12
Methods Ecol Evol. 2018;9:1787–1798. wileyonlinelibrary.com/journal/mee3 | 1787 © 2018 The Authors. Methods in Ecology and Evolution © 2018 British Ecological Society Received: 22 September 2017 | Accepted: 11 November 2017 DOI: 10.1111/2041-210X.12941 IMPROVING BIODIVERSITY MONITORING USING SATELLITE REMOTE SENSING Measuring β-diversity by remote sensing: A challenge for biodiversity monitoring Duccio Rocchini 1,2,3 | Sandra Luque 4 | Nathalie Pettorelli 5 | Lucy Bastin 6 | Daniel Doktor 7 | Nicolò Faedi 3,8 | Hannes Feilhauer 9 | Jean-Baptiste Féret 4 | Giles M. Foody 10 | Yoni Gavish 11 | Sergio Godinho 12 | William E. Kunin 13 | Angela Lausch 7 | Pedro J. Leitão 14,15 | Matteo Marcantonio 16 | Markus Neteler 17 | Carlo Ricotta 18 | Sebastian Schmidtlein 19 | Petteri Vihervaara 20 | Martin Wegmann 21 | Harini Nagendra 22 1 Center Agriculture Food Environment, University of Trento, S. Michele all’Adige (TN), Italy; 2 Centre for Integrative Biology, University of Trento, Povo (TN), Italy; 3 Department of Biodiversity and Molecular Ecology, Fondazione Edmund Mach, Research and Innovation Centre, S. Michele all’Adige (TN), Italy; 4 UMR- TETIS, IRSTEA Montpellier, Maison de la Télédétection, Montpellier Cedex 5, France; 5 Institute of Zoology, The Zoological Society of London, London, UK; 6 School of Computer Science, Aston University, Birmingham, UK; 7 Department Computational Landscape Ecology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany; 8 Department of Computer Science and Engineering, University of Bologna, Bologna, Italy; 9 Institut für Geographie Friedrich- Alexander, Universität Erlangen-Nürnberg, Erlangen, Germany; 10 School of Geography, University of Nottingham, Nottingham, UK; 11 School of Biology, Faculty of biological Science, University of Leeds, Leeds, UK; 12 Institute of Mediterranean Agricultural and Environmental Sciences (ICAAM), Universidade de Evora, Evora, Portugal; 13 School of Biology, University of Leeds, Leeds, UK; 14 Department Landscape Ecology and Environmental System Analysis, Technische Universität Braunschweig, Braunschweig, Germany; 15 Geography Department, Humboldt-Universität zu Berlin, Berlin, Germany; 16 Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA; 17 Mundialis GmbH & Co. KG, Bonn, Germany; 18 Department of Environmental Biology, University of Rome “La Sapienza”, Rome, Italy; 19 Karlsruher Institut für Technologie (KIT), Institut für Geographie und Geoökologie, Karlsruhe, Germany; 20 Natural Environment Centre, Finnish Environment Institute (SYKE), Helsinki, Finland; 21 Department of Remote Sensing, Remote Sensing and Biodiversity Research Group, University of Wuerzburg, Wuerzburg, Germany and 22 Azim Premji University, Bangalore, India Correspondence Duccio Rocchini Emails: [email protected]; [email protected] Present address Lucy Bastin, Knowledge Management Unit, Joint Research Centre of the European Commission, Ispra, Italy Handling Editor: Francesca Parrini Abstract 1. Biodiversity includes multiscalar and multitemporal structures and processes, with different levels of functional organization, from genetic to ecosystemic levels. One of the mostly used methods to infer biodiversity is based on taxonomic approaches and community ecology theories. However, gathering extensive data in the field is difficult due to logistic problems, especially when aiming at modelling biodiversity changes in space and time, which assumes statistically sound sampling schemes. In this context, airborne or satellite remote sensing allows information to be gathered over wide areas in a reasonable time. 2. Most of the biodiversity maps obtained from remote sensing have been based on the inference of species richness by regression analysis. On the contrary, estimating compositional turnover (β-diversity) might add crucial information related to rela- tive abundance of different species instead of just richness. Presently, few studies have addressed the measurement of species compositional turnover from space. 3. Extending on previous work, in this manuscript, we propose novel techniques to measure β-diversity from airborne or satellite remote sensing, mainly based on: (1) multivariate statistical analysis, (2) the spectral species concept, (3) self-organizing

Measuring β‐diversity by remote sensing: A challenge for ...€¦ · ment of remote sensing tools (Rocchini & Neteler, 2012) for diversity estimate in which the concept of β-diversity

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Measuring β‐diversity by remote sensing: A challenge for ...€¦ · ment of remote sensing tools (Rocchini & Neteler, 2012) for diversity estimate in which the concept of β-diversity

Methods Ecol Evol 201891787ndash1798 wileyonlinelibrarycomjournalmee3 emsp|emsp1787copy 2018 The Authors Methods in Ecology and Evolution copy 2018 British Ecological Society

Received22September2017emsp |emsp Accepted11November2017DOI 1011112041-210X12941

I M P R O V I N G B I O D I V E R S I T Y M O N I T O R I N G U S I N G S A T E L L I T E R E M O T E S E N S I N G

Measuring β-diversity by remote sensing A challenge for biodiversity monitoring

Duccio Rocchini123 emsp|emspSandra Luque4 emsp|emspNathalie Pettorelli5 emsp|emspLucy Bastin6 emsp|emsp Daniel Doktor7emsp|emspNicolograve Faedi38emsp|emspHannes Feilhauer9 emsp|emspJean-Baptiste Feacuteret4 emsp|emsp Giles M Foody10 emsp|emspYoni Gavish11 emsp|emspSergio Godinho12emsp|emspWilliam E Kunin13 emsp|emsp Angela Lausch7 emsp|emspPedro J Leitatildeo1415 emsp|emspMatteo Marcantonio16emsp|emspMarkus Neteler17 emsp|emsp Carlo Ricotta18 emsp|emspSebastian Schmidtlein19emsp|emspPetteri Vihervaara20emsp|emsp Martin Wegmann21 emsp|emspHarini Nagendra22

1CenterAgricultureFoodEnvironmentUniversityofTrentoSMicheleallrsquoAdige(TN)Italy2CentreforIntegrativeBiologyUniversityofTrentoPovo(TN)Italy 3DepartmentofBiodiversityandMolecularEcologyFondazioneEdmundMachResearchandInnovationCentreSMicheleallrsquoAdige(TN)Italy4UMR-TETISIRSTEAMontpellierMaisondelaTeacuteleacutedeacutetectionMontpellierCedex5France5InstituteofZoologyTheZoologicalSocietyofLondonLondonUK6SchoolofComputerScienceAstonUniversityBirminghamUK7DepartmentComputationalLandscapeEcologyHelmholtzCentreforEnvironmentalResearchndashUFZLeipzigGermany8DepartmentofComputerScienceandEngineeringUniversityofBolognaBolognaItaly9InstitutfuumlrGeographieFriedrich-AlexanderUniversitaumltErlangen-NuumlrnbergErlangenGermany10SchoolofGeographyUniversityofNottinghamNottinghamUK11SchoolofBiologyFacultyofbiologicalScienceUniversityofLeedsLeedsUK12InstituteofMediterraneanAgriculturalandEnvironmentalSciences(ICAAM)UniversidadedeEvoraEvoraPortugal13SchoolofBiologyUniversityofLeedsLeedsUK14DepartmentLandscapeEcologyandEnvironmentalSystemAnalysisTechnischeUniversitaumltBraunschweigBraunschweigGermany15GeographyDepartmentHumboldt-UniversitaumltzuBerlinBerlinGermany16DepartmentofPathologyMicrobiologyandImmunologySchoolofVeterinaryMedicineUniversityofCaliforniaDavisCAUSA17MundialisGmbHampCoKGBonnGermany18DepartmentofEnvironmentalBiologyUniversityofRomeldquoLaSapienzardquoRomeItaly19KarlsruherInstitutfuumlrTechnologie(KIT)InstitutfuumlrGeographieundGeooumlkologieKarlsruheGermany20NaturalEnvironmentCentreFinnishEnvironmentInstitute(SYKE)HelsinkiFinland21DepartmentofRemoteSensingRemoteSensingandBiodiversityResearchGroupUniversityofWuerzburgWuerzburgGermanyand22AzimPremjiUniversityBangaloreIndia

Correspondence DuccioRocchini Emailsducciorocchinigmailcom ducciorocchinifmachit

Present addressLucyBastinKnowledgeManagementUnitJointResearchCentreoftheEuropeanCommissionIspraItaly

HandlingEditorFrancescaParrini

Abstract1 BiodiversityincludesmultiscalarandmultitemporalstructuresandprocesseswithdifferentlevelsoffunctionalorganizationfromgenetictoecosystemiclevelsOneofthemostlyusedmethodstoinferbiodiversityisbasedontaxonomicapproachesandcommunityecologytheoriesHowevergatheringextensivedatainthefieldisdifficultduetologisticproblemsespeciallywhenaimingatmodellingbiodiversitychangesinspaceandtimewhichassumesstatisticallysoundsamplingschemesInthiscontextairborneorsatelliteremotesensingallowsinformationtobegatheredoverwideareasinareasonabletime

2 MostofthebiodiversitymapsobtainedfromremotesensinghavebeenbasedontheinferenceofspeciesrichnessbyregressionanalysisOnthecontraryestimatingcompositionalturnover(β-diversity)mightaddcrucial informationrelatedtorela-tiveabundanceofdifferentspeciesinsteadofjustrichnessPresentlyfewstudieshaveaddressedthemeasurementofspeciescompositionalturnoverfromspace

3 Extendingonpreviouswork inthismanuscriptweproposenoveltechniquestomeasure β-diversity from airborne or satellite remote sensingmainly based on (1)multivariatestatisticalanalysis(2)thespectralspeciesconcept(3)self-organizing

1788emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

1emsp |emspINTRODUCTION

Biodiversitycannotbefullyinvestigatedwithoutconsideringthespa-tialcomponentofitsvariationInfactitisknownthatthedispersalofspeciesoverwideareasisdrivenbyspatialconstraintsdirectlyrelatedtothedistanceamongsitesAnegativeexponentialdispersalkernelisusuallyadoptedtomathematicallydescribetheoccupancyofnewsitesbyspeciesasfollows

wheredik=distancebetweentwolocationsi and k and aisaparam-eterregulatingthedispersalfromlocalizedareas(lowvaluesofa)towidespreadones (highvaluesofaMeentemeyerAnackerMarkampRizzo2008)

Inthissensedistanceacquiresasignificantroleinecologytoesti-matebiodiversitychangeHencespatiallyexplicitmethodshavebeenacknowledged inecologyforprovidingrobustestimatesofdiversityatdifferenthierarchical levelsfromindividuals (TyrePossinghamampLindenmayer2001)topopulations(Vernesietal2012)tocommu-nities(RocchiniAndreiniButiniampChiarucci2005)

Whendealingwithspatialexplicitmethodsremotesensingimagesrepresent a powerful tool (Rocchini et al 2017) particularlywhencoupling information on compositional properties of the landscapewithitsstructure(Figure1)Remotesensinghaswidelybeenusedforconservationpracticesincludingverydifferenttypesofdatasuchasnightlightsdata(Mazoretal2013)LandSurfaceTemperatureesti-matedfromMODISdata (MetzRocchiniampNeteler2014)spectralindices(Gillespie2005)

Mostoftheremotesensingapplicationsforbiodiversityestima-tionhave reliedon theestimateof localdiversityhotspots consid-eringlandusediversity(Wegmannetal2017)orcontinuousspatialvariabilityofthespectralsignal(Rocchinietal2010)Thisismainlygrounded in the assumption that a higher landscape heterogeneityis strictly related to a higher amount of species occupying differ-ent niches (Scmheller et al in press) However given two sites s1 and s2 the finaldiversity isnotonly relatedto thespeciesspectralrichnessof s1 and s2 but overall to the amountof shared speciesspectralvaluesInotherwordsthelowerthetheirintersections1caps2the higherwill be the total diversity while the lowest total diver-sitywill be reachedwhen s1caps2 = s1cups2 Such intersectionhasbeen

widelystudiedinecologyafterthedevelopmentofβ-diversitytheory(Whittaker1960)

Tuomisto etal (2003) demonstrated the power of substitutingdistance in Equation 1 by spectral distance to directly account forthe distance between sites in an environmental space instead of amerelyspatialoneHoweverwhile spectraldistanceexamplesexistwhenmeasuring theβ-diversity amongpairs of sites (eg RocchiniHernaacutendezStefanoniampHe2015)fewstudieshavetestedthepossi-bilityofmeasuringβ-diversityoverwideareasconsideringseveralsitesatthesametime(howeverseeAlahuhtaetal2017HarrisCharnockampLucas2015)Thisisespeciallytruewhenconsideringthedevelop-mentofremotesensingtools(RocchiniampNeteler2012)fordiversityestimateinwhichtheconceptofβ-diversityisstillpioneering

The aim of this paper is to present themost novelmethods tomeasureβ-diversityfromremotelysensedimagerybasedonthemostrecentlypublishedecologicalmodelsInparticularwewilldealwith(1)multivariatestatisticaltechniques(2)theapplicabilityofthespec-tralspeciesconcept(3)multidimensionaldistancematrices(4)met-ricscouplingabundanceanddistance-basedmeasures

Thismanuscriptisthefirstmethodologicalexampleencompassing(and enhancing)most of the availablemethods for estimating β-di-versityfromremotelysensedimageryandpotentiallyrelatethemtospeciesdiversityinthefield

2emsp |emspMULTIVARIATE STATISTICAL ANALYSIS FOR SPECIES DIVERSITY ESTIMATE FROM REMOTE SENSING

UnivariatestatisticshavebeenusedtodirectlyfindrelationsbetweenspectralandspeciesdiversityHowevertheamountofvariabilityex-plainedbysinglebandsvegetationindicesversusspeciesdiversityisgenerallyrelativelylowduetothefactthatdifferentaspectsrelatedtothecomplexityofhabitatsmightactinshapingdiversityfromdis-turbanceandlanduseatlocalscalestoclimateandelementfluxesatglobalscales

Ordination techniques are designed to quantitatively describemultivariategradualtransitionsinthespeciescompositionofsampledsitesMeasuringthedistancebetweentwosamplingsitesinthemulti-dimensionalordinationspaceisagoodproxyofthechangeinspeciescompositionWhenthismeasureisrelatedtothegeographicaldistance

(1)F=

NsumK=1

eminusdik

a

featuremaps(4)multidimensionaldistancematricesandthe(5)RaosQdiversityEachofthesemeasuresaddressesoneorseveralissuesrelatedtoturnovermeas-urementThismanuscript is thefirstmethodologicalexampleencompassing (andenhancing)mostoftheavailablemethodsforestimatingβ-diversityfromremotelysensedimageryandpotentiallyrelatingthemtospeciesdiversityinthefield

K E Y W O R D S

β-diversityKohonenself-organizingfeaturemapsRaosQdiversityindexremotesensingsatelliteimagerysparsegeneralizeddissimilaritymodelspectralspeciesconcept

emspensp emsp | emsp1789Methods in Ecology and Evolu13onROCCHINI et al

betweentheconsideredsitesthebetadiversityatthisparticularscalecanbeassessed

Of thevariousavailableordination techniquesdetrendedcorre-spondenceanalysis(DCAHillampGauch1980)isparticularlysuitablefor such analyses The axes (ie gradients) of the DCA ordinationspacearescaledinSDunitswhereadistanceof4SDisrelatedtoafullspecies turnoverThisenablesaversatileanalysis thateasily revealswhethertwosampledsitesstillhavespeciesincommon

Several studieshavemapped theordinationspaceusing remotesensing data (eg Feilhauer amp Schmidtlein 2009 Feilhauer FaudeampSchmidtlein2011Feilhaueretal2014GuSinghampTownsend2015Harris etal 2015 Leitatildeoetal 2015Neumannetal 2015SchmidtleinampSassin2004SchmidtleinZimmermannSchuumlpferlingampWeiss2007)Forthispurposetheaxesscoresofthesampledsitesare regressed against the corresponding canopy reflectance values

extractedfromair-orspaceborneimagedataTheresultingmultivar-iateregressionmodelsoneperordinationaxisandmostoftengener-atedwithmachine learning regression techniques are subsequentlyappliedontheimagedataforaspatialpredictionofordinationscoresEachpixeloftheimagedataisassignedtoaspecificpositionintheordinationspacethatindicatesitsspeciescompositionTheresultinggradientmapsareapowerfultoolforanalysesofbetadiversityacrossdifferent spatial scales (Feilhauer amp Schmidtlein 2009 Hernandez-Stefanonietal2012)

AsimpleanalysisofthevariabilityoftheDCAscoresinadefinedpixelneighbourhood(ieamovingwindow)resultsinaefficientbetadiversityassessmentThespatialscaleofthisassessmentcanbevariedeitherbyresamplingthegradientmaptoacoarserspatialresolution(iepixelsize)orbychangingthekernelsizeoftheconsideredpixelneighbourhood Such techniques have been further developed egfor spatial conservationprioritizationprogrammes such asZonation(Moilanenetal2005MoilanenKujalaampLeathwick2009)

Figure2showsanexampleofaDCA-basedassessmentofbetadiversityonaverylocalscale(10m)followingtheapproachdescribedinFeilhauerandSchmidtlein(2009)Theanalysedlandscapeisamo-saicofraisedbogsfenstransitionmiresandMoliniameadowsForadetaileddescriptionofthedataandsitepleaserefertoFeilhaueretal(2014)andFeilhauerDoktorSchmidtleinandSkidmore(2016)

Analyses like this require two different datasets (1) a sampleoffielddatathatisrepresentativeforthevegetationinthestudiedarea and is used to generate theordination space (2) imagedatawithasufficientspectral resolutiontodiscriminatethevegetationtypeswithintheordinationspaceandwithaspatialresolutionthatisinlinewiththesamplingdesignofthefielddata(Feilhaueretal2013)

F I G U R E 1 emsp Anexampleofhowtocoupleinformationoncompositionalpropertiesofthelandscapebyopticaldatatogetherwithstructural(3D)propertiesbylaserscanningLiDARdata

F I G U R E 2 emsp β-diversityassessmentwithacombinationofordinationtechniquesandremotesensing(a)Three-dimensionaldetrendedcorrespondenceanalysis(DCA)ordinationspaceofn=100vegetationplotssampledinraisedbogsfenstransitionmiresandMoliniameadowsinthealpinefoothillsofSouthernGermanyAninter-plotdistanceof4SDcorrespondstoafullspeciesturnover(b)MapsoftheordinationaxesresultingfromaspatialpredictionbasedoncanopyreflectanceEachpixelhasapredictedpositionintheordinationspacethatisindicatedbyitscolourThecolourschemecorrespondsto(a)Themaphasaspatialresolutionof2times2m2whichisinlinewiththesampledplotsize (c)CumulativechangeratesalongthethreeDCAaxesina5times5pixelneighbourhoodAhighchangerateindicatesahighbetadiversity

1790emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

Using these data the continuous spatial variability of the spec-tralsignalintheimagepixelsistranslatedintoaspatiallycontinuousmeasureofspeciescompositionTheadvantagesofthisapproachareobvioussincethediversityanalysesareconductedinthefloristicgra-dientspacetheresultingmeasuresresemblefieldstudiesandarethuseasiertointerpretthanspectralproxiesandclosertothepointofviewofmanyend-usersFurthermoretheanalysisofordinationscoresindefinedpixelneighbourhoodsisnotrestrictedtoasinglespatialscalebutofferstheopportunitytoimplementassessmentsofbetadiversityonmultiplescales

3emsp |emspTHE SPECTRAL SPECIES CONCEPT

ThespectralspeciesconcepthasbeenproposedbyFeacuteretandAsner(2014a) tomap bothα and β component of the biodiversity usinga unique framework It is rooted in the convergence between twootherconceptsthespectralvariationhypothesis(SVH)proposedbyPalmer Earls Hoagland White andWohlgemuth (2002) and theplantopticaltypesproposedbyUstinandGamon(2010)sustainedbythetechnologicaladvances in thedomainofhighspatial resolu-tionimagingspectroscopyTheSVHstatesthatthespatialvariabilityin the remotely sensed signal that is the spectral heterogeneity isrelatedtoenvironmentalheterogeneityandcouldthereforebeusedasapowerfulproxyofspeciesdiversitySVHhasbeentestedindif-ferentsituations(Rocchinietal2010)andconclusionsshowthattheperformanceofthisapproach isverydependentonseveralfactorsincludingtheinstrumentcharacteristics(spectralspatialandtempo-ral resolution) the typeofvegetation investigatedand themetricsderivedfromremotelysensedinformationtoestimatespectralheter-ogeneityPlantopticaltypesrefertothecapacityofsensorstomeas-ure signals that aggregate information about vegetation structurephenology biochemistry andphysiology Therefore this concept isalsotightly linkedtotheperformancesofthesensorandfindspar-ticularechowiththeincreasinguseofhighspatialresolutionimagingspectroscopyfortheestimationandidentificationofmultiplevegeta-tionproperties

Thedetailsprovidedbyhighspatialresolutionimagingspectros-copyare sufficient toperformanalysesofplantoptical traitsat theindividual treescale inorder todifferentiate treespeciesobtain in-formationaboutleafchemicaltraitsandestimatetheαcomponentofbiodiversity(AsnerampMartin2008AsnerMartinAndersonampKnapp2015ChadwickampAsner2016ClarkampRoberts2012ClarkRobertsampClark2005FeacuteretampAsner2013VaglioLaurinetal2014)TheseresultsillustratethatspectralinformationcanberelatedtotaxonomicorfunctionalinformationofthevegetationwhichsupportstheSVHunderthehypothesisthatthemetricsusedtocomputespectralhet-erogeneityandagivencomponentofvegetationdiversityareprop-erlydefinedHowevertheseapplicationsarecurrentlylimitedbytheimportantamountoffielddatarequiredtotrainregressionorclassi-ficationmodelswhich isalsodirectly linkedtotheir lowgeneraliza-tionabilityintimeandspaceUnsupervisedapproachesthenappearasvaluablealternatives for theanalysisofecosystemheterogeneity

(Baldeck amp Asner 2013 Baldeck etal 2014 Feilhauer Faude ampSchmidtlein2011FeacuteretampAsner2014b)asecologicalindicatorsofα and βdiversityatlandscapescaleusuallyrequireoneorseverallevelsofabstractionbeyondthecorrecttaxonomicidentification(TuomistoampRuokolainen2006)

Clustering(properlypre-processed)spectralinformationshouldre-sultinpixelsfromthesamespeciesnaturallygroupingtogetherratherthandistributing randomlyamongclustersFeacuteretandAsner (2014a)proposedagroupingmethodaimingatassigninglabelstopixelsbasedon multiple clustering of spectroscopic data acquired at landscapescaleThesepixelslabelledwithasetoftheso-calledspectralspeciescan thenbeused straightforwardly in order to computevarious di-versitymetricssuchasShannonindexforαdiversityandBray-Curtisdissimilarity forβ diversityThepre-processing stage is divided intoseveralstagesAftermaskingallnon-vegetatedpixelsanormalizationbased on continuous removal is applied to each pixel and over thefullspectraldomainthenaprincipalcomponentanalysisisperformedonthecontinuouslyremovedspectraldataThenormalizationreduceseffectsduetochangesinilluminationcanopygeometryandotherfac-torsunrelatedtovegetationwhileenhancingthesignalcorrespondingtovegetationThecomponentsincludingindividual-specificinforma-tionarethecomponentsof interestTheycanbe identifiedaftervi-sual inspectionorautomated routines if initialdata showsufficientsignaltonoiseratioOncealimitednumberofcomponentshavebeenselectedk-means clustering is then applied to a certain number ofsubsetsandforeachof thesesubsetscentroidsarecomputedandeachpixelintheimageislabelledbasedontheclosestcentroidTherepetitionofclusteringbasedonvarioussubsetsoftheimagetendstominimizetheriskofassigningcentroidstoirrelevantgroupsofpixelsExperimental results showed that the averaging of diversity indicescomputedfrommultiplecentroidmapscanbeseenasananalogoustosignalaveragingwhichconsists in increasingsignaltonoiseratiobyreplicatingmeasurementsForeachrepetitiontheclosestcentroidcorrespondstothespectralspeciesandforeachspatialunitofagivensizethespectralspeciesdistribution isderivedinordertocomputeanydiversitymetricrequiringeitherinformationatthelocalscaleorcomparisonofinformationacrossspatiallydistantplots

Theconceptsofspectralspeciesandspectralspeciesdistributionhavebeentestedsuccessfullyona limitednumberofsituationsandtypesofecosystems(seeRocchinietal2016forareviewandLauschetal 2016 for an application to similar concepts) As an exampleFeacuteretandAsner(2014a)showedabilitytoproperlyestimatelandscapeheterogeneityatmoderatespatialscaleuptofewdozensquarekilo-metersovertropicalforestsbasedonhighspatialresolutionimagingspectroscopy (Figure 3) A generic parameterization of the methodshowed robust performances for α diversity mapping across spaceandtimebutmappingβdiversityacrosslargespatialscalesusingim-agesacquiredduringdifferentairbornecampaignremainschallengingwhichleadstoanunsolvedproblemwhenconsideringoperationalre-gionalmappingIntheperspectiveofglobalmonitoringofbiodiversityandgiventheunprecedentedremotesensingcapacityallowedbytheCopernicusprogramincludingtheSentinel-2multispectralsatellitesseveralotherchallengesareforeseenandcurrentlyinvestigatedThe

emspensp emsp | emsp1791Methods in Ecology and Evolu13onROCCHINI et al

influenceofdecreasedspatialandspectralresolutionontheabilitytoproperlydifferentiateecologicallymeaningfulspectralspeciesacrosslandscapesandoverregionswillneedtobeinvestigatedTheapplica-tionofthisconceptbeyondtropicalforestsandsavannaecosystemsshouldalsobeinvestigatedasitmaynotholdwhenappliedonmoder-atelydiverseecosystemsorsystemswithindividualswhoseindividu-alshavedimensionswellbelowtheresolvingpoweroftheinstrument

