is running in order to conclude the sea qualification test before march 2012.