4emsp |emspSELF-ORGANIZING FEATURE MAPS

TheKohonenself-organizingfeaturemap(SOFMKohonen1982)isaneuralnetworkthatmaybeusedtoundertakeunsupervisedcluster-ingofdataCriticallytheinputtoaSOFMcanbealargemulti-variatedatasetsuchasmaybeacquiredonspeciesfromquadrat-basedfieldsurveysTheSOFMsummarizesthedata ina lowtypicallytwodi-mensionaloutput(Figure4)Inthisoutputspacethedataforindivid-ualquadratsaretopologicallyorderedmdashwithsitesthataresimilarclosetogetherwhilethoseofhighlydifferentspeciescompositionaremoredistantBecause thedatasites in theoutputspacearearrangedby

F I G U R E 3 emsp Spectralspeciescanbeidentifiedinahyper-ormultispectralimagebyspatialclusteringmethodandtheirdistributioncanbemappedSuchmapscanfurtherbeusedtoapplylocal-basedheterogeneitymeasurements(α-diversity)aswellasiterativedistance-basedmethodstobuildβ-diversitymapsReproducedfromFeacuteretandAsner(2014a)

F I G U R E 4 emsp Aself-organizingfeaturemapcanbebuiltstartingfromaninputlayeregthepresenceorabsenceofatreespeciesorofapeculiarspectralvalue)whichisconnectedtoeveryunitintheoutputlayerbyaweightedconnectionTheself-organizingfeaturemapusesunsupervisedlearningtomapthelocationoffieldsiteswithintheoutputspaceonthebasisoftheirrelativesimilarityinspeciesorspectralcompositionRedrawnfromFoodyandCutler(2003)

Output layer

Input units

1792emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

relativesimilaritytheoutputspacemayalsobeusedtoaggregateorclassifyadatasetAssuchtheSOFMisattractiveasanon-parametricclusteringanalysisandasameanstoundertakeanordination(ChonParkMoonampCha1996)

ASOFMisunlikesomeoftheapproachesusedcommonlyincom-munityecologynotconstrainedbyassumptionsrelatingthestatisticaldistributionofthedatausedTheSOFMusesunsupervisedlearningtoproduceatopologicallyorderedoutputspaceinwhichthesamplesarearrangedspatiallyinrelationtotheirrelativesimilarityinspeciescompositionTheSOFMthusperformsanon-parametricordinationanalysis(Foody1999)TheproductionofaclassificationbyaSOFMcomprisestwomainstages(GiraudelampLek2001)Aniterativeanaly-sisinwhichtime-decayingparametersthatcontrolnetworklearningandthesizeoflocalneighbourhoodslocatedaroundoutputunitsisusedForthistheusermustspecifyanumberofkeyparameterssuchasthesizeandshapeofthenetworknumberofiterationsoftheal-gorithmthelearningrateanditsrateofdeclineandaneighbourhoodparameterTheneedforsuchparameterscanaddsomeuncertaintytotheanalysisWhile therearenoformal rules to follow in thede-signofaSOFMtherearerecommendationsforthedeterminationofSOFMparametersettings (GiraudelampLek2001)Afurtherconcernis thatasanunsupervisedclassifier theclassesdefinedmaynotal-waysbethemostusefulforaninvestigationInadditionthenatureof theanalysismeans thedirectionof thegradientscannotbecon-trolled(Fritzke1995)buttheanalysisperformswellincomparisontopopularordinationtechniquessuchasPCAandDCA(FoodyampCutler2003)TheSOFMmayalsouseavarietyofdifferentdatatypessuchaspresenceabsenceabundanceorimportancevaluesandcansolvecomplexnonlinearproblems(GiraudelampLek2001)

5emsp |emspMULTIDIMENSIONAL DISTANCE MATRICES GDMS AND SGDMS

Oneofthemostwidespreadmethodsforassessingdiversityisusingdistancematrices (LegendreBorcardampPeres-Neto2005) IndeedearlyworkbyWhittaker (1960)suggested thatβ-diversitycouldbequantifiedbydissimilaritymatricesamong(pairsof)sitesFurthermoretheManteltest(MantelampValand1970)designedtoestimatetheas-sociationbetweentwo independentdissimilaritymatriceshasbeenwidelyusedtocorrelateacommunitycompositiondissimilaritymatrixwithanenvironmentdissimilarityonethusprovidingusefulinsightsinto community composition and turnover (Legendre etal 2005Tahvanainen2011)

Generalized dissimilarity modelling (GDM Ferrier Manion Elith ampRichardson2007)canbeconsideredasanextensionoftheManteltestwhichisabletoaccommodatemultidimensionalenvironmentaldatatobecomparedwiththecompositionaldataGDMsalsoallowforthepredictionofcompositionalturnoveraswellasforegenvironmentalclassificationconstrainedtothecompositionaldissimilarity(Ferrieretal2007Leathwicketal2011)InGDMthecompositionaldissimilaritiesbetweenallpairsofsamplesaremodelledasafunctionoftheirrespectiveenvironmentaldis-tancesThisisdonethroughalinearcombinationofmonotonicI-splinebasis

functionsundertheassumptionthatincreasingenvironmentaldissimilarity (egalongagradient)canonlyresultinincreasingcompositionaldissimilar-ityThismethodisthuswellsuitedformeasuringandmappingβ-diversityandisthusbecomingwidelyusedinconservationscienceandmacroecol-ogyandrecentlybeensubject toseveraldevelopmentsaswedescribebelow

One such development is the phylogenetic GDM (phylo-GDMRosauer etal 2014) which incorporates phylogenetic dissimilari-ties intoGDMandallows foranalysingandpredictingphylogeneticβ-diversity thus linking ecological and evolutionary processes Thismethod can provide novel insights into themechanisms underlyingcurrentpatternsofbiologicaldiversity(GrahamampFine2008)Anotherrecent development of GDM is the multi-site GDM (MS-GDMLatombeHuiampMcGeoch2017)whichextendsGDMsfrompairwisetomulti-sitedissimilaritymodellingInsuchapapertheauthorstestedMS-GDMbymeansofbothconstrained(monotonical)additivemod-elsand I-splinesalthoughwithnoconclusive results relating to thebestmethod overallThey concluded however thatwhen applyingMS-GDMtoahighnumberofsamplestheycouldbetterexplainthedriversofspeciesturnoverAlsoanimportantdevelopmentofGDMis the Bayesian bootstrapGDM (BBGDMWoolley Foster OrsquoHaraWintleampDunstan2017)designedtocharacterizeuncertaintyingen-eralizeddissimilaritymodelsThisapproachallowsbetterrepresentingtheunderlyinguncertainty inthedatabyestimatingthevarianceinparametersbasedontheavailabledata

FinallyanimplementationofGDMwhichwascreatedparticularlyfordealingwithhigh-dimensional (andpotentiallyhigh-collinear) re-motesensingdataasinputinGDMisthesparsegeneralizeddissim-ilaritymodel (SGDMFigure5Leitatildeoetal2015)Thismethod isatwo-stageapproachthatconsistsofinitiallyreducingtheenvironmen-talspace(egreflectancedata)bymeansofasparsecanonicalcorrela-tionanalysis(SCCAFigure5WittenTibshiraniGrossampNarasimhan2013)andthenfittingtheresultingcomponentswithaGDMmodelTheSCCAisaformofpenalizedcanonicalcorrelationanalysisbasedontheL1(lasso)penaltyfunctionandisthusdesignedtodealwithhigh-dimensionaldataThetwoalgorithmsarecoupledinawaythattheSCCApenalizationisselectedthroughaheuristicgridsearchman-ner in order tominimize the cross-validate rootmean square errorin the dissimilarities predicted by the GDM In this procedure thehigh-dimensionalenvironmentaldata (suchascoming fromtimese-riesofmultispectralorhyperspectraldata)aresubjecttoasupervisedordinationapproachthatreducestheirdimensionwhilecapturingtheaxesofvariationthatmostcorrelatetothoseofthecommunitycom-positionalmatrixSGDMhasbeensuccessfullyusedformodellingandmappingthecompositionalturnoverofbothanimalandplantspeciesusingseveraldifferentsourcesofremotesensing(andauxiliary)data(Leitatildeoetal2015LeitatildeoSchwiederampSenf2017)

6emsp |emspRAOrsquoS Q DIVERSITY

Most of the previously shown metrics are based on the distanceamong pixel values in a multidimensional spectral space None

emspensp emsp | emsp1793Methods in Ecology and Evolu13onROCCHINI et al

of them considers the relative abundance of such pixel values in aneighbourhood

Bycontrastabundance-basedmetricssuchastheShannonentropycouldoutputsimilarresultsdespiteavariabledistanceamongpixelval-uesAsanexampleconsidera3times3matrixofremotelysenseddata

composedbythefollowingvalues

thenconsideradifferentmatrix

FromaShannonsentropyperspectivesuchmatricesareequalintermsofheterogeneityTheShannonsentropyisindeedbasedontherelativeabundance(andrichness)ofasampleanditsvalueis2197forboth thematricesThisvalue equalling thenatural logarithmofthenumberofclasses(pixelvalues)isalsoShannonsmaximumtheo-reticalvaluegivena3times3matrixduetothelackofidenticalnumbersinthematricesThisexampleexplicitlyshowsthataccountingforthedistanceamongvaluesandtheirrelativeabundanceiscrucialtodis-criminateamongareasintermsofmeasured(modelled)heterogeneity

Oneof themetrics accounting for both the abundance and thepairwisespectraldistanceamongpixelsistheRaosQdiversityindexasfollows

wheredij=spectraldistanceamongpixels i and j and p = proportion ofoccupiedarea

Hence RaosQ is capable of discriminating among the ecologi-caldiversityofmatrices(3)and(4)turningouttobe459and9070respectivelyAppendix S1provides an example spreadsheet to per-formthecalculationwhilethecompleteRcodeisstoredintheGitHubrepositoryhttpsgithubcommattmarspectralrao

Wedecidedtomakeuseofacasestudytohighlightthe impor-tanceofconsideringthedistanceamongpixelvaluesinremotesenseecologicalapplicationTheperformanceofRaosQindexindescrib-ing landscape diversitywas tested in a complex agro-forestry land-scapelocatedinsouthernPortugalAtestsitewithanareaofabout10times10km2(centroidlocatedat38∘39prime1074primeprimeN8∘12prime5230primeprimeW)wasselectedtoconducttheanalysisInthisareaasavanna-likeecosystemcalledmontadooccupiesabout40ofthetestsitefollowedbytra-ditionalolivegrovespasturesvineyardsandirrigatedmonocultures(egcornfields)Montadoisspatiallycharacterizedbythevariabilityofitstreedensity(egGodinhoGilGuiomarNevesampPinto-Correia2016)andthegradientbetweenlowandhightreedensityoverspacecanleadtodifferentstructuralheterogeneityandhabitatdiversity

Within the test site polyculture under the small farming con-text (eg vegetable gardens orchards and cereal crops) is an im-portantfeatureofthislandscapebygeneratingahighcompositionalandconfigurational spatialheterogeneity (Figure6)Themaingoalinusingthiscasestudy is todemonstrate thepotentialandeffec-tivenessoftheRaosQindexinproducingaccuratelyremotesens-ing-based maps of spatial diversity over such complex landscapeFor this study a cloud-free Sentinel-2A (S2A) image acquired onAugust 8 2016wasused to compute theNDVI at a 10m spatialresolutionTheS2Aimagedownloadaswellastheatmosphericcor-rection (DOSmethod)were performed using the Semi-automaticClassificationplugin(SCP)implementedintheQGISsoftware(QGISDevelopmentTeam2016)

TheNDVIwasusedasinputdataforRaosQindexcomputationusingawindowsizeof3times3pixelsTheperformanceoftheRaosQwascomparedtotheShannonEntropyindex(ShannonsH)whichisoneofthesimplestandwidelyusedremotesensing-baseddiversitymeasures for landscape heterogeneity assessment (Rocchini etal2016)To investigatewhetherbothdiversity indicesdifferbetween

(2)

⎛⎜⎜⎜⎝

x11 x12 x13

x21 x22 x23

xd1 xd2 xd3

⎞⎟⎟⎟⎠

(3)

⎛⎜⎜⎜⎝

10 13 15

18 20 23

19 21 22

⎞⎟⎟⎟⎠

(4)

⎛⎜⎜⎜⎝

10 121 227

1 40 251

7 100 149

⎞⎟⎟⎟⎠

(5)Q =

sumsumdij times pi times pj

F I G U R E 5 emsp AnexampleofthesparsegeneralizeddissimilaritymodelapproachRemotesensingdataandbiodiversitydatainthefieldcanbecoupledbysparsecanonicalcorrelationanalysis(SCCA)toproducecanonicalcomponentsandacommunitydissimilaritymatrixwhicharethenusedtobuildageneralizeddissimilaritymodel(GDM)tofinallyderiveaβ-diversitymap

0 0

SCCA

GDM

GDM

Remote sensing data Biodiversity data

Canonical components Community dissimilarity

Beta-diversity map

1794emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

land cover types one-wayANOVA testswere performedThis ap-proachwas used for analysing the degree of dissimilarity betweenRaosQandShannonH indexacross twohighcomplex landcovertypes (1) montado and (2) polyculture To do so a sample of 60squareswith 250times250m2 sizewas randomly selected over thesetwolandcovertypesEachsquarerepresentsasampleof625S2ANDVI pixels thus corresponding to a total of 37500pixels overthe60 squares For the comparisonbetweenboth indices the co-efficient of variation (CV) was calculated for each 250times250m2 Regarding the RaosQ performance Figure 6 clearly points to thesignificant improvementsshownbyRaosQ indexcomparedtotheShannonH index indescribing the spatialdiversity Inparticular itcanbeseenthroughtheFigure6 thatRaosQ indexcanhighlightdifferentgradientsofspatialdiversityofmontadoareaswhichpres-enthightreedensityvariability(Figure6)andthushighspatialhet-erogeneityOne-wayANOVAtestsrevealedthatbothindicesvaluesweresignificantlydifferentbetweenthetwolandcovertypes(mon-tado F=5033p lt 001 polyculture F=8898plt001)Overall

theobtainedresultsdemonstratethecapabilityofRaosQindex inproducingaccuratelandscapediversitymapsinacomplexlandscapesuchastheMediterraneanagro-forestrysystems

7emsp |emspCONCLUSION

In this paper we showed several methods based on ecologicalβ-diversitywhichcanbeinvestigatedbyremotesensingthroughthecalculationofecosystemheterogeneitytoestimatethespatialvariabil-ityofbiodiversityWhenthereisawiderangeofheterogeneityforex-amplewhenthedataincludehomogeneousandheterogeneouszonesnosinglemeasuremightcaptureallthedifferentaspectsofβ-diversity(egBaselga2013)Thatiswhywesuggestedinthismanuscriptmul-tivariateandmultidimensionalmethods(egmultivariatestatisticsandmultidimensionaldistancematrices)basedonthespectralsignalanditsvariabilityoverspacetoaccountfordifferentaspectsofdiversityalsoincludingdistance-andabundance-basedmethods(egtheRaosQ)

F I G U R E 6 emsp UpperpanelsSentinel-2Ascene(August82016)andderivedNDVIfortheagro-forestrysystemstestsitelocatedinsouthernPortugalLowerpanelsresultsfromShannonsHandRaosQindicescomputationShannonindextendstooverestimatethelandscapediversitywhencomparedtotheRaosQindex

emspensp emsp | emsp1795Methods in Ecology and Evolu13onROCCHINI et al

Biodiversitymeasuredasspeciesrichnessisoftenusedforconser-vationpurposeshencetheimportanceofavoidinganunder-orover-estimate has been highlighted (Chiarucci etal 2009) Furthermorepairwisedistance-basedmethodsmightbeprofitablyusedtodetectnotonlydiversityhotspotsinanareabutalsothevariationofbiodi-versityoverspaceandpotentiallyovertimeoncemultitemporalsetsofimagesareused

In this paperwe focused on optimizingmeasures of β-diversitybasedonremotesensingdataSuchmeasuresmightbeusedtoregressspeciesdiversityagainstremotelysensedheterogeneitybasedonnewregressiontechniqueswhichmaximizethepossibilityofpredictingthezones in a study area or at larger spatial scales of peculiar conser-vationvalueAsanexampleshrinkageregressionrecentlyappliedinbiodiversityconservation(AuthierSarauxampPeron2017)couldallowadirectfocusonhabitatmodellingwhichisoneofthemajorstrengthsofremotesensing(GillespieFoodyRocchiniGiorgiampSaatchi2008)MoreoversuchanalysismightbeperformedinaBayesianframeworkallowingto(1)modelmultidimensionalcovariateswithnon-stationaryvariationoverspace(RandellTurnbullEwansampJonathan2016)suchasthebandsofsatelliteimagesand(2)modeltheerrorsintheoutputandtheirvariationoverspace(Rocchinietal2017)

Aspreviouslystatedthesuggestedmethodsforβ-diversityes-timation from remote sensing aremainly based on distances butthey could be effectively translated to relative abundance-basedmethodsAsanexampleRocchinietal(2013)introducedthepos-sibility of applying generalized entropy theory to satellite imageswithonesingleformularepresentingacontinuumofdiversitymea-sures changing one parameter One of the best examples in thisframeworkcouldbe theuseofHill numbers inwhichdiversity isexpressedasfollows

whereS=numberofsamplespixelsandpi=relativeabundanceofaspeciesspectralvaluevaryingtheparameterqqDvariesaccordinglyinseveraldiversity indiceseg forq = 0 qD is thesimplenumberofspeciesforlim(q)=1qDequalsShannonsentropyetc(HsiehMaampChao2016)

Furthermore connectivity analysis might also be taken into ac-count (Moilanen etal 2005 2009) For instance a remote sens-ing-based connectivity network among different sites based onβ-diversitymeasurescouldbeappliedfortheestimateof landscapeconnectivityandconsequentgeneticflowasdemonstratedbyVernesietal(2012)Ithasalsobeenshownthatcommunityrelatedbiodiver-sityindicatorsareoftenmissingfromcurrentmonitoringprogrammes(Vihervaaraetal2017)thusmethodssuchasremotesensing-basedRaosQdiversityappliedforvariousecosystemsmightimproveother-wisechallengingmonitoringofbiologicalcommunities

Withthismanuscriptwehopetostimulatediscussionontheavail-ablemethodsforestimatingβ-diversityfromremotelysensedimagerybyproposinginnovativetechniquesgroundedonecologicaltheory

ACKNOWLEDGEMENTS

WearegratefultothehandlingEditorandtotwoanonymousreview-erswhoimprovedwithskillfulsuggestionsapreviousversionofthepresentmanuscriptDRwaspartiallysupportedby (i) theEU-LIFEproject LIFE14ENVIT000514 FutureForCoppices (ii) the H2020project ECOPOTENTIAL (Grant Agreement no 641762) iii) theH2020TRuStEE-TrainingonRemoteSensingforEcosystemmodEl-ling-project(GrantAgreementno721995)

AUTHORSrsquo CONTRIBUTIONS

All authors contributed to the development and writing of themanuscript

DATA ACCESSIBILITY

Partofthedataandcorrespondingoriginalsourcesareavailableatthefollowinghttpsdoiorg105061dryaddg31k

ORCID

Duccio Rocchini httporcidorg0000-0003-0087-0594

Sandra Luque httporcidorg0000-0002-4002-3974

Nathalie Pettorelli httporcidorg0000-0002-1594-6208

Lucy Bastin httporcidorg0000-0003-1321-0800

Hannes Feilhauer httporcidorg0000-0001-5758-6303

Jean-Baptiste Feacuteret httporcidorg0000-0002-0151-1334

Giles M Foody httporcidorg0000-0001-6464-3054

Yoni Gavish httporcidorg0000-0002-6025-5668

William E Kunin httporcidorg0000-0002-9812-2326

Angela Lausch httporcidorg0000-0002-4490-7232

Pedro J Leitatildeo httporcidorg0000-0003-3038-9531

Markus Neteler httporcidorg0000-0003-1916-1966

Carlo Ricotta httporcidorg0000-0003-0818-3959 Martin Wegmann httporcidorg0000-0003-0335-9601

Harini Nagendra httporcidorg0000-0002-1585-0724

REFERENCES

AlahuhtaJKostenSAkasakaMAudersetDAzzellaMBolpagniRhellipHeinoJ(2017)Globalvariationinthebetadiversityoflakemacrophytesis driven by environmental heterogeneity rather than latitude Journal of Biogeography441758ndash1769httpsdoiorg101111jbi12978

AsnerGampMartinR(2008)Spectralandchemicalanalysisoftropicalfor-estsScalingfromleaftocanopylevelsRemote Sensing of Environment1123958ndash3970httpsdoiorg101016jrse200807003

AsnerGPMartinREAndersonCBampKnappDE(2015)QuantifyingforestcanopytraitsImagingspectroscopyversusfieldsurveyRemote Sensing of Environment15815ndash27httpsdoiorg101016jrse2014 11011

(6)qD=

(Ssumi=1

pqi

) 1

1minusq

1796emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

AuthierMSarauxCampPeronC(2017)VariableselectionandaccuratepredictionsinhabitatmodellingAshrinkageapproachEcography40549ndash560httpsdoiorg101111ecog01633

BaldeckCampAsnerG(2013)Estimatingvegetationbetadiversityfromairborne imaging spectroscopy and unsupervised clustering Remote Sensing52057ndash2071httpsdoiorg103390rs5052057

BaldeckCAampColganMSFeacuteretJ-BLevickSRMartinREampAsner G P (2014) Landscape-scale variation in plant communitycomposition of an African savanna from airborne species mappingEcological Applications2484ndash93httpsdoiorg10189013-03071

BaselgaA(2013)Multiplesitedissimilarityquantifiescompositionalhet-erogeneity among several sites while average pairwise dissimilaritymaybemisleadingEcography36124ndash128httpsdoiorg101111 j1600-0587201200124x

Chadwick K amp Asner G (2016) Organismic-scale remote sensing ofcanopyfoliar traits in lowlandtropical forestsRemote Sensing887httpsdoiorg103390rs8020087

ChiarucciABacaroGRocchiniDRicottaCPalmerMWampScheinerSM (2009) Spatially constrained rarefaction Incorporating the au-tocorrelatedstructureofbiologicalcommunitiesinsample-basedrar-efactionCommunity Ecology 10 209ndash214 httpsdoiorg101556comec102009211

ChonT-SParkYSMoonKYampChaEY(1996)Patternizingcom-munitiesbyusinganartificialneuralnetworkEcological Modelling9069ndash78httpsdoiorg1010160304-3800(95)00148-4

ClarkM LampRobertsDA (2012) Species-level differences inhyper-spectral metrics among tropical rainforest trees as determined bya tree-based classifier Remote Sensing 4 1820ndash1855 httpsdoiorg103390rs4061820

ClarkMRobertsDampClarkD(2005)HyperspectraldiscriminationoftropicalrainforesttreespeciesatleaftocrownscalesRemote Sensing of Environment96375ndash398httpsdoiorg101016jrse200503009

FeilhauerHampSchmidtleinS(2009)MappingcontinuousfieldsofalphaandbetadiversityApplied Vegetation Science12429ndash439httpsdoiorg101111j1654-109x200901037x

FeilhauerHFaudeUampSchmidtleinS(2011)CombiningIsomapordi-nationandimagingspectroscopytomapcontinuousfloristicgradientsin a heterogeneous landscape Remote Sensing of Environment 1152513ndash2524httpsdoiorg101016jrse201105011

FeilhauerHThonfeldFFaudeUHeKSRocchiniDSchmidtleinS(2013)Assessingfloristiccompositionwithmultispectralsensorsacomparisonbasedonmonotemporalandmultiseasonal fieldspectraInternational Journal of Applied Earth Observation and Geoinformation21218ndash229httpsdoiorg101016jjag201209002

FeilhauerHDoktorDLauschASchmidtleinSSchulzGampStenzelS(2014)MappingNatura2000habitatsandtheirlocalvariabilitywithremote sensingApplied Vegetation Science17 765ndash779httpsdoiorg101111avsc12115

FeilhauerHDoktorDSchmidtleinSampSkidmoreAK(2016)MappingpollinationtypeswithremotesensingJournal of Vegetation Science27999ndash1011httpsdoiorg101111jvs12421

FeacuteretJ-BampAsnerGP (2013)Tree speciesdiscrimination in tropicalforests using airborne imaging spectroscopy IEEE Transactions on Geoscience and Remote Sensing5173ndash84httpsdoiorg101109TG RS20122199323

FeacuteretJ-BampAsnerGP(2014a)Mappingtropicalforestcanopydiversityusing high-fidelity imaging spectroscopy Ecological Applications 241289ndash1296httpsdoiorg10189013-18241

FeacuteretJ-BampAsnerGP(2014b)MicrotopographiccontrolsonlowlandAmazonian canopy diversity from imaging spectroscopy Ecological Applications241297ndash1310httpsdoiorg10189013-18961

FerrierSManionGElithJampRichardsonK(2007)Usinggeneralizeddissimilaritymodelling toanalyseandpredictpatternsofbetadiver-sityinregionalbiodiversityassessmentDiversity and Distributions13252ndash264httpsdoiorg101111j1472-4642200700341x

FoodyGM(1999)Applicationsoftheself-organisingfeaturemapneuralnetworkincommunitydataanalysisEcological Modelling12097ndash107httpsdoiorg101016s0304-3800(99)00094-0

FoodyGMampCutlerMEJ(2003)TreebiodiversityinprotectedandloggedBorneantropicalrainforestsanditsmeasurementbysatelliteremote sensing Journal of Biogeography30 1053ndash1066 httpsdoiorg101046j1365-2699200300887x

FritzkeB(1995)GrowinggridndashAselforganizingnetworkwithconstantneighborhoodrangeandadaptationstrengthNeural Processing Letters29ndash13httpsdoiorg101007bf02332159

GillespieTW (2005) Predictingwoody-plant species richness in trop-ical dry forests a case study from South Florida USA Ecological Applications1527ndash37httpsdoiorg10189003-5304

Gillespie T W Foody G M Rocchini D Giorgi A P amp Saatchi S(2008)Measuring andmodeling biodiversity from spaceProgress in Physical Geography32203ndash221httpsdoiorg10117703091333 08093606

GiraudelJLampLekS(2001)AcomparisonofSOMalgorithmandsomeconventional statistical methods for ecological community ordina-tion Ecological Modelling 146 329ndash339 httpsdoiorg101016s0304-3800(01)00324-6

GodinhoSGilAGuiomarNNevesNampPinto-CorreiaT (2016)Aremote sensing-basedapproach toestimatingmontadocanopyden-sityusingtheFCDmodelAcontributiontoidentifyingHNVfarmlandsin southern Portugal Agroforestry Systems 90 23ndash34 httpsdoiorg101007s10457-014-9769-3

GrahamCHampFinePVA(2008)PhylogeneticbetadiversityLinkingeco-logicalandevolutionaryprocessesacrossspaceintimeEcology Letters111265ndash1277httpsdoiorg101111j1461-0248200801256x

GuHSinghAampTownsendPA(2015)Detectionofgradientsoffor-estcompositioninanurbanareausingimagingspectroscopyRemote Sensing of Environment 167 168ndash180 httpsdoiorg101016jrse201506010

HarrisACharnockRampLucasRM(2015)Hyperspectralremotesens-ingofpeatlandfloristicgradientsRemote Sensing of Environment16299ndash111httpsdoiorg101016jrse201501029

Hernandez-Stefanoni J L Gallardo-Cruz J A Meave J A RocchiniDBello-PinedaJampLoacutepez-MartiacutenezJO (2012)Modelingα- and β-diversityinatropicalforestfromremotelysensedandspatialdataInternational Journal of Applied Earth Observation and Geoinformation19359ndash368httpsdoiorg101016jjag201204002

Hill M O amp Gauch H G 1980 Detrended correspondence analysisAn improvedordination techniqueVegetatio42 47ndash58 httpsdoiorg101007978-94-009-9197-2_7

HsiehTCMaKHampChaoA(2016)iNEXTAnRpackageforrarefactionandextrapolationofspeciesdiversity(Hillnumbers)Methods in Ecology amp Evolution71451ndash1456httpsdoiorg1011112041-210x12613

KohonenT(1982)Analysisofasimpleself-organizingprocessBiological Cybernetics44135ndash140httpsdoiorg101007bf00317973

LatombeGHuiCampMcGeochMA(2017)Multi-sitegeneraliseddis-similaritymodellingUsingzetadiversitytodifferentiatedriversofturn-overinrareandwidespreadspeciesMethods in Ecology and Evolution8431ndash442httpsdoiorg1011112041-210x12756

LauschABannehrLBeckmannMBoehmCFeilhauerHHackerJMhellipCordAF (2016)Linkingearthobservationandtaxonomicstructural and functional biodiversity Local to ecosystem perspec-tives Ecological Indicators 70 317ndash339 httpsdoiorg101016jecolind201606022

LeathwickJRSnelderTChaddertonWLElithJJulianKampFerrierS(2011)Useofgeneraliseddissimilaritymodellingtoimprovethebiolog-icaldiscriminationofriverandstreamclassificationsFreshwater Biology5621ndash38httpsdoiorg101111j1365-2427201002414x

LegendrePBorcardDampPeres-NetoPR(2005)Analyzingbetadiver-sityPartitioningthespatialvariationofcommunitycompositiondataEcological Monographs75435ndash450httpsdoiorg10189005-0549

emspensp emsp | emsp1797Methods in Ecology and Evolu13onROCCHINI et al

LeitatildeoPJSchwiederMSuessSCatryIMiltonEJMoreiraFhellipHostert P (2015) Mapping beta diversity from space Sparse gen-eralised dissimilarity modelling (SGDM) for analysing high-dimen-sionaldataMethods in Ecology and Evolution6764ndash771httpsdoiorg1011112041-210x12378

LeitatildeoPSchwiederMampSenfC(2017)sgdmAnRpackageforperform-ingsparsegeneralizeddissimilaritymodellingwithtoolsforgdm ISPRS International Journal of Geo-Information623httpsdoiorg103390ijgi6010023

MantelNampValandRS(1970)AtechniqueofnonparametricmultivariateanalysisBiometrics26547ndash558httpsdoiorg1023072529108

MazorTKarkSPossinghamHPRocchiniDLevyYRichardsonAJampLevinN(2013)Cansatellite-basednightlightsbeusedforconser-vationThecaseofnestingseaturtlesintheMediterraneanBiological Conservation 159 63ndash72 httpsdoiorg101016jbiocon201211 004

MeentemeyerRKAnackerBLMarkWampRizzoDM(2008)Earlydetectionofemergingforestdiseaseusingdispersalstimationandeco-logical nichemodeling Ecological Applications18 377ndash390 httpsdoiorg10189007-11501

MetzMRocchiniDampNetelerM(2014)Surfacetemperaturesatthecontinental scaleTracking changeswith remote sensingatunprece-dented detail Remote Sensing63822ndash3840httpsdoiorg103390rs6053822

MoilanenA FrancoAMA Early R Fox RWintle B amp ThomasC D (2005) Prioritizing multiple-use landscapes for conservationMethods for large multi-species planning problems Proceedings of the Royal Society B Biological Sciences 272 1885ndash1891 httpsdoiorg101098rspb20053164

MoilanenA Kujala H amp Leathwick J R (2009)The zonation frame-workandsoftware forconservationprioritization InAMoilanenKWilson amp H P Possingham (Eds) Spatial conservation prioritization Quantitative methods amp computational tools (pp 196ndash210) OxfordOxfordUniversityPress

NeumannCWeissGSchmidtleinSItzerottSLauschADoktorDampBrellM(2015)Ecologicalgradient-basedhabitatqualityassessmentfor spectralecosystem monitoring Remote Sensing 7 2871ndash2898httpsdoiorg103390rs70302871

PalmerMWEarlsPGHoaglandBWWhitePSampWohlgemuthT(2002)QuantitativetoolsforperfectingspecieslistsEnvironmetrics13121ndash137httpsdoiorg101002env516

QGISDevelopmentTeam(2016)QGISgeographicinformationsystemOpenSourceGeospatialFoundationAvailableathttpqgisosgeoorg

RandellDTurnbullKEwansKampJonathanP(2016)Bayesianinfer-ence for nonstationary marginal extremes Environmetrics 27 439ndash450httpsdoiorg101002env2403

Rocchini D Petras V Petrasova A Horning N Furtkevicova LNetelerMhellipWegmannM(2017)OpendataandopensourceforremotesensingtraininginecologyEcological Informatics4057ndash61

RocchiniDampNetelerM(2012)Letthefourfreedomsparadigmapplyto ecology Trends in Ecology amp Evolution 27 310ndash311 httpsdoiorg101016jtree201203009

RocchiniDAndreiniButiniSampChiarucciA (2005)Maximizingplantspecies inventory efficiency by means of remotely sensed spectraldistancesGlobal Ecology and Biogeography14 431ndash437 httpsdoiorg101111j1466-822x200500169x

Rocchini D Balkenhol N Carter G A Foody G M Gillespie TWHeK ShellipNetelerM (2010)Remotely sensed spectral heteroge-neityasaproxyofspeciesdiversityRecentadvancesandopenchal-lenges Ecological Informatics 5 318ndash329 httpsdoiorg101016jecoinf201006001

RocchiniDDelucchiLBacaroGCavalliniPFeilhauerHFoodyG M hellip Neteler M (2013) Calculating landscape diversity with

information-theorybased indicesAGRASSGISsolutionEcological Informatics1782ndash93httpsdoiorg101016jecoinf201204002

Rocchini D Hernaacutendez Stefanoni J L amp He K S (2015) Advancingspecies diversity estimate by remotely sensed proxiesA conceptualreview Ecological Informatics 25 22ndash28 httpsdoiorg101016jecoinf201410006

RocchiniDBoydDSFeacuteretJBFoodyGMHeKSLauschAhellipPettorelliN(2016)Satelliteremotesensingtomonitorspeciesdiver-sityPotentialandpitfallsRemote Sensing in Ecology and Conservation225ndash36httpsdoiorg101002rse29

Rocchini D Garzon-Lopez C X Marcantonio M Amici V BacaroG Bastin L hellip Rosaacute R (2017) Anticipating species distributionsHandlingsamplingeffortbiasunderaBayesianframeworkScience of the Total Environment584ndash585 282ndash290 httpsdoiorg101016jscitotenv201612038

RosauerDFFerrierSWilliamsKJManionGKeoghJSampLaffanSW (2014)PhylogeneticgeneraliseddissimilaritymodellingAnewapproachtoanalysingandpredictingspatialturnoverinthephyloge-neticcompositionofcommunitiesEcography3721ndash32httpsdoiorg101111j1600-0587201300466x

SchmellerDWeatherdonLLoyauABondeauABrotonsLBrummittNhellipReganE(inpress)AsuiteofessentialbiodiversityvariablesfordetectingcriticalbiodiversitychangeBiological Reviews

SchmidtleinSampSassinJ(2004)MappingcontinuousfloristicgradientsingrasslandsusinghyperspectralimageryRemote Sensing of Environment92126ndash138httpsdoiorg101016jrse200405004

Schmidtlein S Zimmermann P Schuumlpferling R amp Weiss C (2007)MappingthefloristiccontinuumOrdinationspacepositionestimatedfromimagingspectroscopyJournal of Vegetation Science18131ndash140httpsdoiorg101111j1654-11032007tb02523x

TahvanainenT (2011)Abrupt ombrotrophication of a boreal aapamiretriggered by hydrological disturbance in the catchment Journal of Ecology201199

Tuomisto H amp Ruokolainen K (2006) Analyzing or explaining betadiversityUnderstanding the targets of differentmethods of anal-ysis Ecology 87 2697ndash2708 httpsdoiorg1018900012-9658 (2006)87

TuomistoHPoulsenARuokolainenKMoranRQuintanaCCeliJampCanasG (2003) Linking floristicpatternswith soil heterogeneityandsatellite imagery inEcuadorianAmazoniaEcological Applications13352ndash371httpsdoiorg1018901051-0761(2003)013[0352lfp wsh]20co2

TyreAJPossinghamHPampLindenmayerDB(2001)InferringprocessfrompatternCanterritoryoccupancyprovide informationabout lifehistoryparametersEcological Applications111722ndash1737httpsdoiorg1023073061091

Ustin S L amp Gamon J A (2010) Remote sensing of plant functionaltypesNew Phytologist186795ndash816httpsdoiorg101111j1469- 8137201003284x

VaglioLaurinGChanJC-WChenQLindsellJACoomesDAGuerriero LhellipValentiniR (2014)Biodiversitymapping in a tropi-calWestAfricanforestwithairbornehyperspectraldataPLoS ONE9e97910httpsdoiorg101371journalpone0097910

VernesiC RocchiniD Pecchioli ENetelerMVendraminGGampPaffetti D (2012) A landscape genetics approach reveals ecolog-ical-based differentiation in populations of holm oak (Quercus ilexL)attheirnorthernmostdistributionEDGEBiological Journal of the Linnean Society107458ndash467httpsdoiorg101111j1095-8312 201201940x

VihervaaraPAuvinenA-PMononenLToumlrmaumlMAhlrothPAnttilaShellipVirkkalaR (2017)Howessentialbiodiversityvariablesandre-motesensingcanhelpnationalbiodiversitymonitoringGlobal Ecology and Conservation 10 43ndash59 httpsdoiorg101016jgecco2017 01007

1798emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

WegmannMLeutnerBFMetzMNetelerMDechSampRocchiniD(2017)rpiAGRASSGISpackageforsemi-automaticspatialpatternanalysis of remotely sensed land cover dataMethods in Ecology and Evolutioninpresshttpsdoiorg1011112041-210x12827

Whittaker R H (1960) Vegetation of the SiskiyouMountains OregonandCaliforniaEcological Monographs30280ndash338httpsdoiorg10 23071943563

Witten D Tibshirani R Gross S amp Narasimhan B (2013) PMAPenalized multivariate analysis R package version 109 RetrievedfromhttpsCRANR-projectorgpackage=PMA

Woolley SN C Foster SDOrsquoHaraTDWintle BA ampDunstanP K (2017) Characterising uncertainty in generalised dissimilaritymodels Methods in Ecology and Evolution 8 985ndash995 httpsdoiorg1011112041-210x12710

SUPPORTING INFORMATION

Additional Supporting Information may be found online in thesupportinginformationtabforthisarticle

How to cite this articleRocchiniDLuqueSPettorelliNetalMeasuringβ-diversitybyremotesensingAchallengeforbiodiversitymonitoringMethods Ecol Evol 201891787ndash1798 httpsdoiorg1011112041-210X12941

Page 2: Measuring β‐diversity by remote sensing: A challenge for ...€¦ · ment of remote sensing tools (Rocchini & Neteler, 2012) for diversity estimate in which the concept of β-diversity

1788emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

1emsp |emspINTRODUCTION

Biodiversitycannotbefullyinvestigatedwithoutconsideringthespa-tialcomponentofitsvariationInfactitisknownthatthedispersalofspeciesoverwideareasisdrivenbyspatialconstraintsdirectlyrelatedtothedistanceamongsitesAnegativeexponentialdispersalkernelisusuallyadoptedtomathematicallydescribetheoccupancyofnewsitesbyspeciesasfollows

wheredik=distancebetweentwolocationsi and k and aisaparam-eterregulatingthedispersalfromlocalizedareas(lowvaluesofa)towidespreadones (highvaluesofaMeentemeyerAnackerMarkampRizzo2008)

Inthissensedistanceacquiresasignificantroleinecologytoesti-matebiodiversitychangeHencespatiallyexplicitmethodshavebeenacknowledged inecologyforprovidingrobustestimatesofdiversityatdifferenthierarchical levelsfromindividuals (TyrePossinghamampLindenmayer2001)topopulations(Vernesietal2012)tocommu-nities(RocchiniAndreiniButiniampChiarucci2005)

Whendealingwithspatialexplicitmethodsremotesensingimagesrepresent a powerful tool (Rocchini et al 2017) particularlywhencoupling information on compositional properties of the landscapewithitsstructure(Figure1)Remotesensinghaswidelybeenusedforconservationpracticesincludingverydifferenttypesofdatasuchasnightlightsdata(Mazoretal2013)LandSurfaceTemperatureesti-matedfromMODISdata (MetzRocchiniampNeteler2014)spectralindices(Gillespie2005)

Mostoftheremotesensingapplicationsforbiodiversityestima-tionhave reliedon theestimateof localdiversityhotspots consid-eringlandusediversity(Wegmannetal2017)orcontinuousspatialvariabilityofthespectralsignal(Rocchinietal2010)Thisismainlygrounded in the assumption that a higher landscape heterogeneityis strictly related to a higher amount of species occupying differ-ent niches (Scmheller et al in press) However given two sites s1 and s2 the finaldiversity isnotonly relatedto thespeciesspectralrichnessof s1 and s2 but overall to the amountof shared speciesspectralvaluesInotherwordsthelowerthetheirintersections1caps2the higherwill be the total diversity while the lowest total diver-sitywill be reachedwhen s1caps2 = s1cups2 Such intersectionhasbeen

widelystudiedinecologyafterthedevelopmentofβ-diversitytheory(Whittaker1960)

Tuomisto etal (2003) demonstrated the power of substitutingdistance in Equation 1 by spectral distance to directly account forthe distance between sites in an environmental space instead of amerelyspatialoneHoweverwhile spectraldistanceexamplesexistwhenmeasuring theβ-diversity amongpairs of sites (eg RocchiniHernaacutendezStefanoniampHe2015)fewstudieshavetestedthepossi-bilityofmeasuringβ-diversityoverwideareasconsideringseveralsitesatthesametime(howeverseeAlahuhtaetal2017HarrisCharnockampLucas2015)Thisisespeciallytruewhenconsideringthedevelop-mentofremotesensingtools(RocchiniampNeteler2012)fordiversityestimateinwhichtheconceptofβ-diversityisstillpioneering

The aim of this paper is to present themost novelmethods tomeasureβ-diversityfromremotelysensedimagerybasedonthemostrecentlypublishedecologicalmodelsInparticularwewilldealwith(1)multivariatestatisticaltechniques(2)theapplicabilityofthespec-tralspeciesconcept(3)multidimensionaldistancematrices(4)met-ricscouplingabundanceanddistance-basedmeasures

Thismanuscriptisthefirstmethodologicalexampleencompassing(and enhancing)most of the availablemethods for estimating β-di-versityfromremotelysensedimageryandpotentiallyrelatethemtospeciesdiversityinthefield

2emsp |emspMULTIVARIATE STATISTICAL ANALYSIS FOR SPECIES DIVERSITY ESTIMATE FROM REMOTE SENSING

UnivariatestatisticshavebeenusedtodirectlyfindrelationsbetweenspectralandspeciesdiversityHowevertheamountofvariabilityex-plainedbysinglebandsvegetationindicesversusspeciesdiversityisgenerallyrelativelylowduetothefactthatdifferentaspectsrelatedtothecomplexityofhabitatsmightactinshapingdiversityfromdis-turbanceandlanduseatlocalscalestoclimateandelementfluxesatglobalscales

Ordination techniques are designed to quantitatively describemultivariategradualtransitionsinthespeciescompositionofsampledsitesMeasuringthedistancebetweentwosamplingsitesinthemulti-dimensionalordinationspaceisagoodproxyofthechangeinspeciescompositionWhenthismeasureisrelatedtothegeographicaldistance

(1)F=

NsumK=1

eminusdik

a

featuremaps(4)multidimensionaldistancematricesandthe(5)RaosQdiversityEachofthesemeasuresaddressesoneorseveralissuesrelatedtoturnovermeas-urementThismanuscript is thefirstmethodologicalexampleencompassing (andenhancing)mostoftheavailablemethodsforestimatingβ-diversityfromremotelysensedimageryandpotentiallyrelatingthemtospeciesdiversityinthefield

K E Y W O R D S

β-diversityKohonenself-organizingfeaturemapsRaosQdiversityindexremotesensingsatelliteimagerysparsegeneralizeddissimilaritymodelspectralspeciesconcept

emspensp emsp | emsp1789Methods in Ecology and Evolu13onROCCHINI et al

betweentheconsideredsitesthebetadiversityatthisparticularscalecanbeassessed

Of thevariousavailableordination techniquesdetrendedcorre-spondenceanalysis(DCAHillampGauch1980)isparticularlysuitablefor such analyses The axes (ie gradients) of the DCA ordinationspacearescaledinSDunitswhereadistanceof4SDisrelatedtoafullspecies turnoverThisenablesaversatileanalysis thateasily revealswhethertwosampledsitesstillhavespeciesincommon

Several studieshavemapped theordinationspaceusing remotesensing data (eg Feilhauer amp Schmidtlein 2009 Feilhauer FaudeampSchmidtlein2011Feilhaueretal2014GuSinghampTownsend2015Harris etal 2015 Leitatildeoetal 2015Neumannetal 2015SchmidtleinampSassin2004SchmidtleinZimmermannSchuumlpferlingampWeiss2007)Forthispurposetheaxesscoresofthesampledsitesare regressed against the corresponding canopy reflectance values

extractedfromair-orspaceborneimagedataTheresultingmultivar-iateregressionmodelsoneperordinationaxisandmostoftengener-atedwithmachine learning regression techniques are subsequentlyappliedontheimagedataforaspatialpredictionofordinationscoresEachpixeloftheimagedataisassignedtoaspecificpositionintheordinationspacethatindicatesitsspeciescompositionTheresultinggradientmapsareapowerfultoolforanalysesofbetadiversityacrossdifferent spatial scales (Feilhauer amp Schmidtlein 2009 Hernandez-Stefanonietal2012)

AsimpleanalysisofthevariabilityoftheDCAscoresinadefinedpixelneighbourhood(ieamovingwindow)resultsinaefficientbetadiversityassessmentThespatialscaleofthisassessmentcanbevariedeitherbyresamplingthegradientmaptoacoarserspatialresolution(iepixelsize)orbychangingthekernelsizeoftheconsideredpixelneighbourhood Such techniques have been further developed egfor spatial conservationprioritizationprogrammes such asZonation(Moilanenetal2005MoilanenKujalaampLeathwick2009)

Figure2showsanexampleofaDCA-basedassessmentofbetadiversityonaverylocalscale(10m)followingtheapproachdescribedinFeilhauerandSchmidtlein(2009)Theanalysedlandscapeisamo-saicofraisedbogsfenstransitionmiresandMoliniameadowsForadetaileddescriptionofthedataandsitepleaserefertoFeilhaueretal(2014)andFeilhauerDoktorSchmidtleinandSkidmore(2016)

Analyses like this require two different datasets (1) a sampleoffielddatathatisrepresentativeforthevegetationinthestudiedarea and is used to generate theordination space (2) imagedatawithasufficientspectral resolutiontodiscriminatethevegetationtypeswithintheordinationspaceandwithaspatialresolutionthatisinlinewiththesamplingdesignofthefielddata(Feilhaueretal2013)

F I G U R E 1 emsp Anexampleofhowtocoupleinformationoncompositionalpropertiesofthelandscapebyopticaldatatogetherwithstructural(3D)propertiesbylaserscanningLiDARdata

F I G U R E 2 emsp β-diversityassessmentwithacombinationofordinationtechniquesandremotesensing(a)Three-dimensionaldetrendedcorrespondenceanalysis(DCA)ordinationspaceofn=100vegetationplotssampledinraisedbogsfenstransitionmiresandMoliniameadowsinthealpinefoothillsofSouthernGermanyAninter-plotdistanceof4SDcorrespondstoafullspeciesturnover(b)MapsoftheordinationaxesresultingfromaspatialpredictionbasedoncanopyreflectanceEachpixelhasapredictedpositionintheordinationspacethatisindicatedbyitscolourThecolourschemecorrespondsto(a)Themaphasaspatialresolutionof2times2m2whichisinlinewiththesampledplotsize (c)CumulativechangeratesalongthethreeDCAaxesina5times5pixelneighbourhoodAhighchangerateindicatesahighbetadiversity

1790emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

Using these data the continuous spatial variability of the spec-tralsignalintheimagepixelsistranslatedintoaspatiallycontinuousmeasureofspeciescompositionTheadvantagesofthisapproachareobvioussincethediversityanalysesareconductedinthefloristicgra-dientspacetheresultingmeasuresresemblefieldstudiesandarethuseasiertointerpretthanspectralproxiesandclosertothepointofviewofmanyend-usersFurthermoretheanalysisofordinationscoresindefinedpixelneighbourhoodsisnotrestrictedtoasinglespatialscalebutofferstheopportunitytoimplementassessmentsofbetadiversityonmultiplescales

3emsp |emspTHE SPECTRAL SPECIES CONCEPT

ThespectralspeciesconcepthasbeenproposedbyFeacuteretandAsner(2014a) tomap bothα and β component of the biodiversity usinga unique framework It is rooted in the convergence between twootherconceptsthespectralvariationhypothesis(SVH)proposedbyPalmer Earls Hoagland White andWohlgemuth (2002) and theplantopticaltypesproposedbyUstinandGamon(2010)sustainedbythetechnologicaladvances in thedomainofhighspatial resolu-tionimagingspectroscopyTheSVHstatesthatthespatialvariabilityin the remotely sensed signal that is the spectral heterogeneity isrelatedtoenvironmentalheterogeneityandcouldthereforebeusedasapowerfulproxyofspeciesdiversitySVHhasbeentestedindif-ferentsituations(Rocchinietal2010)andconclusionsshowthattheperformanceofthisapproach isverydependentonseveralfactorsincludingtheinstrumentcharacteristics(spectralspatialandtempo-ral resolution) the typeofvegetation investigatedand themetricsderivedfromremotelysensedinformationtoestimatespectralheter-ogeneityPlantopticaltypesrefertothecapacityofsensorstomeas-ure signals that aggregate information about vegetation structurephenology biochemistry andphysiology Therefore this concept isalsotightly linkedtotheperformancesofthesensorandfindspar-ticularechowiththeincreasinguseofhighspatialresolutionimagingspectroscopyfortheestimationandidentificationofmultiplevegeta-tionproperties

Thedetailsprovidedbyhighspatialresolutionimagingspectros-copyare sufficient toperformanalysesofplantoptical traitsat theindividual treescale inorder todifferentiate treespeciesobtain in-formationaboutleafchemicaltraitsandestimatetheαcomponentofbiodiversity(AsnerampMartin2008AsnerMartinAndersonampKnapp2015ChadwickampAsner2016ClarkampRoberts2012ClarkRobertsampClark2005FeacuteretampAsner2013VaglioLaurinetal2014)TheseresultsillustratethatspectralinformationcanberelatedtotaxonomicorfunctionalinformationofthevegetationwhichsupportstheSVHunderthehypothesisthatthemetricsusedtocomputespectralhet-erogeneityandagivencomponentofvegetationdiversityareprop-erlydefinedHowevertheseapplicationsarecurrentlylimitedbytheimportantamountoffielddatarequiredtotrainregressionorclassi-ficationmodelswhich isalsodirectly linkedtotheir lowgeneraliza-tionabilityintimeandspaceUnsupervisedapproachesthenappearasvaluablealternatives for theanalysisofecosystemheterogeneity

(Baldeck amp Asner 2013 Baldeck etal 2014 Feilhauer Faude ampSchmidtlein2011FeacuteretampAsner2014b)asecologicalindicatorsofα and βdiversityatlandscapescaleusuallyrequireoneorseverallevelsofabstractionbeyondthecorrecttaxonomicidentification(TuomistoampRuokolainen2006)

Clustering(properlypre-processed)spectralinformationshouldre-sultinpixelsfromthesamespeciesnaturallygroupingtogetherratherthandistributing randomlyamongclustersFeacuteretandAsner (2014a)proposedagroupingmethodaimingatassigninglabelstopixelsbasedon multiple clustering of spectroscopic data acquired at landscapescaleThesepixelslabelledwithasetoftheso-calledspectralspeciescan thenbeused straightforwardly in order to computevarious di-versitymetricssuchasShannonindexforαdiversityandBray-Curtisdissimilarity forβ diversityThepre-processing stage is divided intoseveralstagesAftermaskingallnon-vegetatedpixelsanormalizationbased on continuous removal is applied to each pixel and over thefullspectraldomainthenaprincipalcomponentanalysisisperformedonthecontinuouslyremovedspectraldataThenormalizationreduceseffectsduetochangesinilluminationcanopygeometryandotherfac-torsunrelatedtovegetationwhileenhancingthesignalcorrespondingtovegetationThecomponentsincludingindividual-specificinforma-tionarethecomponentsof interestTheycanbe identifiedaftervi-sual inspectionorautomated routines if initialdata showsufficientsignaltonoiseratioOncealimitednumberofcomponentshavebeenselectedk-means clustering is then applied to a certain number ofsubsetsandforeachof thesesubsetscentroidsarecomputedandeachpixelintheimageislabelledbasedontheclosestcentroidTherepetitionofclusteringbasedonvarioussubsetsoftheimagetendstominimizetheriskofassigningcentroidstoirrelevantgroupsofpixelsExperimental results showed that the averaging of diversity indicescomputedfrommultiplecentroidmapscanbeseenasananalogoustosignalaveragingwhichconsists in increasingsignaltonoiseratiobyreplicatingmeasurementsForeachrepetitiontheclosestcentroidcorrespondstothespectralspeciesandforeachspatialunitofagivensizethespectralspeciesdistribution isderivedinordertocomputeanydiversitymetricrequiringeitherinformationatthelocalscaleorcomparisonofinformationacrossspatiallydistantplots

Theconceptsofspectralspeciesandspectralspeciesdistributionhavebeentestedsuccessfullyona limitednumberofsituationsandtypesofecosystems(seeRocchinietal2016forareviewandLauschetal 2016 for an application to similar concepts) As an exampleFeacuteretandAsner(2014a)showedabilitytoproperlyestimatelandscapeheterogeneityatmoderatespatialscaleuptofewdozensquarekilo-metersovertropicalforestsbasedonhighspatialresolutionimagingspectroscopy (Figure 3) A generic parameterization of the methodshowed robust performances for α diversity mapping across spaceandtimebutmappingβdiversityacrosslargespatialscalesusingim-agesacquiredduringdifferentairbornecampaignremainschallengingwhichleadstoanunsolvedproblemwhenconsideringoperationalre-gionalmappingIntheperspectiveofglobalmonitoringofbiodiversityandgiventheunprecedentedremotesensingcapacityallowedbytheCopernicusprogramincludingtheSentinel-2multispectralsatellitesseveralotherchallengesareforeseenandcurrentlyinvestigatedThe

emspensp emsp | emsp1791Methods in Ecology and Evolu13onROCCHINI et al

influenceofdecreasedspatialandspectralresolutionontheabilitytoproperlydifferentiateecologicallymeaningfulspectralspeciesacrosslandscapesandoverregionswillneedtobeinvestigatedTheapplica-tionofthisconceptbeyondtropicalforestsandsavannaecosystemsshouldalsobeinvestigatedasitmaynotholdwhenappliedonmoder-atelydiverseecosystemsorsystemswithindividualswhoseindividu-alshavedimensionswellbelowtheresolvingpoweroftheinstrument

4emsp |emspSELF-ORGANIZING FEATURE MAPS

TheKohonenself-organizingfeaturemap(SOFMKohonen1982)isaneuralnetworkthatmaybeusedtoundertakeunsupervisedcluster-ingofdataCriticallytheinputtoaSOFMcanbealargemulti-variatedatasetsuchasmaybeacquiredonspeciesfromquadrat-basedfieldsurveysTheSOFMsummarizesthedata ina lowtypicallytwodi-mensionaloutput(Figure4)Inthisoutputspacethedataforindivid-ualquadratsaretopologicallyorderedmdashwithsitesthataresimilarclosetogetherwhilethoseofhighlydifferentspeciescompositionaremoredistantBecause thedatasites in theoutputspacearearrangedby

F I G U R E 3 emsp Spectralspeciescanbeidentifiedinahyper-ormultispectralimagebyspatialclusteringmethodandtheirdistributioncanbemappedSuchmapscanfurtherbeusedtoapplylocal-basedheterogeneitymeasurements(α-diversity)aswellasiterativedistance-basedmethodstobuildβ-diversitymapsReproducedfromFeacuteretandAsner(2014a)

F I G U R E 4 emsp Aself-organizingfeaturemapcanbebuiltstartingfromaninputlayeregthepresenceorabsenceofatreespeciesorofapeculiarspectralvalue)whichisconnectedtoeveryunitintheoutputlayerbyaweightedconnectionTheself-organizingfeaturemapusesunsupervisedlearningtomapthelocationoffieldsiteswithintheoutputspaceonthebasisoftheirrelativesimilarityinspeciesorspectralcompositionRedrawnfromFoodyandCutler(2003)

Output layer

Input units

1792emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

relativesimilaritytheoutputspacemayalsobeusedtoaggregateorclassifyadatasetAssuchtheSOFMisattractiveasanon-parametricclusteringanalysisandasameanstoundertakeanordination(ChonParkMoonampCha1996)

ASOFMisunlikesomeoftheapproachesusedcommonlyincom-munityecologynotconstrainedbyassumptionsrelatingthestatisticaldistributionofthedatausedTheSOFMusesunsupervisedlearningtoproduceatopologicallyorderedoutputspaceinwhichthesamplesarearrangedspatiallyinrelationtotheirrelativesimilarityinspeciescompositionTheSOFMthusperformsanon-parametricordinationanalysis(Foody1999)TheproductionofaclassificationbyaSOFMcomprisestwomainstages(GiraudelampLek2001)Aniterativeanaly-sisinwhichtime-decayingparametersthatcontrolnetworklearningandthesizeoflocalneighbourhoodslocatedaroundoutputunitsisusedForthistheusermustspecifyanumberofkeyparameterssuchasthesizeandshapeofthenetworknumberofiterationsoftheal-gorithmthelearningrateanditsrateofdeclineandaneighbourhoodparameterTheneedforsuchparameterscanaddsomeuncertaintytotheanalysisWhile therearenoformal rules to follow in thede-signofaSOFMtherearerecommendationsforthedeterminationofSOFMparametersettings (GiraudelampLek2001)Afurtherconcernis thatasanunsupervisedclassifier theclassesdefinedmaynotal-waysbethemostusefulforaninvestigationInadditionthenatureof theanalysismeans thedirectionof thegradientscannotbecon-trolled(Fritzke1995)buttheanalysisperformswellincomparisontopopularordinationtechniquessuchasPCAandDCA(FoodyampCutler2003)TheSOFMmayalsouseavarietyofdifferentdatatypessuchaspresenceabsenceabundanceorimportancevaluesandcansolvecomplexnonlinearproblems(GiraudelampLek2001)

5emsp |emspMULTIDIMENSIONAL DISTANCE MATRICES GDMS AND SGDMS

Oneofthemostwidespreadmethodsforassessingdiversityisusingdistancematrices (LegendreBorcardampPeres-Neto2005) IndeedearlyworkbyWhittaker (1960)suggested thatβ-diversitycouldbequantifiedbydissimilaritymatricesamong(pairsof)sitesFurthermoretheManteltest(MantelampValand1970)designedtoestimatetheas-sociationbetweentwo independentdissimilaritymatriceshasbeenwidelyusedtocorrelateacommunitycompositiondissimilaritymatrixwithanenvironmentdissimilarityonethusprovidingusefulinsightsinto community composition and turnover (Legendre etal 2005Tahvanainen2011)

Generalized dissimilarity modelling (GDM Ferrier Manion Elith ampRichardson2007)canbeconsideredasanextensionoftheManteltestwhichisabletoaccommodatemultidimensionalenvironmentaldatatobecomparedwiththecompositionaldataGDMsalsoallowforthepredictionofcompositionalturnoveraswellasforegenvironmentalclassificationconstrainedtothecompositionaldissimilarity(Ferrieretal2007Leathwicketal2011)InGDMthecompositionaldissimilaritiesbetweenallpairsofsamplesaremodelledasafunctionoftheirrespectiveenvironmentaldis-tancesThisisdonethroughalinearcombinationofmonotonicI-splinebasis

functionsundertheassumptionthatincreasingenvironmentaldissimilarity (egalongagradient)canonlyresultinincreasingcompositionaldissimilar-ityThismethodisthuswellsuitedformeasuringandmappingβ-diversityandisthusbecomingwidelyusedinconservationscienceandmacroecol-ogyandrecentlybeensubject toseveraldevelopmentsaswedescribebelow

One such development is the phylogenetic GDM (phylo-GDMRosauer etal 2014) which incorporates phylogenetic dissimilari-ties intoGDMandallows foranalysingandpredictingphylogeneticβ-diversity thus linking ecological and evolutionary processes Thismethod can provide novel insights into themechanisms underlyingcurrentpatternsofbiologicaldiversity(GrahamampFine2008)Anotherrecent development of GDM is the multi-site GDM (MS-GDMLatombeHuiampMcGeoch2017)whichextendsGDMsfrompairwisetomulti-sitedissimilaritymodellingInsuchapapertheauthorstestedMS-GDMbymeansofbothconstrained(monotonical)additivemod-elsand I-splinesalthoughwithnoconclusive results relating to thebestmethod overallThey concluded however thatwhen applyingMS-GDMtoahighnumberofsamplestheycouldbetterexplainthedriversofspeciesturnoverAlsoanimportantdevelopmentofGDMis the Bayesian bootstrapGDM (BBGDMWoolley Foster OrsquoHaraWintleampDunstan2017)designedtocharacterizeuncertaintyingen-eralizeddissimilaritymodelsThisapproachallowsbetterrepresentingtheunderlyinguncertainty inthedatabyestimatingthevarianceinparametersbasedontheavailabledata

FinallyanimplementationofGDMwhichwascreatedparticularlyfordealingwithhigh-dimensional (andpotentiallyhigh-collinear) re-motesensingdataasinputinGDMisthesparsegeneralizeddissim-ilaritymodel (SGDMFigure5Leitatildeoetal2015)Thismethod isatwo-stageapproachthatconsistsofinitiallyreducingtheenvironmen-talspace(egreflectancedata)bymeansofasparsecanonicalcorrela-tionanalysis(SCCAFigure5WittenTibshiraniGrossampNarasimhan2013)andthenfittingtheresultingcomponentswithaGDMmodelTheSCCAisaformofpenalizedcanonicalcorrelationanalysisbasedontheL1(lasso)penaltyfunctionandisthusdesignedtodealwithhigh-dimensionaldataThetwoalgorithmsarecoupledinawaythattheSCCApenalizationisselectedthroughaheuristicgridsearchman-ner in order tominimize the cross-validate rootmean square errorin the dissimilarities predicted by the GDM In this procedure thehigh-dimensionalenvironmentaldata (suchascoming fromtimese-riesofmultispectralorhyperspectraldata)aresubjecttoasupervisedordinationapproachthatreducestheirdimensionwhilecapturingtheaxesofvariationthatmostcorrelatetothoseofthecommunitycom-positionalmatrixSGDMhasbeensuccessfullyusedformodellingandmappingthecompositionalturnoverofbothanimalandplantspeciesusingseveraldifferentsourcesofremotesensing(andauxiliary)data(Leitatildeoetal2015LeitatildeoSchwiederampSenf2017)

6emsp |emspRAOrsquoS Q DIVERSITY

Most of the previously shown metrics are based on the distanceamong pixel values in a multidimensional spectral space None

emspensp emsp | emsp1793Methods in Ecology and Evolu13onROCCHINI et al

of them considers the relative abundance of such pixel values in aneighbourhood

Bycontrastabundance-basedmetricssuchastheShannonentropycouldoutputsimilarresultsdespiteavariabledistanceamongpixelval-uesAsanexampleconsidera3times3matrixofremotelysenseddata

composedbythefollowingvalues

thenconsideradifferentmatrix

FromaShannonsentropyperspectivesuchmatricesareequalintermsofheterogeneityTheShannonsentropyisindeedbasedontherelativeabundance(andrichness)ofasampleanditsvalueis2197forboth thematricesThisvalue equalling thenatural logarithmofthenumberofclasses(pixelvalues)isalsoShannonsmaximumtheo-reticalvaluegivena3times3matrixduetothelackofidenticalnumbersinthematricesThisexampleexplicitlyshowsthataccountingforthedistanceamongvaluesandtheirrelativeabundanceiscrucialtodis-criminateamongareasintermsofmeasured(modelled)heterogeneity

Oneof themetrics accounting for both the abundance and thepairwisespectraldistanceamongpixelsistheRaosQdiversityindexasfollows

wheredij=spectraldistanceamongpixels i and j and p = proportion ofoccupiedarea

Hence RaosQ is capable of discriminating among the ecologi-caldiversityofmatrices(3)and(4)turningouttobe459and9070respectivelyAppendix S1provides an example spreadsheet to per-formthecalculationwhilethecompleteRcodeisstoredintheGitHubrepositoryhttpsgithubcommattmarspectralrao

Wedecidedtomakeuseofacasestudytohighlightthe impor-tanceofconsideringthedistanceamongpixelvaluesinremotesenseecologicalapplicationTheperformanceofRaosQindexindescrib-ing landscape diversitywas tested in a complex agro-forestry land-scapelocatedinsouthernPortugalAtestsitewithanareaofabout10times10km2(centroidlocatedat38∘39prime1074primeprimeN8∘12prime5230primeprimeW)wasselectedtoconducttheanalysisInthisareaasavanna-likeecosystemcalledmontadooccupiesabout40ofthetestsitefollowedbytra-ditionalolivegrovespasturesvineyardsandirrigatedmonocultures(egcornfields)Montadoisspatiallycharacterizedbythevariabilityofitstreedensity(egGodinhoGilGuiomarNevesampPinto-Correia2016)andthegradientbetweenlowandhightreedensityoverspacecanleadtodifferentstructuralheterogeneityandhabitatdiversity

Within the test site polyculture under the small farming con-text (eg vegetable gardens orchards and cereal crops) is an im-portantfeatureofthislandscapebygeneratingahighcompositionalandconfigurational spatialheterogeneity (Figure6)Themaingoalinusingthiscasestudy is todemonstrate thepotentialandeffec-tivenessoftheRaosQindexinproducingaccuratelyremotesens-ing-based maps of spatial diversity over such complex landscapeFor this study a cloud-free Sentinel-2A (S2A) image acquired onAugust 8 2016wasused to compute theNDVI at a 10m spatialresolutionTheS2Aimagedownloadaswellastheatmosphericcor-rection (DOSmethod)were performed using the Semi-automaticClassificationplugin(SCP)implementedintheQGISsoftware(QGISDevelopmentTeam2016)

TheNDVIwasusedasinputdataforRaosQindexcomputationusingawindowsizeof3times3pixelsTheperformanceoftheRaosQwascomparedtotheShannonEntropyindex(ShannonsH)whichisoneofthesimplestandwidelyusedremotesensing-baseddiversitymeasures for landscape heterogeneity assessment (Rocchini etal2016)To investigatewhetherbothdiversity indicesdifferbetween

(2)

⎛⎜⎜⎜⎝

x11 x12 x13

x21 x22 x23

xd1 xd2 xd3

⎞⎟⎟⎟⎠

(3)

⎛⎜⎜⎜⎝

10 13 15

18 20 23

19 21 22

⎞⎟⎟⎟⎠

(4)

⎛⎜⎜⎜⎝

10 121 227

1 40 251

7 100 149

⎞⎟⎟⎟⎠

(5)Q =

sumsumdij times pi times pj

F I G U R E 5 emsp AnexampleofthesparsegeneralizeddissimilaritymodelapproachRemotesensingdataandbiodiversitydatainthefieldcanbecoupledbysparsecanonicalcorrelationanalysis(SCCA)toproducecanonicalcomponentsandacommunitydissimilaritymatrixwhicharethenusedtobuildageneralizeddissimilaritymodel(GDM)tofinallyderiveaβ-diversitymap

0 0

SCCA

GDM

GDM

Remote sensing data Biodiversity data

Canonical components Community dissimilarity

Beta-diversity map

1794emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

land cover types one-wayANOVA testswere performedThis ap-proachwas used for analysing the degree of dissimilarity betweenRaosQandShannonH indexacross twohighcomplex landcovertypes (1) montado and (2) polyculture To do so a sample of 60squareswith 250times250m2 sizewas randomly selected over thesetwolandcovertypesEachsquarerepresentsasampleof625S2ANDVI pixels thus corresponding to a total of 37500pixels overthe60 squares For the comparisonbetweenboth indices the co-efficient of variation (CV) was calculated for each 250times250m2 Regarding the RaosQ performance Figure 6 clearly points to thesignificant improvementsshownbyRaosQ indexcomparedtotheShannonH index indescribing the spatialdiversity Inparticular itcanbeseenthroughtheFigure6 thatRaosQ indexcanhighlightdifferentgradientsofspatialdiversityofmontadoareaswhichpres-enthightreedensityvariability(Figure6)andthushighspatialhet-erogeneityOne-wayANOVAtestsrevealedthatbothindicesvaluesweresignificantlydifferentbetweenthetwolandcovertypes(mon-tado F=5033p lt 001 polyculture F=8898plt001)Overall

theobtainedresultsdemonstratethecapabilityofRaosQindex inproducingaccuratelandscapediversitymapsinacomplexlandscapesuchastheMediterraneanagro-forestrysystems

7emsp |emspCONCLUSION

In this paper we showed several methods based on ecologicalβ-diversitywhichcanbeinvestigatedbyremotesensingthroughthecalculationofecosystemheterogeneitytoestimatethespatialvariabil-ityofbiodiversityWhenthereisawiderangeofheterogeneityforex-amplewhenthedataincludehomogeneousandheterogeneouszonesnosinglemeasuremightcaptureallthedifferentaspectsofβ-diversity(egBaselga2013)Thatiswhywesuggestedinthismanuscriptmul-tivariateandmultidimensionalmethods(egmultivariatestatisticsandmultidimensionaldistancematrices)basedonthespectralsignalanditsvariabilityoverspacetoaccountfordifferentaspectsofdiversityalsoincludingdistance-andabundance-basedmethods(egtheRaosQ)

F I G U R E 6 emsp UpperpanelsSentinel-2Ascene(August82016)andderivedNDVIfortheagro-forestrysystemstestsitelocatedinsouthernPortugalLowerpanelsresultsfromShannonsHandRaosQindicescomputationShannonindextendstooverestimatethelandscapediversitywhencomparedtotheRaosQindex

emspensp emsp | emsp1795Methods in Ecology and Evolu13onROCCHINI et al

Biodiversitymeasuredasspeciesrichnessisoftenusedforconser-vationpurposeshencetheimportanceofavoidinganunder-orover-estimate has been highlighted (Chiarucci etal 2009) Furthermorepairwisedistance-basedmethodsmightbeprofitablyusedtodetectnotonlydiversityhotspotsinanareabutalsothevariationofbiodi-versityoverspaceandpotentiallyovertimeoncemultitemporalsetsofimagesareused

In this paperwe focused on optimizingmeasures of β-diversitybasedonremotesensingdataSuchmeasuresmightbeusedtoregressspeciesdiversityagainstremotelysensedheterogeneitybasedonnewregressiontechniqueswhichmaximizethepossibilityofpredictingthezones in a study area or at larger spatial scales of peculiar conser-vationvalueAsanexampleshrinkageregressionrecentlyappliedinbiodiversityconservation(AuthierSarauxampPeron2017)couldallowadirectfocusonhabitatmodellingwhichisoneofthemajorstrengthsofremotesensing(GillespieFoodyRocchiniGiorgiampSaatchi2008)MoreoversuchanalysismightbeperformedinaBayesianframeworkallowingto(1)modelmultidimensionalcovariateswithnon-stationaryvariationoverspace(RandellTurnbullEwansampJonathan2016)suchasthebandsofsatelliteimagesand(2)modeltheerrorsintheoutputandtheirvariationoverspace(Rocchinietal2017)

Aspreviouslystatedthesuggestedmethodsforβ-diversityes-timation from remote sensing aremainly based on distances butthey could be effectively translated to relative abundance-basedmethodsAsanexampleRocchinietal(2013)introducedthepos-sibility of applying generalized entropy theory to satellite imageswithonesingleformularepresentingacontinuumofdiversitymea-sures changing one parameter One of the best examples in thisframeworkcouldbe theuseofHill numbers inwhichdiversity isexpressedasfollows

whereS=numberofsamplespixelsandpi=relativeabundanceofaspeciesspectralvaluevaryingtheparameterqqDvariesaccordinglyinseveraldiversity indiceseg forq = 0 qD is thesimplenumberofspeciesforlim(q)=1qDequalsShannonsentropyetc(HsiehMaampChao2016)

Furthermore connectivity analysis might also be taken into ac-count (Moilanen etal 2005 2009) For instance a remote sens-ing-based connectivity network among different sites based onβ-diversitymeasurescouldbeappliedfortheestimateof landscapeconnectivityandconsequentgeneticflowasdemonstratedbyVernesietal(2012)Ithasalsobeenshownthatcommunityrelatedbiodiver-sityindicatorsareoftenmissingfromcurrentmonitoringprogrammes(Vihervaaraetal2017)thusmethodssuchasremotesensing-basedRaosQdiversityappliedforvariousecosystemsmightimproveother-wisechallengingmonitoringofbiologicalcommunities

Withthismanuscriptwehopetostimulatediscussionontheavail-ablemethodsforestimatingβ-diversityfromremotelysensedimagerybyproposinginnovativetechniquesgroundedonecologicaltheory

ACKNOWLEDGEMENTS

WearegratefultothehandlingEditorandtotwoanonymousreview-erswhoimprovedwithskillfulsuggestionsapreviousversionofthepresentmanuscriptDRwaspartiallysupportedby (i) theEU-LIFEproject LIFE14ENVIT000514 FutureForCoppices (ii) the H2020project ECOPOTENTIAL (Grant Agreement no 641762) iii) theH2020TRuStEE-TrainingonRemoteSensingforEcosystemmodEl-ling-project(GrantAgreementno721995)

AUTHORSrsquo CONTRIBUTIONS

All authors contributed to the development and writing of themanuscript

DATA ACCESSIBILITY

Partofthedataandcorrespondingoriginalsourcesareavailableatthefollowinghttpsdoiorg105061dryaddg31k

ORCID

Duccio Rocchini httporcidorg0000-0003-0087-0594

Sandra Luque httporcidorg0000-0002-4002-3974

Nathalie Pettorelli httporcidorg0000-0002-1594-6208

Lucy Bastin httporcidorg0000-0003-1321-0800

Hannes Feilhauer httporcidorg0000-0001-5758-6303

Jean-Baptiste Feacuteret httporcidorg0000-0002-0151-1334

Giles M Foody httporcidorg0000-0001-6464-3054

Yoni Gavish httporcidorg0000-0002-6025-5668

William E Kunin httporcidorg0000-0002-9812-2326

Angela Lausch httporcidorg0000-0002-4490-7232

Pedro J Leitatildeo httporcidorg0000-0003-3038-9531

Markus Neteler httporcidorg0000-0003-1916-1966

Carlo Ricotta httporcidorg0000-0003-0818-3959 Martin Wegmann httporcidorg0000-0003-0335-9601

Harini Nagendra httporcidorg0000-0002-1585-0724

REFERENCES

AlahuhtaJKostenSAkasakaMAudersetDAzzellaMBolpagniRhellipHeinoJ(2017)Globalvariationinthebetadiversityoflakemacrophytesis driven by environmental heterogeneity rather than latitude Journal of Biogeography441758ndash1769httpsdoiorg101111jbi12978

AsnerGampMartinR(2008)Spectralandchemicalanalysisoftropicalfor-estsScalingfromleaftocanopylevelsRemote Sensing of Environment1123958ndash3970httpsdoiorg101016jrse200807003

AsnerGPMartinREAndersonCBampKnappDE(2015)QuantifyingforestcanopytraitsImagingspectroscopyversusfieldsurveyRemote Sensing of Environment15815ndash27httpsdoiorg101016jrse2014 11011

(6)qD=

(Ssumi=1

pqi

) 1

1minusq

1796emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

AuthierMSarauxCampPeronC(2017)VariableselectionandaccuratepredictionsinhabitatmodellingAshrinkageapproachEcography40549ndash560httpsdoiorg101111ecog01633

BaldeckCampAsnerG(2013)Estimatingvegetationbetadiversityfromairborne imaging spectroscopy and unsupervised clustering Remote Sensing52057ndash2071httpsdoiorg103390rs5052057

BaldeckCAampColganMSFeacuteretJ-BLevickSRMartinREampAsner G P (2014) Landscape-scale variation in plant communitycomposition of an African savanna from airborne species mappingEcological Applications2484ndash93httpsdoiorg10189013-03071

BaselgaA(2013)Multiplesitedissimilarityquantifiescompositionalhet-erogeneity among several sites while average pairwise dissimilaritymaybemisleadingEcography36124ndash128httpsdoiorg101111 j1600-0587201200124x

Chadwick K amp Asner G (2016) Organismic-scale remote sensing ofcanopyfoliar traits in lowlandtropical forestsRemote Sensing887httpsdoiorg103390rs8020087

ChiarucciABacaroGRocchiniDRicottaCPalmerMWampScheinerSM (2009) Spatially constrained rarefaction Incorporating the au-tocorrelatedstructureofbiologicalcommunitiesinsample-basedrar-efactionCommunity Ecology 10 209ndash214 httpsdoiorg101556comec102009211

ChonT-SParkYSMoonKYampChaEY(1996)Patternizingcom-munitiesbyusinganartificialneuralnetworkEcological Modelling9069ndash78httpsdoiorg1010160304-3800(95)00148-4

ClarkM LampRobertsDA (2012) Species-level differences inhyper-spectral metrics among tropical rainforest trees as determined bya tree-based classifier Remote Sensing 4 1820ndash1855 httpsdoiorg103390rs4061820

ClarkMRobertsDampClarkD(2005)HyperspectraldiscriminationoftropicalrainforesttreespeciesatleaftocrownscalesRemote Sensing of Environment96375ndash398httpsdoiorg101016jrse200503009

FeilhauerHampSchmidtleinS(2009)MappingcontinuousfieldsofalphaandbetadiversityApplied Vegetation Science12429ndash439httpsdoiorg101111j1654-109x200901037x

FeilhauerHFaudeUampSchmidtleinS(2011)CombiningIsomapordi-nationandimagingspectroscopytomapcontinuousfloristicgradientsin a heterogeneous landscape Remote Sensing of Environment 1152513ndash2524httpsdoiorg101016jrse201105011

FeilhauerHThonfeldFFaudeUHeKSRocchiniDSchmidtleinS(2013)Assessingfloristiccompositionwithmultispectralsensorsacomparisonbasedonmonotemporalandmultiseasonal fieldspectraInternational Journal of Applied Earth Observation and Geoinformation21218ndash229httpsdoiorg101016jjag201209002

FeilhauerHDoktorDLauschASchmidtleinSSchulzGampStenzelS(2014)MappingNatura2000habitatsandtheirlocalvariabilitywithremote sensingApplied Vegetation Science17 765ndash779httpsdoiorg101111avsc12115

FeilhauerHDoktorDSchmidtleinSampSkidmoreAK(2016)MappingpollinationtypeswithremotesensingJournal of Vegetation Science27999ndash1011httpsdoiorg101111jvs12421

FeacuteretJ-BampAsnerGP (2013)Tree speciesdiscrimination in tropicalforests using airborne imaging spectroscopy IEEE Transactions on Geoscience and Remote Sensing5173ndash84httpsdoiorg101109TG RS20122199323

FeacuteretJ-BampAsnerGP(2014a)Mappingtropicalforestcanopydiversityusing high-fidelity imaging spectroscopy Ecological Applications 241289ndash1296httpsdoiorg10189013-18241

FeacuteretJ-BampAsnerGP(2014b)MicrotopographiccontrolsonlowlandAmazonian canopy diversity from imaging spectroscopy Ecological Applications241297ndash1310httpsdoiorg10189013-18961

FerrierSManionGElithJampRichardsonK(2007)Usinggeneralizeddissimilaritymodelling toanalyseandpredictpatternsofbetadiver-sityinregionalbiodiversityassessmentDiversity and Distributions13252ndash264httpsdoiorg101111j1472-4642200700341x

FoodyGM(1999)Applicationsoftheself-organisingfeaturemapneuralnetworkincommunitydataanalysisEcological Modelling12097ndash107httpsdoiorg101016s0304-3800(99)00094-0

FoodyGMampCutlerMEJ(2003)TreebiodiversityinprotectedandloggedBorneantropicalrainforestsanditsmeasurementbysatelliteremote sensing Journal of Biogeography30 1053ndash1066 httpsdoiorg101046j1365-2699200300887x

FritzkeB(1995)GrowinggridndashAselforganizingnetworkwithconstantneighborhoodrangeandadaptationstrengthNeural Processing Letters29ndash13httpsdoiorg101007bf02332159

GillespieTW (2005) Predictingwoody-plant species richness in trop-ical dry forests a case study from South Florida USA Ecological Applications1527ndash37httpsdoiorg10189003-5304

Gillespie T W Foody G M Rocchini D Giorgi A P amp Saatchi S(2008)Measuring andmodeling biodiversity from spaceProgress in Physical Geography32203ndash221httpsdoiorg10117703091333 08093606

GiraudelJLampLekS(2001)AcomparisonofSOMalgorithmandsomeconventional statistical methods for ecological community ordina-tion Ecological Modelling 146 329ndash339 httpsdoiorg101016s0304-3800(01)00324-6

GodinhoSGilAGuiomarNNevesNampPinto-CorreiaT (2016)Aremote sensing-basedapproach toestimatingmontadocanopyden-sityusingtheFCDmodelAcontributiontoidentifyingHNVfarmlandsin southern Portugal Agroforestry Systems 90 23ndash34 httpsdoiorg101007s10457-014-9769-3

GrahamCHampFinePVA(2008)PhylogeneticbetadiversityLinkingeco-logicalandevolutionaryprocessesacrossspaceintimeEcology Letters111265ndash1277httpsdoiorg101111j1461-0248200801256x

GuHSinghAampTownsendPA(2015)Detectionofgradientsoffor-estcompositioninanurbanareausingimagingspectroscopyRemote Sensing of Environment 167 168ndash180 httpsdoiorg101016jrse201506010

HarrisACharnockRampLucasRM(2015)Hyperspectralremotesens-ingofpeatlandfloristicgradientsRemote Sensing of Environment16299ndash111httpsdoiorg101016jrse201501029

Hernandez-Stefanoni J L Gallardo-Cruz J A Meave J A RocchiniDBello-PinedaJampLoacutepez-MartiacutenezJO (2012)Modelingα- and β-diversityinatropicalforestfromremotelysensedandspatialdataInternational Journal of Applied Earth Observation and Geoinformation19359ndash368httpsdoiorg101016jjag201204002

Hill M O amp Gauch H G 1980 Detrended correspondence analysisAn improvedordination techniqueVegetatio42 47ndash58 httpsdoiorg101007978-94-009-9197-2_7

HsiehTCMaKHampChaoA(2016)iNEXTAnRpackageforrarefactionandextrapolationofspeciesdiversity(Hillnumbers)Methods in Ecology amp Evolution71451ndash1456httpsdoiorg1011112041-210x12613

KohonenT(1982)Analysisofasimpleself-organizingprocessBiological Cybernetics44135ndash140httpsdoiorg101007bf00317973

LatombeGHuiCampMcGeochMA(2017)Multi-sitegeneraliseddis-similaritymodellingUsingzetadiversitytodifferentiatedriversofturn-overinrareandwidespreadspeciesMethods in Ecology and Evolution8431ndash442httpsdoiorg1011112041-210x12756

LauschABannehrLBeckmannMBoehmCFeilhauerHHackerJMhellipCordAF (2016)Linkingearthobservationandtaxonomicstructural and functional biodiversity Local to ecosystem perspec-tives Ecological Indicators 70 317ndash339 httpsdoiorg101016jecolind201606022

LeathwickJRSnelderTChaddertonWLElithJJulianKampFerrierS(2011)Useofgeneraliseddissimilaritymodellingtoimprovethebiolog-icaldiscriminationofriverandstreamclassificationsFreshwater Biology5621ndash38httpsdoiorg101111j1365-2427201002414x

LegendrePBorcardDampPeres-NetoPR(2005)Analyzingbetadiver-sityPartitioningthespatialvariationofcommunitycompositiondataEcological Monographs75435ndash450httpsdoiorg10189005-0549

emspensp emsp | emsp1797Methods in Ecology and Evolu13onROCCHINI et al

LeitatildeoPJSchwiederMSuessSCatryIMiltonEJMoreiraFhellipHostert P (2015) Mapping beta diversity from space Sparse gen-eralised dissimilarity modelling (SGDM) for analysing high-dimen-sionaldataMethods in Ecology and Evolution6764ndash771httpsdoiorg1011112041-210x12378

LeitatildeoPSchwiederMampSenfC(2017)sgdmAnRpackageforperform-ingsparsegeneralizeddissimilaritymodellingwithtoolsforgdm ISPRS International Journal of Geo-Information623httpsdoiorg103390ijgi6010023

MantelNampValandRS(1970)AtechniqueofnonparametricmultivariateanalysisBiometrics26547ndash558httpsdoiorg1023072529108

MazorTKarkSPossinghamHPRocchiniDLevyYRichardsonAJampLevinN(2013)Cansatellite-basednightlightsbeusedforconser-vationThecaseofnestingseaturtlesintheMediterraneanBiological Conservation 159 63ndash72 httpsdoiorg101016jbiocon201211 004

MeentemeyerRKAnackerBLMarkWampRizzoDM(2008)Earlydetectionofemergingforestdiseaseusingdispersalstimationandeco-logical nichemodeling Ecological Applications18 377ndash390 httpsdoiorg10189007-11501

MetzMRocchiniDampNetelerM(2014)Surfacetemperaturesatthecontinental scaleTracking changeswith remote sensingatunprece-dented detail Remote Sensing63822ndash3840httpsdoiorg103390rs6053822

MoilanenA FrancoAMA Early R Fox RWintle B amp ThomasC D (2005) Prioritizing multiple-use landscapes for conservationMethods for large multi-species planning problems Proceedings of the Royal Society B Biological Sciences 272 1885ndash1891 httpsdoiorg101098rspb20053164

MoilanenA Kujala H amp Leathwick J R (2009)The zonation frame-workandsoftware forconservationprioritization InAMoilanenKWilson amp H P Possingham (Eds) Spatial conservation prioritization Quantitative methods amp computational tools (pp 196ndash210) OxfordOxfordUniversityPress

NeumannCWeissGSchmidtleinSItzerottSLauschADoktorDampBrellM(2015)Ecologicalgradient-basedhabitatqualityassessmentfor spectralecosystem monitoring Remote Sensing 7 2871ndash2898httpsdoiorg103390rs70302871

PalmerMWEarlsPGHoaglandBWWhitePSampWohlgemuthT(2002)QuantitativetoolsforperfectingspecieslistsEnvironmetrics13121ndash137httpsdoiorg101002env516

QGISDevelopmentTeam(2016)QGISgeographicinformationsystemOpenSourceGeospatialFoundationAvailableathttpqgisosgeoorg

RandellDTurnbullKEwansKampJonathanP(2016)Bayesianinfer-ence for nonstationary marginal extremes Environmetrics 27 439ndash450httpsdoiorg101002env2403

Rocchini D Petras V Petrasova A Horning N Furtkevicova LNetelerMhellipWegmannM(2017)OpendataandopensourceforremotesensingtraininginecologyEcological Informatics4057ndash61

RocchiniDampNetelerM(2012)Letthefourfreedomsparadigmapplyto ecology Trends in Ecology amp Evolution 27 310ndash311 httpsdoiorg101016jtree201203009

RocchiniDAndreiniButiniSampChiarucciA (2005)Maximizingplantspecies inventory efficiency by means of remotely sensed spectraldistancesGlobal Ecology and Biogeography14 431ndash437 httpsdoiorg101111j1466-822x200500169x

Rocchini D Balkenhol N Carter G A Foody G M Gillespie TWHeK ShellipNetelerM (2010)Remotely sensed spectral heteroge-neityasaproxyofspeciesdiversityRecentadvancesandopenchal-lenges Ecological Informatics 5 318ndash329 httpsdoiorg101016jecoinf201006001

RocchiniDDelucchiLBacaroGCavalliniPFeilhauerHFoodyG M hellip Neteler M (2013) Calculating landscape diversity with

information-theorybased indicesAGRASSGISsolutionEcological Informatics1782ndash93httpsdoiorg101016jecoinf201204002

Rocchini D Hernaacutendez Stefanoni J L amp He K S (2015) Advancingspecies diversity estimate by remotely sensed proxiesA conceptualreview Ecological Informatics 25 22ndash28 httpsdoiorg101016jecoinf201410006

RocchiniDBoydDSFeacuteretJBFoodyGMHeKSLauschAhellipPettorelliN(2016)Satelliteremotesensingtomonitorspeciesdiver-sityPotentialandpitfallsRemote Sensing in Ecology and Conservation225ndash36httpsdoiorg101002rse29

Rocchini D Garzon-Lopez C X Marcantonio M Amici V BacaroG Bastin L hellip Rosaacute R (2017) Anticipating species distributionsHandlingsamplingeffortbiasunderaBayesianframeworkScience of the Total Environment584ndash585 282ndash290 httpsdoiorg101016jscitotenv201612038

RosauerDFFerrierSWilliamsKJManionGKeoghJSampLaffanSW (2014)PhylogeneticgeneraliseddissimilaritymodellingAnewapproachtoanalysingandpredictingspatialturnoverinthephyloge-neticcompositionofcommunitiesEcography3721ndash32httpsdoiorg101111j1600-0587201300466x

SchmellerDWeatherdonLLoyauABondeauABrotonsLBrummittNhellipReganE(inpress)AsuiteofessentialbiodiversityvariablesfordetectingcriticalbiodiversitychangeBiological Reviews

SchmidtleinSampSassinJ(2004)MappingcontinuousfloristicgradientsingrasslandsusinghyperspectralimageryRemote Sensing of Environment92126ndash138httpsdoiorg101016jrse200405004

Schmidtlein S Zimmermann P Schuumlpferling R amp Weiss C (2007)MappingthefloristiccontinuumOrdinationspacepositionestimatedfromimagingspectroscopyJournal of Vegetation Science18131ndash140httpsdoiorg101111j1654-11032007tb02523x

TahvanainenT (2011)Abrupt ombrotrophication of a boreal aapamiretriggered by hydrological disturbance in the catchment Journal of Ecology201199

Tuomisto H amp Ruokolainen K (2006) Analyzing or explaining betadiversityUnderstanding the targets of differentmethods of anal-ysis Ecology 87 2697ndash2708 httpsdoiorg1018900012-9658 (2006)87

TuomistoHPoulsenARuokolainenKMoranRQuintanaCCeliJampCanasG (2003) Linking floristicpatternswith soil heterogeneityandsatellite imagery inEcuadorianAmazoniaEcological Applications13352ndash371httpsdoiorg1018901051-0761(2003)013[0352lfp wsh]20co2

TyreAJPossinghamHPampLindenmayerDB(2001)InferringprocessfrompatternCanterritoryoccupancyprovide informationabout lifehistoryparametersEcological Applications111722ndash1737httpsdoiorg1023073061091

Ustin S L amp Gamon J A (2010) Remote sensing of plant functionaltypesNew Phytologist186795ndash816httpsdoiorg101111j1469- 8137201003284x

VaglioLaurinGChanJC-WChenQLindsellJACoomesDAGuerriero LhellipValentiniR (2014)Biodiversitymapping in a tropi-calWestAfricanforestwithairbornehyperspectraldataPLoS ONE9e97910httpsdoiorg101371journalpone0097910

VernesiC RocchiniD Pecchioli ENetelerMVendraminGGampPaffetti D (2012) A landscape genetics approach reveals ecolog-ical-based differentiation in populations of holm oak (Quercus ilexL)attheirnorthernmostdistributionEDGEBiological Journal of the Linnean Society107458ndash467httpsdoiorg101111j1095-8312 201201940x

VihervaaraPAuvinenA-PMononenLToumlrmaumlMAhlrothPAnttilaShellipVirkkalaR (2017)Howessentialbiodiversityvariablesandre-motesensingcanhelpnationalbiodiversitymonitoringGlobal Ecology and Conservation 10 43ndash59 httpsdoiorg101016jgecco2017 01007

1798emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

WegmannMLeutnerBFMetzMNetelerMDechSampRocchiniD(2017)rpiAGRASSGISpackageforsemi-automaticspatialpatternanalysis of remotely sensed land cover dataMethods in Ecology and Evolutioninpresshttpsdoiorg1011112041-210x12827

Whittaker R H (1960) Vegetation of the SiskiyouMountains OregonandCaliforniaEcological Monographs30280ndash338httpsdoiorg10 23071943563

Witten D Tibshirani R Gross S amp Narasimhan B (2013) PMAPenalized multivariate analysis R package version 109 RetrievedfromhttpsCRANR-projectorgpackage=PMA

Woolley SN C Foster SDOrsquoHaraTDWintle BA ampDunstanP K (2017) Characterising uncertainty in generalised dissimilaritymodels Methods in Ecology and Evolution 8 985ndash995 httpsdoiorg1011112041-210x12710

SUPPORTING INFORMATION

Additional Supporting Information may be found online in thesupportinginformationtabforthisarticle

How to cite this articleRocchiniDLuqueSPettorelliNetalMeasuringβ-diversitybyremotesensingAchallengeforbiodiversitymonitoringMethods Ecol Evol 201891787ndash1798 httpsdoiorg1011112041-210X12941

Page 3: Measuring β‐diversity by remote sensing: A challenge for ...€¦ · ment of remote sensing tools (Rocchini & Neteler, 2012) for diversity estimate in which the concept of β-diversity

emspensp emsp | emsp1789Methods in Ecology and Evolu13onROCCHINI et al

betweentheconsideredsitesthebetadiversityatthisparticularscalecanbeassessed

Of thevariousavailableordination techniquesdetrendedcorre-spondenceanalysis(DCAHillampGauch1980)isparticularlysuitablefor such analyses The axes (ie gradients) of the DCA ordinationspacearescaledinSDunitswhereadistanceof4SDisrelatedtoafullspecies turnoverThisenablesaversatileanalysis thateasily revealswhethertwosampledsitesstillhavespeciesincommon

Several studieshavemapped theordinationspaceusing remotesensing data (eg Feilhauer amp Schmidtlein 2009 Feilhauer FaudeampSchmidtlein2011Feilhaueretal2014GuSinghampTownsend2015Harris etal 2015 Leitatildeoetal 2015Neumannetal 2015SchmidtleinampSassin2004SchmidtleinZimmermannSchuumlpferlingampWeiss2007)Forthispurposetheaxesscoresofthesampledsitesare regressed against the corresponding canopy reflectance values

extractedfromair-orspaceborneimagedataTheresultingmultivar-iateregressionmodelsoneperordinationaxisandmostoftengener-atedwithmachine learning regression techniques are subsequentlyappliedontheimagedataforaspatialpredictionofordinationscoresEachpixeloftheimagedataisassignedtoaspecificpositionintheordinationspacethatindicatesitsspeciescompositionTheresultinggradientmapsareapowerfultoolforanalysesofbetadiversityacrossdifferent spatial scales (Feilhauer amp Schmidtlein 2009 Hernandez-Stefanonietal2012)

AsimpleanalysisofthevariabilityoftheDCAscoresinadefinedpixelneighbourhood(ieamovingwindow)resultsinaefficientbetadiversityassessmentThespatialscaleofthisassessmentcanbevariedeitherbyresamplingthegradientmaptoacoarserspatialresolution(iepixelsize)orbychangingthekernelsizeoftheconsideredpixelneighbourhood Such techniques have been further developed egfor spatial conservationprioritizationprogrammes such asZonation(Moilanenetal2005MoilanenKujalaampLeathwick2009)

Figure2showsanexampleofaDCA-basedassessmentofbetadiversityonaverylocalscale(10m)followingtheapproachdescribedinFeilhauerandSchmidtlein(2009)Theanalysedlandscapeisamo-saicofraisedbogsfenstransitionmiresandMoliniameadowsForadetaileddescriptionofthedataandsitepleaserefertoFeilhaueretal(2014)andFeilhauerDoktorSchmidtleinandSkidmore(2016)

Analyses like this require two different datasets (1) a sampleoffielddatathatisrepresentativeforthevegetationinthestudiedarea and is used to generate theordination space (2) imagedatawithasufficientspectral resolutiontodiscriminatethevegetationtypeswithintheordinationspaceandwithaspatialresolutionthatisinlinewiththesamplingdesignofthefielddata(Feilhaueretal2013)

F I G U R E 1 emsp Anexampleofhowtocoupleinformationoncompositionalpropertiesofthelandscapebyopticaldatatogetherwithstructural(3D)propertiesbylaserscanningLiDARdata

F I G U R E 2 emsp β-diversityassessmentwithacombinationofordinationtechniquesandremotesensing(a)Three-dimensionaldetrendedcorrespondenceanalysis(DCA)ordinationspaceofn=100vegetationplotssampledinraisedbogsfenstransitionmiresandMoliniameadowsinthealpinefoothillsofSouthernGermanyAninter-plotdistanceof4SDcorrespondstoafullspeciesturnover(b)MapsoftheordinationaxesresultingfromaspatialpredictionbasedoncanopyreflectanceEachpixelhasapredictedpositionintheordinationspacethatisindicatedbyitscolourThecolourschemecorrespondsto(a)Themaphasaspatialresolutionof2times2m2whichisinlinewiththesampledplotsize (c)CumulativechangeratesalongthethreeDCAaxesina5times5pixelneighbourhoodAhighchangerateindicatesahighbetadiversity

1790emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

Using these data the continuous spatial variability of the spec-tralsignalintheimagepixelsistranslatedintoaspatiallycontinuousmeasureofspeciescompositionTheadvantagesofthisapproachareobvioussincethediversityanalysesareconductedinthefloristicgra-dientspacetheresultingmeasuresresemblefieldstudiesandarethuseasiertointerpretthanspectralproxiesandclosertothepointofviewofmanyend-usersFurthermoretheanalysisofordinationscoresindefinedpixelneighbourhoodsisnotrestrictedtoasinglespatialscalebutofferstheopportunitytoimplementassessmentsofbetadiversityonmultiplescales

3emsp |emspTHE SPECTRAL SPECIES CONCEPT

ThespectralspeciesconcepthasbeenproposedbyFeacuteretandAsner(2014a) tomap bothα and β component of the biodiversity usinga unique framework It is rooted in the convergence between twootherconceptsthespectralvariationhypothesis(SVH)proposedbyPalmer Earls Hoagland White andWohlgemuth (2002) and theplantopticaltypesproposedbyUstinandGamon(2010)sustainedbythetechnologicaladvances in thedomainofhighspatial resolu-tionimagingspectroscopyTheSVHstatesthatthespatialvariabilityin the remotely sensed signal that is the spectral heterogeneity isrelatedtoenvironmentalheterogeneityandcouldthereforebeusedasapowerfulproxyofspeciesdiversitySVHhasbeentestedindif-ferentsituations(Rocchinietal2010)andconclusionsshowthattheperformanceofthisapproach isverydependentonseveralfactorsincludingtheinstrumentcharacteristics(spectralspatialandtempo-ral resolution) the typeofvegetation investigatedand themetricsderivedfromremotelysensedinformationtoestimatespectralheter-ogeneityPlantopticaltypesrefertothecapacityofsensorstomeas-ure signals that aggregate information about vegetation structurephenology biochemistry andphysiology Therefore this concept isalsotightly linkedtotheperformancesofthesensorandfindspar-ticularechowiththeincreasinguseofhighspatialresolutionimagingspectroscopyfortheestimationandidentificationofmultiplevegeta-tionproperties

Thedetailsprovidedbyhighspatialresolutionimagingspectros-copyare sufficient toperformanalysesofplantoptical traitsat theindividual treescale inorder todifferentiate treespeciesobtain in-formationaboutleafchemicaltraitsandestimatetheαcomponentofbiodiversity(AsnerampMartin2008AsnerMartinAndersonampKnapp2015ChadwickampAsner2016ClarkampRoberts2012ClarkRobertsampClark2005FeacuteretampAsner2013VaglioLaurinetal2014)TheseresultsillustratethatspectralinformationcanberelatedtotaxonomicorfunctionalinformationofthevegetationwhichsupportstheSVHunderthehypothesisthatthemetricsusedtocomputespectralhet-erogeneityandagivencomponentofvegetationdiversityareprop-erlydefinedHowevertheseapplicationsarecurrentlylimitedbytheimportantamountoffielddatarequiredtotrainregressionorclassi-ficationmodelswhich isalsodirectly linkedtotheir lowgeneraliza-tionabilityintimeandspaceUnsupervisedapproachesthenappearasvaluablealternatives for theanalysisofecosystemheterogeneity

(Baldeck amp Asner 2013 Baldeck etal 2014 Feilhauer Faude ampSchmidtlein2011FeacuteretampAsner2014b)asecologicalindicatorsofα and βdiversityatlandscapescaleusuallyrequireoneorseverallevelsofabstractionbeyondthecorrecttaxonomicidentification(TuomistoampRuokolainen2006)

Clustering(properlypre-processed)spectralinformationshouldre-sultinpixelsfromthesamespeciesnaturallygroupingtogetherratherthandistributing randomlyamongclustersFeacuteretandAsner (2014a)proposedagroupingmethodaimingatassigninglabelstopixelsbasedon multiple clustering of spectroscopic data acquired at landscapescaleThesepixelslabelledwithasetoftheso-calledspectralspeciescan thenbeused straightforwardly in order to computevarious di-versitymetricssuchasShannonindexforαdiversityandBray-Curtisdissimilarity forβ diversityThepre-processing stage is divided intoseveralstagesAftermaskingallnon-vegetatedpixelsanormalizationbased on continuous removal is applied to each pixel and over thefullspectraldomainthenaprincipalcomponentanalysisisperformedonthecontinuouslyremovedspectraldataThenormalizationreduceseffectsduetochangesinilluminationcanopygeometryandotherfac-torsunrelatedtovegetationwhileenhancingthesignalcorrespondingtovegetationThecomponentsincludingindividual-specificinforma-tionarethecomponentsof interestTheycanbe identifiedaftervi-sual inspectionorautomated routines if initialdata showsufficientsignaltonoiseratioOncealimitednumberofcomponentshavebeenselectedk-means clustering is then applied to a certain number ofsubsetsandforeachof thesesubsetscentroidsarecomputedandeachpixelintheimageislabelledbasedontheclosestcentroidTherepetitionofclusteringbasedonvarioussubsetsoftheimagetendstominimizetheriskofassigningcentroidstoirrelevantgroupsofpixelsExperimental results showed that the averaging of diversity indicescomputedfrommultiplecentroidmapscanbeseenasananalogoustosignalaveragingwhichconsists in increasingsignaltonoiseratiobyreplicatingmeasurementsForeachrepetitiontheclosestcentroidcorrespondstothespectralspeciesandforeachspatialunitofagivensizethespectralspeciesdistribution isderivedinordertocomputeanydiversitymetricrequiringeitherinformationatthelocalscaleorcomparisonofinformationacrossspatiallydistantplots

Theconceptsofspectralspeciesandspectralspeciesdistributionhavebeentestedsuccessfullyona limitednumberofsituationsandtypesofecosystems(seeRocchinietal2016forareviewandLauschetal 2016 for an application to similar concepts) As an exampleFeacuteretandAsner(2014a)showedabilitytoproperlyestimatelandscapeheterogeneityatmoderatespatialscaleuptofewdozensquarekilo-metersovertropicalforestsbasedonhighspatialresolutionimagingspectroscopy (Figure 3) A generic parameterization of the methodshowed robust performances for α diversity mapping across spaceandtimebutmappingβdiversityacrosslargespatialscalesusingim-agesacquiredduringdifferentairbornecampaignremainschallengingwhichleadstoanunsolvedproblemwhenconsideringoperationalre-gionalmappingIntheperspectiveofglobalmonitoringofbiodiversityandgiventheunprecedentedremotesensingcapacityallowedbytheCopernicusprogramincludingtheSentinel-2multispectralsatellitesseveralotherchallengesareforeseenandcurrentlyinvestigatedThe

emspensp emsp | emsp1791Methods in Ecology and Evolu13onROCCHINI et al

influenceofdecreasedspatialandspectralresolutionontheabilitytoproperlydifferentiateecologicallymeaningfulspectralspeciesacrosslandscapesandoverregionswillneedtobeinvestigatedTheapplica-tionofthisconceptbeyondtropicalforestsandsavannaecosystemsshouldalsobeinvestigatedasitmaynotholdwhenappliedonmoder-atelydiverseecosystemsorsystemswithindividualswhoseindividu-alshavedimensionswellbelowtheresolvingpoweroftheinstrument

4emsp |emspSELF-ORGANIZING FEATURE MAPS

TheKohonenself-organizingfeaturemap(SOFMKohonen1982)isaneuralnetworkthatmaybeusedtoundertakeunsupervisedcluster-ingofdataCriticallytheinputtoaSOFMcanbealargemulti-variatedatasetsuchasmaybeacquiredonspeciesfromquadrat-basedfieldsurveysTheSOFMsummarizesthedata ina lowtypicallytwodi-mensionaloutput(Figure4)Inthisoutputspacethedataforindivid-ualquadratsaretopologicallyorderedmdashwithsitesthataresimilarclosetogetherwhilethoseofhighlydifferentspeciescompositionaremoredistantBecause thedatasites in theoutputspacearearrangedby

F I G U R E 3 emsp Spectralspeciescanbeidentifiedinahyper-ormultispectralimagebyspatialclusteringmethodandtheirdistributioncanbemappedSuchmapscanfurtherbeusedtoapplylocal-basedheterogeneitymeasurements(α-diversity)aswellasiterativedistance-basedmethodstobuildβ-diversitymapsReproducedfromFeacuteretandAsner(2014a)

F I G U R E 4 emsp Aself-organizingfeaturemapcanbebuiltstartingfromaninputlayeregthepresenceorabsenceofatreespeciesorofapeculiarspectralvalue)whichisconnectedtoeveryunitintheoutputlayerbyaweightedconnectionTheself-organizingfeaturemapusesunsupervisedlearningtomapthelocationoffieldsiteswithintheoutputspaceonthebasisoftheirrelativesimilarityinspeciesorspectralcompositionRedrawnfromFoodyandCutler(2003)

Output layer

Input units

1792emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

relativesimilaritytheoutputspacemayalsobeusedtoaggregateorclassifyadatasetAssuchtheSOFMisattractiveasanon-parametricclusteringanalysisandasameanstoundertakeanordination(ChonParkMoonampCha1996)

ASOFMisunlikesomeoftheapproachesusedcommonlyincom-munityecologynotconstrainedbyassumptionsrelatingthestatisticaldistributionofthedatausedTheSOFMusesunsupervisedlearningtoproduceatopologicallyorderedoutputspaceinwhichthesamplesarearrangedspatiallyinrelationtotheirrelativesimilarityinspeciescompositionTheSOFMthusperformsanon-parametricordinationanalysis(Foody1999)TheproductionofaclassificationbyaSOFMcomprisestwomainstages(GiraudelampLek2001)Aniterativeanaly-sisinwhichtime-decayingparametersthatcontrolnetworklearningandthesizeoflocalneighbourhoodslocatedaroundoutputunitsisusedForthistheusermustspecifyanumberofkeyparameterssuchasthesizeandshapeofthenetworknumberofiterationsoftheal-gorithmthelearningrateanditsrateofdeclineandaneighbourhoodparameterTheneedforsuchparameterscanaddsomeuncertaintytotheanalysisWhile therearenoformal rules to follow in thede-signofaSOFMtherearerecommendationsforthedeterminationofSOFMparametersettings (GiraudelampLek2001)Afurtherconcernis thatasanunsupervisedclassifier theclassesdefinedmaynotal-waysbethemostusefulforaninvestigationInadditionthenatureof theanalysismeans thedirectionof thegradientscannotbecon-trolled(Fritzke1995)buttheanalysisperformswellincomparisontopopularordinationtechniquessuchasPCAandDCA(FoodyampCutler2003)TheSOFMmayalsouseavarietyofdifferentdatatypessuchaspresenceabsenceabundanceorimportancevaluesandcansolvecomplexnonlinearproblems(GiraudelampLek2001)

5emsp |emspMULTIDIMENSIONAL DISTANCE MATRICES GDMS AND SGDMS

Oneofthemostwidespreadmethodsforassessingdiversityisusingdistancematrices (LegendreBorcardampPeres-Neto2005) IndeedearlyworkbyWhittaker (1960)suggested thatβ-diversitycouldbequantifiedbydissimilaritymatricesamong(pairsof)sitesFurthermoretheManteltest(MantelampValand1970)designedtoestimatetheas-sociationbetweentwo independentdissimilaritymatriceshasbeenwidelyusedtocorrelateacommunitycompositiondissimilaritymatrixwithanenvironmentdissimilarityonethusprovidingusefulinsightsinto community composition and turnover (Legendre etal 2005Tahvanainen2011)

Generalized dissimilarity modelling (GDM Ferrier Manion Elith ampRichardson2007)canbeconsideredasanextensionoftheManteltestwhichisabletoaccommodatemultidimensionalenvironmentaldatatobecomparedwiththecompositionaldataGDMsalsoallowforthepredictionofcompositionalturnoveraswellasforegenvironmentalclassificationconstrainedtothecompositionaldissimilarity(Ferrieretal2007Leathwicketal2011)InGDMthecompositionaldissimilaritiesbetweenallpairsofsamplesaremodelledasafunctionoftheirrespectiveenvironmentaldis-tancesThisisdonethroughalinearcombinationofmonotonicI-splinebasis

functionsundertheassumptionthatincreasingenvironmentaldissimilarity (egalongagradient)canonlyresultinincreasingcompositionaldissimilar-ityThismethodisthuswellsuitedformeasuringandmappingβ-diversityandisthusbecomingwidelyusedinconservationscienceandmacroecol-ogyandrecentlybeensubject toseveraldevelopmentsaswedescribebelow

One such development is the phylogenetic GDM (phylo-GDMRosauer etal 2014) which incorporates phylogenetic dissimilari-ties intoGDMandallows foranalysingandpredictingphylogeneticβ-diversity thus linking ecological and evolutionary processes Thismethod can provide novel insights into themechanisms underlyingcurrentpatternsofbiologicaldiversity(GrahamampFine2008)Anotherrecent development of GDM is the multi-site GDM (MS-GDMLatombeHuiampMcGeoch2017)whichextendsGDMsfrompairwisetomulti-sitedissimilaritymodellingInsuchapapertheauthorstestedMS-GDMbymeansofbothconstrained(monotonical)additivemod-elsand I-splinesalthoughwithnoconclusive results relating to thebestmethod overallThey concluded however thatwhen applyingMS-GDMtoahighnumberofsamplestheycouldbetterexplainthedriversofspeciesturnoverAlsoanimportantdevelopmentofGDMis the Bayesian bootstrapGDM (BBGDMWoolley Foster OrsquoHaraWintleampDunstan2017)designedtocharacterizeuncertaintyingen-eralizeddissimilaritymodelsThisapproachallowsbetterrepresentingtheunderlyinguncertainty inthedatabyestimatingthevarianceinparametersbasedontheavailabledata

FinallyanimplementationofGDMwhichwascreatedparticularlyfordealingwithhigh-dimensional (andpotentiallyhigh-collinear) re-motesensingdataasinputinGDMisthesparsegeneralizeddissim-ilaritymodel (SGDMFigure5Leitatildeoetal2015)Thismethod isatwo-stageapproachthatconsistsofinitiallyreducingtheenvironmen-talspace(egreflectancedata)bymeansofasparsecanonicalcorrela-tionanalysis(SCCAFigure5WittenTibshiraniGrossampNarasimhan2013)andthenfittingtheresultingcomponentswithaGDMmodelTheSCCAisaformofpenalizedcanonicalcorrelationanalysisbasedontheL1(lasso)penaltyfunctionandisthusdesignedtodealwithhigh-dimensionaldataThetwoalgorithmsarecoupledinawaythattheSCCApenalizationisselectedthroughaheuristicgridsearchman-ner in order tominimize the cross-validate rootmean square errorin the dissimilarities predicted by the GDM In this procedure thehigh-dimensionalenvironmentaldata (suchascoming fromtimese-riesofmultispectralorhyperspectraldata)aresubjecttoasupervisedordinationapproachthatreducestheirdimensionwhilecapturingtheaxesofvariationthatmostcorrelatetothoseofthecommunitycom-positionalmatrixSGDMhasbeensuccessfullyusedformodellingandmappingthecompositionalturnoverofbothanimalandplantspeciesusingseveraldifferentsourcesofremotesensing(andauxiliary)data(Leitatildeoetal2015LeitatildeoSchwiederampSenf2017)

6emsp |emspRAOrsquoS Q DIVERSITY

Most of the previously shown metrics are based on the distanceamong pixel values in a multidimensional spectral space None

emspensp emsp | emsp1793Methods in Ecology and Evolu13onROCCHINI et al

of them considers the relative abundance of such pixel values in aneighbourhood

Bycontrastabundance-basedmetricssuchastheShannonentropycouldoutputsimilarresultsdespiteavariabledistanceamongpixelval-uesAsanexampleconsidera3times3matrixofremotelysenseddata

composedbythefollowingvalues

thenconsideradifferentmatrix

FromaShannonsentropyperspectivesuchmatricesareequalintermsofheterogeneityTheShannonsentropyisindeedbasedontherelativeabundance(andrichness)ofasampleanditsvalueis2197forboth thematricesThisvalue equalling thenatural logarithmofthenumberofclasses(pixelvalues)isalsoShannonsmaximumtheo-reticalvaluegivena3times3matrixduetothelackofidenticalnumbersinthematricesThisexampleexplicitlyshowsthataccountingforthedistanceamongvaluesandtheirrelativeabundanceiscrucialtodis-criminateamongareasintermsofmeasured(modelled)heterogeneity

Oneof themetrics accounting for both the abundance and thepairwisespectraldistanceamongpixelsistheRaosQdiversityindexasfollows

wheredij=spectraldistanceamongpixels i and j and p = proportion ofoccupiedarea

Hence RaosQ is capable of discriminating among the ecologi-caldiversityofmatrices(3)and(4)turningouttobe459and9070respectivelyAppendix S1provides an example spreadsheet to per-formthecalculationwhilethecompleteRcodeisstoredintheGitHubrepositoryhttpsgithubcommattmarspectralrao

Wedecidedtomakeuseofacasestudytohighlightthe impor-tanceofconsideringthedistanceamongpixelvaluesinremotesenseecologicalapplicationTheperformanceofRaosQindexindescrib-ing landscape diversitywas tested in a complex agro-forestry land-scapelocatedinsouthernPortugalAtestsitewithanareaofabout10times10km2(centroidlocatedat38∘39prime1074primeprimeN8∘12prime5230primeprimeW)wasselectedtoconducttheanalysisInthisareaasavanna-likeecosystemcalledmontadooccupiesabout40ofthetestsitefollowedbytra-ditionalolivegrovespasturesvineyardsandirrigatedmonocultures(egcornfields)Montadoisspatiallycharacterizedbythevariabilityofitstreedensity(egGodinhoGilGuiomarNevesampPinto-Correia2016)andthegradientbetweenlowandhightreedensityoverspacecanleadtodifferentstructuralheterogeneityandhabitatdiversity

Within the test site polyculture under the small farming con-text (eg vegetable gardens orchards and cereal crops) is an im-portantfeatureofthislandscapebygeneratingahighcompositionalandconfigurational spatialheterogeneity (Figure6)Themaingoalinusingthiscasestudy is todemonstrate thepotentialandeffec-tivenessoftheRaosQindexinproducingaccuratelyremotesens-ing-based maps of spatial diversity over such complex landscapeFor this study a cloud-free Sentinel-2A (S2A) image acquired onAugust 8 2016wasused to compute theNDVI at a 10m spatialresolutionTheS2Aimagedownloadaswellastheatmosphericcor-rection (DOSmethod)were performed using the Semi-automaticClassificationplugin(SCP)implementedintheQGISsoftware(QGISDevelopmentTeam2016)

TheNDVIwasusedasinputdataforRaosQindexcomputationusingawindowsizeof3times3pixelsTheperformanceoftheRaosQwascomparedtotheShannonEntropyindex(ShannonsH)whichisoneofthesimplestandwidelyusedremotesensing-baseddiversitymeasures for landscape heterogeneity assessment (Rocchini etal2016)To investigatewhetherbothdiversity indicesdifferbetween

(2)

⎛⎜⎜⎜⎝

x11 x12 x13

x21 x22 x23

xd1 xd2 xd3

⎞⎟⎟⎟⎠

(3)

⎛⎜⎜⎜⎝

10 13 15

18 20 23

19 21 22

⎞⎟⎟⎟⎠

(4)

⎛⎜⎜⎜⎝

10 121 227

1 40 251

7 100 149

⎞⎟⎟⎟⎠

(5)Q =

sumsumdij times pi times pj

F I G U R E 5 emsp AnexampleofthesparsegeneralizeddissimilaritymodelapproachRemotesensingdataandbiodiversitydatainthefieldcanbecoupledbysparsecanonicalcorrelationanalysis(SCCA)toproducecanonicalcomponentsandacommunitydissimilaritymatrixwhicharethenusedtobuildageneralizeddissimilaritymodel(GDM)tofinallyderiveaβ-diversitymap

0 0

SCCA

GDM

GDM

Remote sensing data Biodiversity data

Canonical components Community dissimilarity

Beta-diversity map

1794emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

land cover types one-wayANOVA testswere performedThis ap-proachwas used for analysing the degree of dissimilarity betweenRaosQandShannonH indexacross twohighcomplex landcovertypes (1) montado and (2) polyculture To do so a sample of 60squareswith 250times250m2 sizewas randomly selected over thesetwolandcovertypesEachsquarerepresentsasampleof625S2ANDVI pixels thus corresponding to a total of 37500pixels overthe60 squares For the comparisonbetweenboth indices the co-efficient of variation (CV) was calculated for each 250times250m2 Regarding the RaosQ performance Figure 6 clearly points to thesignificant improvementsshownbyRaosQ indexcomparedtotheShannonH index indescribing the spatialdiversity Inparticular itcanbeseenthroughtheFigure6 thatRaosQ indexcanhighlightdifferentgradientsofspatialdiversityofmontadoareaswhichpres-enthightreedensityvariability(Figure6)andthushighspatialhet-erogeneityOne-wayANOVAtestsrevealedthatbothindicesvaluesweresignificantlydifferentbetweenthetwolandcovertypes(mon-tado F=5033p lt 001 polyculture F=8898plt001)Overall

theobtainedresultsdemonstratethecapabilityofRaosQindex inproducingaccuratelandscapediversitymapsinacomplexlandscapesuchastheMediterraneanagro-forestrysystems

7emsp |emspCONCLUSION

In this paper we showed several methods based on ecologicalβ-diversitywhichcanbeinvestigatedbyremotesensingthroughthecalculationofecosystemheterogeneitytoestimatethespatialvariabil-ityofbiodiversityWhenthereisawiderangeofheterogeneityforex-amplewhenthedataincludehomogeneousandheterogeneouszonesnosinglemeasuremightcaptureallthedifferentaspectsofβ-diversity(egBaselga2013)Thatiswhywesuggestedinthismanuscriptmul-tivariateandmultidimensionalmethods(egmultivariatestatisticsandmultidimensionaldistancematrices)basedonthespectralsignalanditsvariabilityoverspacetoaccountfordifferentaspectsofdiversityalsoincludingdistance-andabundance-basedmethods(egtheRaosQ)

F I G U R E 6 emsp UpperpanelsSentinel-2Ascene(August82016)andderivedNDVIfortheagro-forestrysystemstestsitelocatedinsouthernPortugalLowerpanelsresultsfromShannonsHandRaosQindicescomputationShannonindextendstooverestimatethelandscapediversitywhencomparedtotheRaosQindex

emspensp emsp | emsp1795Methods in Ecology and Evolu13onROCCHINI et al

Biodiversitymeasuredasspeciesrichnessisoftenusedforconser-vationpurposeshencetheimportanceofavoidinganunder-orover-estimate has been highlighted (Chiarucci etal 2009) Furthermorepairwisedistance-basedmethodsmightbeprofitablyusedtodetectnotonlydiversityhotspotsinanareabutalsothevariationofbiodi-versityoverspaceandpotentiallyovertimeoncemultitemporalsetsofimagesareused

In this paperwe focused on optimizingmeasures of β-diversitybasedonremotesensingdataSuchmeasuresmightbeusedtoregressspeciesdiversityagainstremotelysensedheterogeneitybasedonnewregressiontechniqueswhichmaximizethepossibilityofpredictingthezones in a study area or at larger spatial scales of peculiar conser-vationvalueAsanexampleshrinkageregressionrecentlyappliedinbiodiversityconservation(AuthierSarauxampPeron2017)couldallowadirectfocusonhabitatmodellingwhichisoneofthemajorstrengthsofremotesensing(GillespieFoodyRocchiniGiorgiampSaatchi2008)MoreoversuchanalysismightbeperformedinaBayesianframeworkallowingto(1)modelmultidimensionalcovariateswithnon-stationaryvariationoverspace(RandellTurnbullEwansampJonathan2016)suchasthebandsofsatelliteimagesand(2)modeltheerrorsintheoutputandtheirvariationoverspace(Rocchinietal2017)

Aspreviouslystatedthesuggestedmethodsforβ-diversityes-timation from remote sensing aremainly based on distances butthey could be effectively translated to relative abundance-basedmethodsAsanexampleRocchinietal(2013)introducedthepos-sibility of applying generalized entropy theory to satellite imageswithonesingleformularepresentingacontinuumofdiversitymea-sures changing one parameter One of the best examples in thisframeworkcouldbe theuseofHill numbers inwhichdiversity isexpressedasfollows

whereS=numberofsamplespixelsandpi=relativeabundanceofaspeciesspectralvaluevaryingtheparameterqqDvariesaccordinglyinseveraldiversity indiceseg forq = 0 qD is thesimplenumberofspeciesforlim(q)=1qDequalsShannonsentropyetc(HsiehMaampChao2016)

Furthermore connectivity analysis might also be taken into ac-count (Moilanen etal 2005 2009) For instance a remote sens-ing-based connectivity network among different sites based onβ-diversitymeasurescouldbeappliedfortheestimateof landscapeconnectivityandconsequentgeneticflowasdemonstratedbyVernesietal(2012)Ithasalsobeenshownthatcommunityrelatedbiodiver-sityindicatorsareoftenmissingfromcurrentmonitoringprogrammes(Vihervaaraetal2017)thusmethodssuchasremotesensing-basedRaosQdiversityappliedforvariousecosystemsmightimproveother-wisechallengingmonitoringofbiologicalcommunities

Withthismanuscriptwehopetostimulatediscussionontheavail-ablemethodsforestimatingβ-diversityfromremotelysensedimagerybyproposinginnovativetechniquesgroundedonecologicaltheory

ACKNOWLEDGEMENTS

WearegratefultothehandlingEditorandtotwoanonymousreview-erswhoimprovedwithskillfulsuggestionsapreviousversionofthepresentmanuscriptDRwaspartiallysupportedby (i) theEU-LIFEproject LIFE14ENVIT000514 FutureForCoppices (ii) the H2020project ECOPOTENTIAL (Grant Agreement no 641762) iii) theH2020TRuStEE-TrainingonRemoteSensingforEcosystemmodEl-ling-project(GrantAgreementno721995)

AUTHORSrsquo CONTRIBUTIONS

All authors contributed to the development and writing of themanuscript

DATA ACCESSIBILITY

Partofthedataandcorrespondingoriginalsourcesareavailableatthefollowinghttpsdoiorg105061dryaddg31k

ORCID

Duccio Rocchini httporcidorg0000-0003-0087-0594

Sandra Luque httporcidorg0000-0002-4002-3974

Nathalie Pettorelli httporcidorg0000-0002-1594-6208

Lucy Bastin httporcidorg0000-0003-1321-0800

Hannes Feilhauer httporcidorg0000-0001-5758-6303

Jean-Baptiste Feacuteret httporcidorg0000-0002-0151-1334

Giles M Foody httporcidorg0000-0001-6464-3054

Yoni Gavish httporcidorg0000-0002-6025-5668

William E Kunin httporcidorg0000-0002-9812-2326

Angela Lausch httporcidorg0000-0002-4490-7232

Pedro J Leitatildeo httporcidorg0000-0003-3038-9531

Markus Neteler httporcidorg0000-0003-1916-1966

Carlo Ricotta httporcidorg0000-0003-0818-3959 Martin Wegmann httporcidorg0000-0003-0335-9601

Harini Nagendra httporcidorg0000-0002-1585-0724

REFERENCES

AlahuhtaJKostenSAkasakaMAudersetDAzzellaMBolpagniRhellipHeinoJ(2017)Globalvariationinthebetadiversityoflakemacrophytesis driven by environmental heterogeneity rather than latitude Journal of Biogeography441758ndash1769httpsdoiorg101111jbi12978

AsnerGampMartinR(2008)Spectralandchemicalanalysisoftropicalfor-estsScalingfromleaftocanopylevelsRemote Sensing of Environment1123958ndash3970httpsdoiorg101016jrse200807003

AsnerGPMartinREAndersonCBampKnappDE(2015)QuantifyingforestcanopytraitsImagingspectroscopyversusfieldsurveyRemote Sensing of Environment15815ndash27httpsdoiorg101016jrse2014 11011

(6)qD=

(Ssumi=1

pqi

) 1

1minusq

1796emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

AuthierMSarauxCampPeronC(2017)VariableselectionandaccuratepredictionsinhabitatmodellingAshrinkageapproachEcography40549ndash560httpsdoiorg101111ecog01633

BaldeckCampAsnerG(2013)Estimatingvegetationbetadiversityfromairborne imaging spectroscopy and unsupervised clustering Remote Sensing52057ndash2071httpsdoiorg103390rs5052057

BaldeckCAampColganMSFeacuteretJ-BLevickSRMartinREampAsner G P (2014) Landscape-scale variation in plant communitycomposition of an African savanna from airborne species mappingEcological Applications2484ndash93httpsdoiorg10189013-03071

BaselgaA(2013)Multiplesitedissimilarityquantifiescompositionalhet-erogeneity among several sites while average pairwise dissimilaritymaybemisleadingEcography36124ndash128httpsdoiorg101111 j1600-0587201200124x

Chadwick K amp Asner G (2016) Organismic-scale remote sensing ofcanopyfoliar traits in lowlandtropical forestsRemote Sensing887httpsdoiorg103390rs8020087

ChiarucciABacaroGRocchiniDRicottaCPalmerMWampScheinerSM (2009) Spatially constrained rarefaction Incorporating the au-tocorrelatedstructureofbiologicalcommunitiesinsample-basedrar-efactionCommunity Ecology 10 209ndash214 httpsdoiorg101556comec102009211

ChonT-SParkYSMoonKYampChaEY(1996)Patternizingcom-munitiesbyusinganartificialneuralnetworkEcological Modelling9069ndash78httpsdoiorg1010160304-3800(95)00148-4

ClarkM LampRobertsDA (2012) Species-level differences inhyper-spectral metrics among tropical rainforest trees as determined bya tree-based classifier Remote Sensing 4 1820ndash1855 httpsdoiorg103390rs4061820

ClarkMRobertsDampClarkD(2005)HyperspectraldiscriminationoftropicalrainforesttreespeciesatleaftocrownscalesRemote Sensing of Environment96375ndash398httpsdoiorg101016jrse200503009

FeilhauerHampSchmidtleinS(2009)MappingcontinuousfieldsofalphaandbetadiversityApplied Vegetation Science12429ndash439httpsdoiorg101111j1654-109x200901037x

FeilhauerHFaudeUampSchmidtleinS(2011)CombiningIsomapordi-nationandimagingspectroscopytomapcontinuousfloristicgradientsin a heterogeneous landscape Remote Sensing of Environment 1152513ndash2524httpsdoiorg101016jrse201105011

FeilhauerHThonfeldFFaudeUHeKSRocchiniDSchmidtleinS(2013)Assessingfloristiccompositionwithmultispectralsensorsacomparisonbasedonmonotemporalandmultiseasonal fieldspectraInternational Journal of Applied Earth Observation and Geoinformation21218ndash229httpsdoiorg101016jjag201209002

FeilhauerHDoktorDLauschASchmidtleinSSchulzGampStenzelS(2014)MappingNatura2000habitatsandtheirlocalvariabilitywithremote sensingApplied Vegetation Science17 765ndash779httpsdoiorg101111avsc12115

FeilhauerHDoktorDSchmidtleinSampSkidmoreAK(2016)MappingpollinationtypeswithremotesensingJournal of Vegetation Science27999ndash1011httpsdoiorg101111jvs12421

FeacuteretJ-BampAsnerGP (2013)Tree speciesdiscrimination in tropicalforests using airborne imaging spectroscopy IEEE Transactions on Geoscience and Remote Sensing5173ndash84httpsdoiorg101109TG RS20122199323

FeacuteretJ-BampAsnerGP(2014a)Mappingtropicalforestcanopydiversityusing high-fidelity imaging spectroscopy Ecological Applications 241289ndash1296httpsdoiorg10189013-18241

FeacuteretJ-BampAsnerGP(2014b)MicrotopographiccontrolsonlowlandAmazonian canopy diversity from imaging spectroscopy Ecological Applications241297ndash1310httpsdoiorg10189013-18961

FerrierSManionGElithJampRichardsonK(2007)Usinggeneralizeddissimilaritymodelling toanalyseandpredictpatternsofbetadiver-sityinregionalbiodiversityassessmentDiversity and Distributions13252ndash264httpsdoiorg101111j1472-4642200700341x

FoodyGM(1999)Applicationsoftheself-organisingfeaturemapneuralnetworkincommunitydataanalysisEcological Modelling12097ndash107httpsdoiorg101016s0304-3800(99)00094-0

FoodyGMampCutlerMEJ(2003)TreebiodiversityinprotectedandloggedBorneantropicalrainforestsanditsmeasurementbysatelliteremote sensing Journal of Biogeography30 1053ndash1066 httpsdoiorg101046j1365-2699200300887x

FritzkeB(1995)GrowinggridndashAselforganizingnetworkwithconstantneighborhoodrangeandadaptationstrengthNeural Processing Letters29ndash13httpsdoiorg101007bf02332159

GillespieTW (2005) Predictingwoody-plant species richness in trop-ical dry forests a case study from South Florida USA Ecological Applications1527ndash37httpsdoiorg10189003-5304

Gillespie T W Foody G M Rocchini D Giorgi A P amp Saatchi S(2008)Measuring andmodeling biodiversity from spaceProgress in Physical Geography32203ndash221httpsdoiorg10117703091333 08093606

GiraudelJLampLekS(2001)AcomparisonofSOMalgorithmandsomeconventional statistical methods for ecological community ordina-tion Ecological Modelling 146 329ndash339 httpsdoiorg101016s0304-3800(01)00324-6

GodinhoSGilAGuiomarNNevesNampPinto-CorreiaT (2016)Aremote sensing-basedapproach toestimatingmontadocanopyden-sityusingtheFCDmodelAcontributiontoidentifyingHNVfarmlandsin southern Portugal Agroforestry Systems 90 23ndash34 httpsdoiorg101007s10457-014-9769-3

GrahamCHampFinePVA(2008)PhylogeneticbetadiversityLinkingeco-logicalandevolutionaryprocessesacrossspaceintimeEcology Letters111265ndash1277httpsdoiorg101111j1461-0248200801256x

GuHSinghAampTownsendPA(2015)Detectionofgradientsoffor-estcompositioninanurbanareausingimagingspectroscopyRemote Sensing of Environment 167 168ndash180 httpsdoiorg101016jrse201506010

HarrisACharnockRampLucasRM(2015)Hyperspectralremotesens-ingofpeatlandfloristicgradientsRemote Sensing of Environment16299ndash111httpsdoiorg101016jrse201501029

Hernandez-Stefanoni J L Gallardo-Cruz J A Meave J A RocchiniDBello-PinedaJampLoacutepez-MartiacutenezJO (2012)Modelingα- and β-diversityinatropicalforestfromremotelysensedandspatialdataInternational Journal of Applied Earth Observation and Geoinformation19359ndash368httpsdoiorg101016jjag201204002

Hill M O amp Gauch H G 1980 Detrended correspondence analysisAn improvedordination techniqueVegetatio42 47ndash58 httpsdoiorg101007978-94-009-9197-2_7

HsiehTCMaKHampChaoA(2016)iNEXTAnRpackageforrarefactionandextrapolationofspeciesdiversity(Hillnumbers)Methods in Ecology amp Evolution71451ndash1456httpsdoiorg1011112041-210x12613

KohonenT(1982)Analysisofasimpleself-organizingprocessBiological Cybernetics44135ndash140httpsdoiorg101007bf00317973

LatombeGHuiCampMcGeochMA(2017)Multi-sitegeneraliseddis-similaritymodellingUsingzetadiversitytodifferentiatedriversofturn-overinrareandwidespreadspeciesMethods in Ecology and Evolution8431ndash442httpsdoiorg1011112041-210x12756

LauschABannehrLBeckmannMBoehmCFeilhauerHHackerJMhellipCordAF (2016)Linkingearthobservationandtaxonomicstructural and functional biodiversity Local to ecosystem perspec-tives Ecological Indicators 70 317ndash339 httpsdoiorg101016jecolind201606022

LeathwickJRSnelderTChaddertonWLElithJJulianKampFerrierS(2011)Useofgeneraliseddissimilaritymodellingtoimprovethebiolog-icaldiscriminationofriverandstreamclassificationsFreshwater Biology5621ndash38httpsdoiorg101111j1365-2427201002414x

LegendrePBorcardDampPeres-NetoPR(2005)Analyzingbetadiver-sityPartitioningthespatialvariationofcommunitycompositiondataEcological Monographs75435ndash450httpsdoiorg10189005-0549

emspensp emsp | emsp1797Methods in Ecology and Evolu13onROCCHINI et al

LeitatildeoPJSchwiederMSuessSCatryIMiltonEJMoreiraFhellipHostert P (2015) Mapping beta diversity from space Sparse gen-eralised dissimilarity modelling (SGDM) for analysing high-dimen-sionaldataMethods in Ecology and Evolution6764ndash771httpsdoiorg1011112041-210x12378

LeitatildeoPSchwiederMampSenfC(2017)sgdmAnRpackageforperform-ingsparsegeneralizeddissimilaritymodellingwithtoolsforgdm ISPRS International Journal of Geo-Information623httpsdoiorg103390ijgi6010023

MantelNampValandRS(1970)AtechniqueofnonparametricmultivariateanalysisBiometrics26547ndash558httpsdoiorg1023072529108

MazorTKarkSPossinghamHPRocchiniDLevyYRichardsonAJampLevinN(2013)Cansatellite-basednightlightsbeusedforconser-vationThecaseofnestingseaturtlesintheMediterraneanBiological Conservation 159 63ndash72 httpsdoiorg101016jbiocon201211 004

MeentemeyerRKAnackerBLMarkWampRizzoDM(2008)Earlydetectionofemergingforestdiseaseusingdispersalstimationandeco-logical nichemodeling Ecological Applications18 377ndash390 httpsdoiorg10189007-11501

MetzMRocchiniDampNetelerM(2014)Surfacetemperaturesatthecontinental scaleTracking changeswith remote sensingatunprece-dented detail Remote Sensing63822ndash3840httpsdoiorg103390rs6053822

MoilanenA FrancoAMA Early R Fox RWintle B amp ThomasC D (2005) Prioritizing multiple-use landscapes for conservationMethods for large multi-species planning problems Proceedings of the Royal Society B Biological Sciences 272 1885ndash1891 httpsdoiorg101098rspb20053164

MoilanenA Kujala H amp Leathwick J R (2009)The zonation frame-workandsoftware forconservationprioritization InAMoilanenKWilson amp H P Possingham (Eds) Spatial conservation prioritization Quantitative methods amp computational tools (pp 196ndash210) OxfordOxfordUniversityPress

NeumannCWeissGSchmidtleinSItzerottSLauschADoktorDampBrellM(2015)Ecologicalgradient-basedhabitatqualityassessmentfor spectralecosystem monitoring Remote Sensing 7 2871ndash2898httpsdoiorg103390rs70302871

PalmerMWEarlsPGHoaglandBWWhitePSampWohlgemuthT(2002)QuantitativetoolsforperfectingspecieslistsEnvironmetrics13121ndash137httpsdoiorg101002env516

QGISDevelopmentTeam(2016)QGISgeographicinformationsystemOpenSourceGeospatialFoundationAvailableathttpqgisosgeoorg

RandellDTurnbullKEwansKampJonathanP(2016)Bayesianinfer-ence for nonstationary marginal extremes Environmetrics 27 439ndash450httpsdoiorg101002env2403

Rocchini D Petras V Petrasova A Horning N Furtkevicova LNetelerMhellipWegmannM(2017)OpendataandopensourceforremotesensingtraininginecologyEcological Informatics4057ndash61

RocchiniDampNetelerM(2012)Letthefourfreedomsparadigmapplyto ecology Trends in Ecology amp Evolution 27 310ndash311 httpsdoiorg101016jtree201203009

RocchiniDAndreiniButiniSampChiarucciA (2005)Maximizingplantspecies inventory efficiency by means of remotely sensed spectraldistancesGlobal Ecology and Biogeography14 431ndash437 httpsdoiorg101111j1466-822x200500169x

Rocchini D Balkenhol N Carter G A Foody G M Gillespie TWHeK ShellipNetelerM (2010)Remotely sensed spectral heteroge-neityasaproxyofspeciesdiversityRecentadvancesandopenchal-lenges Ecological Informatics 5 318ndash329 httpsdoiorg101016jecoinf201006001

RocchiniDDelucchiLBacaroGCavalliniPFeilhauerHFoodyG M hellip Neteler M (2013) Calculating landscape diversity with

information-theorybased indicesAGRASSGISsolutionEcological Informatics1782ndash93httpsdoiorg101016jecoinf201204002

Rocchini D Hernaacutendez Stefanoni J L amp He K S (2015) Advancingspecies diversity estimate by remotely sensed proxiesA conceptualreview Ecological Informatics 25 22ndash28 httpsdoiorg101016jecoinf201410006

RocchiniDBoydDSFeacuteretJBFoodyGMHeKSLauschAhellipPettorelliN(2016)Satelliteremotesensingtomonitorspeciesdiver-sityPotentialandpitfallsRemote Sensing in Ecology and Conservation225ndash36httpsdoiorg101002rse29

Rocchini D Garzon-Lopez C X Marcantonio M Amici V BacaroG Bastin L hellip Rosaacute R (2017) Anticipating species distributionsHandlingsamplingeffortbiasunderaBayesianframeworkScience of the Total Environment584ndash585 282ndash290 httpsdoiorg101016jscitotenv201612038

RosauerDFFerrierSWilliamsKJManionGKeoghJSampLaffanSW (2014)PhylogeneticgeneraliseddissimilaritymodellingAnewapproachtoanalysingandpredictingspatialturnoverinthephyloge-neticcompositionofcommunitiesEcography3721ndash32httpsdoiorg101111j1600-0587201300466x

SchmellerDWeatherdonLLoyauABondeauABrotonsLBrummittNhellipReganE(inpress)AsuiteofessentialbiodiversityvariablesfordetectingcriticalbiodiversitychangeBiological Reviews

SchmidtleinSampSassinJ(2004)MappingcontinuousfloristicgradientsingrasslandsusinghyperspectralimageryRemote Sensing of Environment92126ndash138httpsdoiorg101016jrse200405004

Schmidtlein S Zimmermann P Schuumlpferling R amp Weiss C (2007)MappingthefloristiccontinuumOrdinationspacepositionestimatedfromimagingspectroscopyJournal of Vegetation Science18131ndash140httpsdoiorg101111j1654-11032007tb02523x

TahvanainenT (2011)Abrupt ombrotrophication of a boreal aapamiretriggered by hydrological disturbance in the catchment Journal of Ecology201199

Tuomisto H amp Ruokolainen K (2006) Analyzing or explaining betadiversityUnderstanding the targets of differentmethods of anal-ysis Ecology 87 2697ndash2708 httpsdoiorg1018900012-9658 (2006)87

TuomistoHPoulsenARuokolainenKMoranRQuintanaCCeliJampCanasG (2003) Linking floristicpatternswith soil heterogeneityandsatellite imagery inEcuadorianAmazoniaEcological Applications13352ndash371httpsdoiorg1018901051-0761(2003)013[0352lfp wsh]20co2

TyreAJPossinghamHPampLindenmayerDB(2001)InferringprocessfrompatternCanterritoryoccupancyprovide informationabout lifehistoryparametersEcological Applications111722ndash1737httpsdoiorg1023073061091

Ustin S L amp Gamon J A (2010) Remote sensing of plant functionaltypesNew Phytologist186795ndash816httpsdoiorg101111j1469- 8137201003284x

VaglioLaurinGChanJC-WChenQLindsellJACoomesDAGuerriero LhellipValentiniR (2014)Biodiversitymapping in a tropi-calWestAfricanforestwithairbornehyperspectraldataPLoS ONE9e97910httpsdoiorg101371journalpone0097910

VernesiC RocchiniD Pecchioli ENetelerMVendraminGGampPaffetti D (2012) A landscape genetics approach reveals ecolog-ical-based differentiation in populations of holm oak (Quercus ilexL)attheirnorthernmostdistributionEDGEBiological Journal of the Linnean Society107458ndash467httpsdoiorg101111j1095-8312 201201940x

VihervaaraPAuvinenA-PMononenLToumlrmaumlMAhlrothPAnttilaShellipVirkkalaR (2017)Howessentialbiodiversityvariablesandre-motesensingcanhelpnationalbiodiversitymonitoringGlobal Ecology and Conservation 10 43ndash59 httpsdoiorg101016jgecco2017 01007

1798emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

WegmannMLeutnerBFMetzMNetelerMDechSampRocchiniD(2017)rpiAGRASSGISpackageforsemi-automaticspatialpatternanalysis of remotely sensed land cover dataMethods in Ecology and Evolutioninpresshttpsdoiorg1011112041-210x12827

Whittaker R H (1960) Vegetation of the SiskiyouMountains OregonandCaliforniaEcological Monographs30280ndash338httpsdoiorg10 23071943563

Witten D Tibshirani R Gross S amp Narasimhan B (2013) PMAPenalized multivariate analysis R package version 109 RetrievedfromhttpsCRANR-projectorgpackage=PMA

Woolley SN C Foster SDOrsquoHaraTDWintle BA ampDunstanP K (2017) Characterising uncertainty in generalised dissimilaritymodels Methods in Ecology and Evolution 8 985ndash995 httpsdoiorg1011112041-210x12710

SUPPORTING INFORMATION

Additional Supporting Information may be found online in thesupportinginformationtabforthisarticle

How to cite this articleRocchiniDLuqueSPettorelliNetalMeasuringβ-diversitybyremotesensingAchallengeforbiodiversitymonitoringMethods Ecol Evol 201891787ndash1798 httpsdoiorg1011112041-210X12941

Page 4: Measuring β‐diversity by remote sensing: A challenge for ...€¦ · ment of remote sensing tools (Rocchini & Neteler, 2012) for diversity estimate in which the concept of β-diversity

1790emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

Using these data the continuous spatial variability of the spec-tralsignalintheimagepixelsistranslatedintoaspatiallycontinuousmeasureofspeciescompositionTheadvantagesofthisapproachareobvioussincethediversityanalysesareconductedinthefloristicgra-dientspacetheresultingmeasuresresemblefieldstudiesandarethuseasiertointerpretthanspectralproxiesandclosertothepointofviewofmanyend-usersFurthermoretheanalysisofordinationscoresindefinedpixelneighbourhoodsisnotrestrictedtoasinglespatialscalebutofferstheopportunitytoimplementassessmentsofbetadiversityonmultiplescales

3emsp |emspTHE SPECTRAL SPECIES CONCEPT

ThespectralspeciesconcepthasbeenproposedbyFeacuteretandAsner(2014a) tomap bothα and β component of the biodiversity usinga unique framework It is rooted in the convergence between twootherconceptsthespectralvariationhypothesis(SVH)proposedbyPalmer Earls Hoagland White andWohlgemuth (2002) and theplantopticaltypesproposedbyUstinandGamon(2010)sustainedbythetechnologicaladvances in thedomainofhighspatial resolu-tionimagingspectroscopyTheSVHstatesthatthespatialvariabilityin the remotely sensed signal that is the spectral heterogeneity isrelatedtoenvironmentalheterogeneityandcouldthereforebeusedasapowerfulproxyofspeciesdiversitySVHhasbeentestedindif-ferentsituations(Rocchinietal2010)andconclusionsshowthattheperformanceofthisapproach isverydependentonseveralfactorsincludingtheinstrumentcharacteristics(spectralspatialandtempo-ral resolution) the typeofvegetation investigatedand themetricsderivedfromremotelysensedinformationtoestimatespectralheter-ogeneityPlantopticaltypesrefertothecapacityofsensorstomeas-ure signals that aggregate information about vegetation structurephenology biochemistry andphysiology Therefore this concept isalsotightly linkedtotheperformancesofthesensorandfindspar-ticularechowiththeincreasinguseofhighspatialresolutionimagingspectroscopyfortheestimationandidentificationofmultiplevegeta-tionproperties

Thedetailsprovidedbyhighspatialresolutionimagingspectros-copyare sufficient toperformanalysesofplantoptical traitsat theindividual treescale inorder todifferentiate treespeciesobtain in-formationaboutleafchemicaltraitsandestimatetheαcomponentofbiodiversity(AsnerampMartin2008AsnerMartinAndersonampKnapp2015ChadwickampAsner2016ClarkampRoberts2012ClarkRobertsampClark2005FeacuteretampAsner2013VaglioLaurinetal2014)TheseresultsillustratethatspectralinformationcanberelatedtotaxonomicorfunctionalinformationofthevegetationwhichsupportstheSVHunderthehypothesisthatthemetricsusedtocomputespectralhet-erogeneityandagivencomponentofvegetationdiversityareprop-erlydefinedHowevertheseapplicationsarecurrentlylimitedbytheimportantamountoffielddatarequiredtotrainregressionorclassi-ficationmodelswhich isalsodirectly linkedtotheir lowgeneraliza-tionabilityintimeandspaceUnsupervisedapproachesthenappearasvaluablealternatives for theanalysisofecosystemheterogeneity

(Baldeck amp Asner 2013 Baldeck etal 2014 Feilhauer Faude ampSchmidtlein2011FeacuteretampAsner2014b)asecologicalindicatorsofα and βdiversityatlandscapescaleusuallyrequireoneorseverallevelsofabstractionbeyondthecorrecttaxonomicidentification(TuomistoampRuokolainen2006)

Clustering(properlypre-processed)spectralinformationshouldre-sultinpixelsfromthesamespeciesnaturallygroupingtogetherratherthandistributing randomlyamongclustersFeacuteretandAsner (2014a)proposedagroupingmethodaimingatassigninglabelstopixelsbasedon multiple clustering of spectroscopic data acquired at landscapescaleThesepixelslabelledwithasetoftheso-calledspectralspeciescan thenbeused straightforwardly in order to computevarious di-versitymetricssuchasShannonindexforαdiversityandBray-Curtisdissimilarity forβ diversityThepre-processing stage is divided intoseveralstagesAftermaskingallnon-vegetatedpixelsanormalizationbased on continuous removal is applied to each pixel and over thefullspectraldomainthenaprincipalcomponentanalysisisperformedonthecontinuouslyremovedspectraldataThenormalizationreduceseffectsduetochangesinilluminationcanopygeometryandotherfac-torsunrelatedtovegetationwhileenhancingthesignalcorrespondingtovegetationThecomponentsincludingindividual-specificinforma-tionarethecomponentsof interestTheycanbe identifiedaftervi-sual inspectionorautomated routines if initialdata showsufficientsignaltonoiseratioOncealimitednumberofcomponentshavebeenselectedk-means clustering is then applied to a certain number ofsubsetsandforeachof thesesubsetscentroidsarecomputedandeachpixelintheimageislabelledbasedontheclosestcentroidTherepetitionofclusteringbasedonvarioussubsetsoftheimagetendstominimizetheriskofassigningcentroidstoirrelevantgroupsofpixelsExperimental results showed that the averaging of diversity indicescomputedfrommultiplecentroidmapscanbeseenasananalogoustosignalaveragingwhichconsists in increasingsignaltonoiseratiobyreplicatingmeasurementsForeachrepetitiontheclosestcentroidcorrespondstothespectralspeciesandforeachspatialunitofagivensizethespectralspeciesdistribution isderivedinordertocomputeanydiversitymetricrequiringeitherinformationatthelocalscaleorcomparisonofinformationacrossspatiallydistantplots

Theconceptsofspectralspeciesandspectralspeciesdistributionhavebeentestedsuccessfullyona limitednumberofsituationsandtypesofecosystems(seeRocchinietal2016forareviewandLauschetal 2016 for an application to similar concepts) As an exampleFeacuteretandAsner(2014a)showedabilitytoproperlyestimatelandscapeheterogeneityatmoderatespatialscaleuptofewdozensquarekilo-metersovertropicalforestsbasedonhighspatialresolutionimagingspectroscopy (Figure 3) A generic parameterization of the methodshowed robust performances for α diversity mapping across spaceandtimebutmappingβdiversityacrosslargespatialscalesusingim-agesacquiredduringdifferentairbornecampaignremainschallengingwhichleadstoanunsolvedproblemwhenconsideringoperationalre-gionalmappingIntheperspectiveofglobalmonitoringofbiodiversityandgiventheunprecedentedremotesensingcapacityallowedbytheCopernicusprogramincludingtheSentinel-2multispectralsatellitesseveralotherchallengesareforeseenandcurrentlyinvestigatedThe

emspensp emsp | emsp1791Methods in Ecology and Evolu13onROCCHINI et al

influenceofdecreasedspatialandspectralresolutionontheabilitytoproperlydifferentiateecologicallymeaningfulspectralspeciesacrosslandscapesandoverregionswillneedtobeinvestigatedTheapplica-tionofthisconceptbeyondtropicalforestsandsavannaecosystemsshouldalsobeinvestigatedasitmaynotholdwhenappliedonmoder-atelydiverseecosystemsorsystemswithindividualswhoseindividu-alshavedimensionswellbelowtheresolvingpoweroftheinstrument

4emsp |emspSELF-ORGANIZING FEATURE MAPS

TheKohonenself-organizingfeaturemap(SOFMKohonen1982)isaneuralnetworkthatmaybeusedtoundertakeunsupervisedcluster-ingofdataCriticallytheinputtoaSOFMcanbealargemulti-variatedatasetsuchasmaybeacquiredonspeciesfromquadrat-basedfieldsurveysTheSOFMsummarizesthedata ina lowtypicallytwodi-mensionaloutput(Figure4)Inthisoutputspacethedataforindivid-ualquadratsaretopologicallyorderedmdashwithsitesthataresimilarclosetogetherwhilethoseofhighlydifferentspeciescompositionaremoredistantBecause thedatasites in theoutputspacearearrangedby

F I G U R E 3 emsp Spectralspeciescanbeidentifiedinahyper-ormultispectralimagebyspatialclusteringmethodandtheirdistributioncanbemappedSuchmapscanfurtherbeusedtoapplylocal-basedheterogeneitymeasurements(α-diversity)aswellasiterativedistance-basedmethodstobuildβ-diversitymapsReproducedfromFeacuteretandAsner(2014a)

F I G U R E 4 emsp Aself-organizingfeaturemapcanbebuiltstartingfromaninputlayeregthepresenceorabsenceofatreespeciesorofapeculiarspectralvalue)whichisconnectedtoeveryunitintheoutputlayerbyaweightedconnectionTheself-organizingfeaturemapusesunsupervisedlearningtomapthelocationoffieldsiteswithintheoutputspaceonthebasisoftheirrelativesimilarityinspeciesorspectralcompositionRedrawnfromFoodyandCutler(2003)

Output layer

Input units

1792emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

relativesimilaritytheoutputspacemayalsobeusedtoaggregateorclassifyadatasetAssuchtheSOFMisattractiveasanon-parametricclusteringanalysisandasameanstoundertakeanordination(ChonParkMoonampCha1996)

ASOFMisunlikesomeoftheapproachesusedcommonlyincom-munityecologynotconstrainedbyassumptionsrelatingthestatisticaldistributionofthedatausedTheSOFMusesunsupervisedlearningtoproduceatopologicallyorderedoutputspaceinwhichthesamplesarearrangedspatiallyinrelationtotheirrelativesimilarityinspeciescompositionTheSOFMthusperformsanon-parametricordinationanalysis(Foody1999)TheproductionofaclassificationbyaSOFMcomprisestwomainstages(GiraudelampLek2001)Aniterativeanaly-sisinwhichtime-decayingparametersthatcontrolnetworklearningandthesizeoflocalneighbourhoodslocatedaroundoutputunitsisusedForthistheusermustspecifyanumberofkeyparameterssuchasthesizeandshapeofthenetworknumberofiterationsoftheal-gorithmthelearningrateanditsrateofdeclineandaneighbourhoodparameterTheneedforsuchparameterscanaddsomeuncertaintytotheanalysisWhile therearenoformal rules to follow in thede-signofaSOFMtherearerecommendationsforthedeterminationofSOFMparametersettings (GiraudelampLek2001)Afurtherconcernis thatasanunsupervisedclassifier theclassesdefinedmaynotal-waysbethemostusefulforaninvestigationInadditionthenatureof theanalysismeans thedirectionof thegradientscannotbecon-trolled(Fritzke1995)buttheanalysisperformswellincomparisontopopularordinationtechniquessuchasPCAandDCA(FoodyampCutler2003)TheSOFMmayalsouseavarietyofdifferentdatatypessuchaspresenceabsenceabundanceorimportancevaluesandcansolvecomplexnonlinearproblems(GiraudelampLek2001)

5emsp |emspMULTIDIMENSIONAL DISTANCE MATRICES GDMS AND SGDMS

Oneofthemostwidespreadmethodsforassessingdiversityisusingdistancematrices (LegendreBorcardampPeres-Neto2005) IndeedearlyworkbyWhittaker (1960)suggested thatβ-diversitycouldbequantifiedbydissimilaritymatricesamong(pairsof)sitesFurthermoretheManteltest(MantelampValand1970)designedtoestimatetheas-sociationbetweentwo independentdissimilaritymatriceshasbeenwidelyusedtocorrelateacommunitycompositiondissimilaritymatrixwithanenvironmentdissimilarityonethusprovidingusefulinsightsinto community composition and turnover (Legendre etal 2005Tahvanainen2011)

Generalized dissimilarity modelling (GDM Ferrier Manion Elith ampRichardson2007)canbeconsideredasanextensionoftheManteltestwhichisabletoaccommodatemultidimensionalenvironmentaldatatobecomparedwiththecompositionaldataGDMsalsoallowforthepredictionofcompositionalturnoveraswellasforegenvironmentalclassificationconstrainedtothecompositionaldissimilarity(Ferrieretal2007Leathwicketal2011)InGDMthecompositionaldissimilaritiesbetweenallpairsofsamplesaremodelledasafunctionoftheirrespectiveenvironmentaldis-tancesThisisdonethroughalinearcombinationofmonotonicI-splinebasis

functionsundertheassumptionthatincreasingenvironmentaldissimilarity (egalongagradient)canonlyresultinincreasingcompositionaldissimilar-ityThismethodisthuswellsuitedformeasuringandmappingβ-diversityandisthusbecomingwidelyusedinconservationscienceandmacroecol-ogyandrecentlybeensubject toseveraldevelopmentsaswedescribebelow

One such development is the phylogenetic GDM (phylo-GDMRosauer etal 2014) which incorporates phylogenetic dissimilari-ties intoGDMandallows foranalysingandpredictingphylogeneticβ-diversity thus linking ecological and evolutionary processes Thismethod can provide novel insights into themechanisms underlyingcurrentpatternsofbiologicaldiversity(GrahamampFine2008)Anotherrecent development of GDM is the multi-site GDM (MS-GDMLatombeHuiampMcGeoch2017)whichextendsGDMsfrompairwisetomulti-sitedissimilaritymodellingInsuchapapertheauthorstestedMS-GDMbymeansofbothconstrained(monotonical)additivemod-elsand I-splinesalthoughwithnoconclusive results relating to thebestmethod overallThey concluded however thatwhen applyingMS-GDMtoahighnumberofsamplestheycouldbetterexplainthedriversofspeciesturnoverAlsoanimportantdevelopmentofGDMis the Bayesian bootstrapGDM (BBGDMWoolley Foster OrsquoHaraWintleampDunstan2017)designedtocharacterizeuncertaintyingen-eralizeddissimilaritymodelsThisapproachallowsbetterrepresentingtheunderlyinguncertainty inthedatabyestimatingthevarianceinparametersbasedontheavailabledata

FinallyanimplementationofGDMwhichwascreatedparticularlyfordealingwithhigh-dimensional (andpotentiallyhigh-collinear) re-motesensingdataasinputinGDMisthesparsegeneralizeddissim-ilaritymodel (SGDMFigure5Leitatildeoetal2015)Thismethod isatwo-stageapproachthatconsistsofinitiallyreducingtheenvironmen-talspace(egreflectancedata)bymeansofasparsecanonicalcorrela-tionanalysis(SCCAFigure5WittenTibshiraniGrossampNarasimhan2013)andthenfittingtheresultingcomponentswithaGDMmodelTheSCCAisaformofpenalizedcanonicalcorrelationanalysisbasedontheL1(lasso)penaltyfunctionandisthusdesignedtodealwithhigh-dimensionaldataThetwoalgorithmsarecoupledinawaythattheSCCApenalizationisselectedthroughaheuristicgridsearchman-ner in order tominimize the cross-validate rootmean square errorin the dissimilarities predicted by the GDM In this procedure thehigh-dimensionalenvironmentaldata (suchascoming fromtimese-riesofmultispectralorhyperspectraldata)aresubjecttoasupervisedordinationapproachthatreducestheirdimensionwhilecapturingtheaxesofvariationthatmostcorrelatetothoseofthecommunitycom-positionalmatrixSGDMhasbeensuccessfullyusedformodellingandmappingthecompositionalturnoverofbothanimalandplantspeciesusingseveraldifferentsourcesofremotesensing(andauxiliary)data(Leitatildeoetal2015LeitatildeoSchwiederampSenf2017)

6emsp |emspRAOrsquoS Q DIVERSITY

Most of the previously shown metrics are based on the distanceamong pixel values in a multidimensional spectral space None

emspensp emsp | emsp1793Methods in Ecology and Evolu13onROCCHINI et al

of them considers the relative abundance of such pixel values in aneighbourhood

Bycontrastabundance-basedmetricssuchastheShannonentropycouldoutputsimilarresultsdespiteavariabledistanceamongpixelval-uesAsanexampleconsidera3times3matrixofremotelysenseddata

composedbythefollowingvalues

thenconsideradifferentmatrix

FromaShannonsentropyperspectivesuchmatricesareequalintermsofheterogeneityTheShannonsentropyisindeedbasedontherelativeabundance(andrichness)ofasampleanditsvalueis2197forboth thematricesThisvalue equalling thenatural logarithmofthenumberofclasses(pixelvalues)isalsoShannonsmaximumtheo-reticalvaluegivena3times3matrixduetothelackofidenticalnumbersinthematricesThisexampleexplicitlyshowsthataccountingforthedistanceamongvaluesandtheirrelativeabundanceiscrucialtodis-criminateamongareasintermsofmeasured(modelled)heterogeneity

Oneof themetrics accounting for both the abundance and thepairwisespectraldistanceamongpixelsistheRaosQdiversityindexasfollows

wheredij=spectraldistanceamongpixels i and j and p = proportion ofoccupiedarea

Hence RaosQ is capable of discriminating among the ecologi-caldiversityofmatrices(3)and(4)turningouttobe459and9070respectivelyAppendix S1provides an example spreadsheet to per-formthecalculationwhilethecompleteRcodeisstoredintheGitHubrepositoryhttpsgithubcommattmarspectralrao

Wedecidedtomakeuseofacasestudytohighlightthe impor-tanceofconsideringthedistanceamongpixelvaluesinremotesenseecologicalapplicationTheperformanceofRaosQindexindescrib-ing landscape diversitywas tested in a complex agro-forestry land-scapelocatedinsouthernPortugalAtestsitewithanareaofabout10times10km2(centroidlocatedat38∘39prime1074primeprimeN8∘12prime5230primeprimeW)wasselectedtoconducttheanalysisInthisareaasavanna-likeecosystemcalledmontadooccupiesabout40ofthetestsitefollowedbytra-ditionalolivegrovespasturesvineyardsandirrigatedmonocultures(egcornfields)Montadoisspatiallycharacterizedbythevariabilityofitstreedensity(egGodinhoGilGuiomarNevesampPinto-Correia2016)andthegradientbetweenlowandhightreedensityoverspacecanleadtodifferentstructuralheterogeneityandhabitatdiversity

Within the test site polyculture under the small farming con-text (eg vegetable gardens orchards and cereal crops) is an im-portantfeatureofthislandscapebygeneratingahighcompositionalandconfigurational spatialheterogeneity (Figure6)Themaingoalinusingthiscasestudy is todemonstrate thepotentialandeffec-tivenessoftheRaosQindexinproducingaccuratelyremotesens-ing-based maps of spatial diversity over such complex landscapeFor this study a cloud-free Sentinel-2A (S2A) image acquired onAugust 8 2016wasused to compute theNDVI at a 10m spatialresolutionTheS2Aimagedownloadaswellastheatmosphericcor-rection (DOSmethod)were performed using the Semi-automaticClassificationplugin(SCP)implementedintheQGISsoftware(QGISDevelopmentTeam2016)

TheNDVIwasusedasinputdataforRaosQindexcomputationusingawindowsizeof3times3pixelsTheperformanceoftheRaosQwascomparedtotheShannonEntropyindex(ShannonsH)whichisoneofthesimplestandwidelyusedremotesensing-baseddiversitymeasures for landscape heterogeneity assessment (Rocchini etal2016)To investigatewhetherbothdiversity indicesdifferbetween

(2)

⎛⎜⎜⎜⎝

x11 x12 x13

x21 x22 x23

xd1 xd2 xd3

⎞⎟⎟⎟⎠

(3)

⎛⎜⎜⎜⎝

10 13 15

18 20 23

19 21 22

⎞⎟⎟⎟⎠

(4)

⎛⎜⎜⎜⎝

10 121 227

1 40 251

7 100 149

⎞⎟⎟⎟⎠

(5)Q =

sumsumdij times pi times pj

F I G U R E 5 emsp AnexampleofthesparsegeneralizeddissimilaritymodelapproachRemotesensingdataandbiodiversitydatainthefieldcanbecoupledbysparsecanonicalcorrelationanalysis(SCCA)toproducecanonicalcomponentsandacommunitydissimilaritymatrixwhicharethenusedtobuildageneralizeddissimilaritymodel(GDM)tofinallyderiveaβ-diversitymap

0 0

SCCA

GDM

GDM

Remote sensing data Biodiversity data

Canonical components Community dissimilarity

Beta-diversity map

1794emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

land cover types one-wayANOVA testswere performedThis ap-proachwas used for analysing the degree of dissimilarity betweenRaosQandShannonH indexacross twohighcomplex landcovertypes (1) montado and (2) polyculture To do so a sample of 60squareswith 250times250m2 sizewas randomly selected over thesetwolandcovertypesEachsquarerepresentsasampleof625S2ANDVI pixels thus corresponding to a total of 37500pixels overthe60 squares For the comparisonbetweenboth indices the co-efficient of variation (CV) was calculated for each 250times250m2 Regarding the RaosQ performance Figure 6 clearly points to thesignificant improvementsshownbyRaosQ indexcomparedtotheShannonH index indescribing the spatialdiversity Inparticular itcanbeseenthroughtheFigure6 thatRaosQ indexcanhighlightdifferentgradientsofspatialdiversityofmontadoareaswhichpres-enthightreedensityvariability(Figure6)andthushighspatialhet-erogeneityOne-wayANOVAtestsrevealedthatbothindicesvaluesweresignificantlydifferentbetweenthetwolandcovertypes(mon-tado F=5033p lt 001 polyculture F=8898plt001)Overall

theobtainedresultsdemonstratethecapabilityofRaosQindex inproducingaccuratelandscapediversitymapsinacomplexlandscapesuchastheMediterraneanagro-forestrysystems

7emsp |emspCONCLUSION

In this paper we showed several methods based on ecologicalβ-diversitywhichcanbeinvestigatedbyremotesensingthroughthecalculationofecosystemheterogeneitytoestimatethespatialvariabil-ityofbiodiversityWhenthereisawiderangeofheterogeneityforex-amplewhenthedataincludehomogeneousandheterogeneouszonesnosinglemeasuremightcaptureallthedifferentaspectsofβ-diversity(egBaselga2013)Thatiswhywesuggestedinthismanuscriptmul-tivariateandmultidimensionalmethods(egmultivariatestatisticsandmultidimensionaldistancematrices)basedonthespectralsignalanditsvariabilityoverspacetoaccountfordifferentaspectsofdiversityalsoincludingdistance-andabundance-basedmethods(egtheRaosQ)

F I G U R E 6 emsp UpperpanelsSentinel-2Ascene(August82016)andderivedNDVIfortheagro-forestrysystemstestsitelocatedinsouthernPortugalLowerpanelsresultsfromShannonsHandRaosQindicescomputationShannonindextendstooverestimatethelandscapediversitywhencomparedtotheRaosQindex

emspensp emsp | emsp1795Methods in Ecology and Evolu13onROCCHINI et al

Biodiversitymeasuredasspeciesrichnessisoftenusedforconser-vationpurposeshencetheimportanceofavoidinganunder-orover-estimate has been highlighted (Chiarucci etal 2009) Furthermorepairwisedistance-basedmethodsmightbeprofitablyusedtodetectnotonlydiversityhotspotsinanareabutalsothevariationofbiodi-versityoverspaceandpotentiallyovertimeoncemultitemporalsetsofimagesareused

In this paperwe focused on optimizingmeasures of β-diversitybasedonremotesensingdataSuchmeasuresmightbeusedtoregressspeciesdiversityagainstremotelysensedheterogeneitybasedonnewregressiontechniqueswhichmaximizethepossibilityofpredictingthezones in a study area or at larger spatial scales of peculiar conser-vationvalueAsanexampleshrinkageregressionrecentlyappliedinbiodiversityconservation(AuthierSarauxampPeron2017)couldallowadirectfocusonhabitatmodellingwhichisoneofthemajorstrengthsofremotesensing(GillespieFoodyRocchiniGiorgiampSaatchi2008)MoreoversuchanalysismightbeperformedinaBayesianframeworkallowingto(1)modelmultidimensionalcovariateswithnon-stationaryvariationoverspace(RandellTurnbullEwansampJonathan2016)suchasthebandsofsatelliteimagesand(2)modeltheerrorsintheoutputandtheirvariationoverspace(Rocchinietal2017)

Aspreviouslystatedthesuggestedmethodsforβ-diversityes-timation from remote sensing aremainly based on distances butthey could be effectively translated to relative abundance-basedmethodsAsanexampleRocchinietal(2013)introducedthepos-sibility of applying generalized entropy theory to satellite imageswithonesingleformularepresentingacontinuumofdiversitymea-sures changing one parameter One of the best examples in thisframeworkcouldbe theuseofHill numbers inwhichdiversity isexpressedasfollows

whereS=numberofsamplespixelsandpi=relativeabundanceofaspeciesspectralvaluevaryingtheparameterqqDvariesaccordinglyinseveraldiversity indiceseg forq = 0 qD is thesimplenumberofspeciesforlim(q)=1qDequalsShannonsentropyetc(HsiehMaampChao2016)

Furthermore connectivity analysis might also be taken into ac-count (Moilanen etal 2005 2009) For instance a remote sens-ing-based connectivity network among different sites based onβ-diversitymeasurescouldbeappliedfortheestimateof landscapeconnectivityandconsequentgeneticflowasdemonstratedbyVernesietal(2012)Ithasalsobeenshownthatcommunityrelatedbiodiver-sityindicatorsareoftenmissingfromcurrentmonitoringprogrammes(Vihervaaraetal2017)thusmethodssuchasremotesensing-basedRaosQdiversityappliedforvariousecosystemsmightimproveother-wisechallengingmonitoringofbiologicalcommunities

Withthismanuscriptwehopetostimulatediscussionontheavail-ablemethodsforestimatingβ-diversityfromremotelysensedimagerybyproposinginnovativetechniquesgroundedonecologicaltheory

ACKNOWLEDGEMENTS

WearegratefultothehandlingEditorandtotwoanonymousreview-erswhoimprovedwithskillfulsuggestionsapreviousversionofthepresentmanuscriptDRwaspartiallysupportedby (i) theEU-LIFEproject LIFE14ENVIT000514 FutureForCoppices (ii) the H2020project ECOPOTENTIAL (Grant Agreement no 641762) iii) theH2020TRuStEE-TrainingonRemoteSensingforEcosystemmodEl-ling-project(GrantAgreementno721995)

AUTHORSrsquo CONTRIBUTIONS

All authors contributed to the development and writing of themanuscript

DATA ACCESSIBILITY

Partofthedataandcorrespondingoriginalsourcesareavailableatthefollowinghttpsdoiorg105061dryaddg31k

ORCID

Duccio Rocchini httporcidorg0000-0003-0087-0594

Sandra Luque httporcidorg0000-0002-4002-3974

Nathalie Pettorelli httporcidorg0000-0002-1594-6208

Lucy Bastin httporcidorg0000-0003-1321-0800

Hannes Feilhauer httporcidorg0000-0001-5758-6303

Jean-Baptiste Feacuteret httporcidorg0000-0002-0151-1334

Giles M Foody httporcidorg0000-0001-6464-3054

Yoni Gavish httporcidorg0000-0002-6025-5668

William E Kunin httporcidorg0000-0002-9812-2326

Angela Lausch httporcidorg0000-0002-4490-7232

Pedro J Leitatildeo httporcidorg0000-0003-3038-9531

Markus Neteler httporcidorg0000-0003-1916-1966

Carlo Ricotta httporcidorg0000-0003-0818-3959 Martin Wegmann httporcidorg0000-0003-0335-9601

Harini Nagendra httporcidorg0000-0002-1585-0724

REFERENCES

AlahuhtaJKostenSAkasakaMAudersetDAzzellaMBolpagniRhellipHeinoJ(2017)Globalvariationinthebetadiversityoflakemacrophytesis driven by environmental heterogeneity rather than latitude Journal of Biogeography441758ndash1769httpsdoiorg101111jbi12978

AsnerGampMartinR(2008)Spectralandchemicalanalysisoftropicalfor-estsScalingfromleaftocanopylevelsRemote Sensing of Environment1123958ndash3970httpsdoiorg101016jrse200807003

AsnerGPMartinREAndersonCBampKnappDE(2015)QuantifyingforestcanopytraitsImagingspectroscopyversusfieldsurveyRemote Sensing of Environment15815ndash27httpsdoiorg101016jrse2014 11011

(6)qD=

(Ssumi=1

pqi

) 1

1minusq

1796emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

AuthierMSarauxCampPeronC(2017)VariableselectionandaccuratepredictionsinhabitatmodellingAshrinkageapproachEcography40549ndash560httpsdoiorg101111ecog01633

BaldeckCampAsnerG(2013)Estimatingvegetationbetadiversityfromairborne imaging spectroscopy and unsupervised clustering Remote Sensing52057ndash2071httpsdoiorg103390rs5052057

BaldeckCAampColganMSFeacuteretJ-BLevickSRMartinREampAsner G P (2014) Landscape-scale variation in plant communitycomposition of an African savanna from airborne species mappingEcological Applications2484ndash93httpsdoiorg10189013-03071

BaselgaA(2013)Multiplesitedissimilarityquantifiescompositionalhet-erogeneity among several sites while average pairwise dissimilaritymaybemisleadingEcography36124ndash128httpsdoiorg101111 j1600-0587201200124x

Chadwick K amp Asner G (2016) Organismic-scale remote sensing ofcanopyfoliar traits in lowlandtropical forestsRemote Sensing887httpsdoiorg103390rs8020087

ChiarucciABacaroGRocchiniDRicottaCPalmerMWampScheinerSM (2009) Spatially constrained rarefaction Incorporating the au-tocorrelatedstructureofbiologicalcommunitiesinsample-basedrar-efactionCommunity Ecology 10 209ndash214 httpsdoiorg101556comec102009211

ChonT-SParkYSMoonKYampChaEY(1996)Patternizingcom-munitiesbyusinganartificialneuralnetworkEcological Modelling9069ndash78httpsdoiorg1010160304-3800(95)00148-4

ClarkM LampRobertsDA (2012) Species-level differences inhyper-spectral metrics among tropical rainforest trees as determined bya tree-based classifier Remote Sensing 4 1820ndash1855 httpsdoiorg103390rs4061820

ClarkMRobertsDampClarkD(2005)HyperspectraldiscriminationoftropicalrainforesttreespeciesatleaftocrownscalesRemote Sensing of Environment96375ndash398httpsdoiorg101016jrse200503009

FeilhauerHampSchmidtleinS(2009)MappingcontinuousfieldsofalphaandbetadiversityApplied Vegetation Science12429ndash439httpsdoiorg101111j1654-109x200901037x

FeilhauerHFaudeUampSchmidtleinS(2011)CombiningIsomapordi-nationandimagingspectroscopytomapcontinuousfloristicgradientsin a heterogeneous landscape Remote Sensing of Environment 1152513ndash2524httpsdoiorg101016jrse201105011

FeilhauerHThonfeldFFaudeUHeKSRocchiniDSchmidtleinS(2013)Assessingfloristiccompositionwithmultispectralsensorsacomparisonbasedonmonotemporalandmultiseasonal fieldspectraInternational Journal of Applied Earth Observation and Geoinformation21218ndash229httpsdoiorg101016jjag201209002

FeilhauerHDoktorDLauschASchmidtleinSSchulzGampStenzelS(2014)MappingNatura2000habitatsandtheirlocalvariabilitywithremote sensingApplied Vegetation Science17 765ndash779httpsdoiorg101111avsc12115

FeilhauerHDoktorDSchmidtleinSampSkidmoreAK(2016)MappingpollinationtypeswithremotesensingJournal of Vegetation Science27999ndash1011httpsdoiorg101111jvs12421

FeacuteretJ-BampAsnerGP (2013)Tree speciesdiscrimination in tropicalforests using airborne imaging spectroscopy IEEE Transactions on Geoscience and Remote Sensing5173ndash84httpsdoiorg101109TG RS20122199323

FeacuteretJ-BampAsnerGP(2014a)Mappingtropicalforestcanopydiversityusing high-fidelity imaging spectroscopy Ecological Applications 241289ndash1296httpsdoiorg10189013-18241

FeacuteretJ-BampAsnerGP(2014b)MicrotopographiccontrolsonlowlandAmazonian canopy diversity from imaging spectroscopy Ecological Applications241297ndash1310httpsdoiorg10189013-18961

FerrierSManionGElithJampRichardsonK(2007)Usinggeneralizeddissimilaritymodelling toanalyseandpredictpatternsofbetadiver-sityinregionalbiodiversityassessmentDiversity and Distributions13252ndash264httpsdoiorg101111j1472-4642200700341x

FoodyGM(1999)Applicationsoftheself-organisingfeaturemapneuralnetworkincommunitydataanalysisEcological Modelling12097ndash107httpsdoiorg101016s0304-3800(99)00094-0

FoodyGMampCutlerMEJ(2003)TreebiodiversityinprotectedandloggedBorneantropicalrainforestsanditsmeasurementbysatelliteremote sensing Journal of Biogeography30 1053ndash1066 httpsdoiorg101046j1365-2699200300887x

FritzkeB(1995)GrowinggridndashAselforganizingnetworkwithconstantneighborhoodrangeandadaptationstrengthNeural Processing Letters29ndash13httpsdoiorg101007bf02332159

GillespieTW (2005) Predictingwoody-plant species richness in trop-ical dry forests a case study from South Florida USA Ecological Applications1527ndash37httpsdoiorg10189003-5304

Gillespie T W Foody G M Rocchini D Giorgi A P amp Saatchi S(2008)Measuring andmodeling biodiversity from spaceProgress in Physical Geography32203ndash221httpsdoiorg10117703091333 08093606

GiraudelJLampLekS(2001)AcomparisonofSOMalgorithmandsomeconventional statistical methods for ecological community ordina-tion Ecological Modelling 146 329ndash339 httpsdoiorg101016s0304-3800(01)00324-6

GodinhoSGilAGuiomarNNevesNampPinto-CorreiaT (2016)Aremote sensing-basedapproach toestimatingmontadocanopyden-sityusingtheFCDmodelAcontributiontoidentifyingHNVfarmlandsin southern Portugal Agroforestry Systems 90 23ndash34 httpsdoiorg101007s10457-014-9769-3

GrahamCHampFinePVA(2008)PhylogeneticbetadiversityLinkingeco-logicalandevolutionaryprocessesacrossspaceintimeEcology Letters111265ndash1277httpsdoiorg101111j1461-0248200801256x

GuHSinghAampTownsendPA(2015)Detectionofgradientsoffor-estcompositioninanurbanareausingimagingspectroscopyRemote Sensing of Environment 167 168ndash180 httpsdoiorg101016jrse201506010

HarrisACharnockRampLucasRM(2015)Hyperspectralremotesens-ingofpeatlandfloristicgradientsRemote Sensing of Environment16299ndash111httpsdoiorg101016jrse201501029

Hernandez-Stefanoni J L Gallardo-Cruz J A Meave J A RocchiniDBello-PinedaJampLoacutepez-MartiacutenezJO (2012)Modelingα- and β-diversityinatropicalforestfromremotelysensedandspatialdataInternational Journal of Applied Earth Observation and Geoinformation19359ndash368httpsdoiorg101016jjag201204002

Hill M O amp Gauch H G 1980 Detrended correspondence analysisAn improvedordination techniqueVegetatio42 47ndash58 httpsdoiorg101007978-94-009-9197-2_7

HsiehTCMaKHampChaoA(2016)iNEXTAnRpackageforrarefactionandextrapolationofspeciesdiversity(Hillnumbers)Methods in Ecology amp Evolution71451ndash1456httpsdoiorg1011112041-210x12613

KohonenT(1982)Analysisofasimpleself-organizingprocessBiological Cybernetics44135ndash140httpsdoiorg101007bf00317973

LatombeGHuiCampMcGeochMA(2017)Multi-sitegeneraliseddis-similaritymodellingUsingzetadiversitytodifferentiatedriversofturn-overinrareandwidespreadspeciesMethods in Ecology and Evolution8431ndash442httpsdoiorg1011112041-210x12756

LauschABannehrLBeckmannMBoehmCFeilhauerHHackerJMhellipCordAF (2016)Linkingearthobservationandtaxonomicstructural and functional biodiversity Local to ecosystem perspec-tives Ecological Indicators 70 317ndash339 httpsdoiorg101016jecolind201606022

LeathwickJRSnelderTChaddertonWLElithJJulianKampFerrierS(2011)Useofgeneraliseddissimilaritymodellingtoimprovethebiolog-icaldiscriminationofriverandstreamclassificationsFreshwater Biology5621ndash38httpsdoiorg101111j1365-2427201002414x

LegendrePBorcardDampPeres-NetoPR(2005)Analyzingbetadiver-sityPartitioningthespatialvariationofcommunitycompositiondataEcological Monographs75435ndash450httpsdoiorg10189005-0549

emspensp emsp | emsp1797Methods in Ecology and Evolu13onROCCHINI et al

LeitatildeoPJSchwiederMSuessSCatryIMiltonEJMoreiraFhellipHostert P (2015) Mapping beta diversity from space Sparse gen-eralised dissimilarity modelling (SGDM) for analysing high-dimen-sionaldataMethods in Ecology and Evolution6764ndash771httpsdoiorg1011112041-210x12378

LeitatildeoPSchwiederMampSenfC(2017)sgdmAnRpackageforperform-ingsparsegeneralizeddissimilaritymodellingwithtoolsforgdm ISPRS International Journal of Geo-Information623httpsdoiorg103390ijgi6010023

MantelNampValandRS(1970)AtechniqueofnonparametricmultivariateanalysisBiometrics26547ndash558httpsdoiorg1023072529108

MazorTKarkSPossinghamHPRocchiniDLevyYRichardsonAJampLevinN(2013)Cansatellite-basednightlightsbeusedforconser-vationThecaseofnestingseaturtlesintheMediterraneanBiological Conservation 159 63ndash72 httpsdoiorg101016jbiocon201211 004

MeentemeyerRKAnackerBLMarkWampRizzoDM(2008)Earlydetectionofemergingforestdiseaseusingdispersalstimationandeco-logical nichemodeling Ecological Applications18 377ndash390 httpsdoiorg10189007-11501

MetzMRocchiniDampNetelerM(2014)Surfacetemperaturesatthecontinental scaleTracking changeswith remote sensingatunprece-dented detail Remote Sensing63822ndash3840httpsdoiorg103390rs6053822

MoilanenA FrancoAMA Early R Fox RWintle B amp ThomasC D (2005) Prioritizing multiple-use landscapes for conservationMethods for large multi-species planning problems Proceedings of the Royal Society B Biological Sciences 272 1885ndash1891 httpsdoiorg101098rspb20053164

MoilanenA Kujala H amp Leathwick J R (2009)The zonation frame-workandsoftware forconservationprioritization InAMoilanenKWilson amp H P Possingham (Eds) Spatial conservation prioritization Quantitative methods amp computational tools (pp 196ndash210) OxfordOxfordUniversityPress

NeumannCWeissGSchmidtleinSItzerottSLauschADoktorDampBrellM(2015)Ecologicalgradient-basedhabitatqualityassessmentfor spectralecosystem monitoring Remote Sensing 7 2871ndash2898httpsdoiorg103390rs70302871

PalmerMWEarlsPGHoaglandBWWhitePSampWohlgemuthT(2002)QuantitativetoolsforperfectingspecieslistsEnvironmetrics13121ndash137httpsdoiorg101002env516

QGISDevelopmentTeam(2016)QGISgeographicinformationsystemOpenSourceGeospatialFoundationAvailableathttpqgisosgeoorg

RandellDTurnbullKEwansKampJonathanP(2016)Bayesianinfer-ence for nonstationary marginal extremes Environmetrics 27 439ndash450httpsdoiorg101002env2403

Rocchini D Petras V Petrasova A Horning N Furtkevicova LNetelerMhellipWegmannM(2017)OpendataandopensourceforremotesensingtraininginecologyEcological Informatics4057ndash61

RocchiniDampNetelerM(2012)Letthefourfreedomsparadigmapplyto ecology Trends in Ecology amp Evolution 27 310ndash311 httpsdoiorg101016jtree201203009

RocchiniDAndreiniButiniSampChiarucciA (2005)Maximizingplantspecies inventory efficiency by means of remotely sensed spectraldistancesGlobal Ecology and Biogeography14 431ndash437 httpsdoiorg101111j1466-822x200500169x

Rocchini D Balkenhol N Carter G A Foody G M Gillespie TWHeK ShellipNetelerM (2010)Remotely sensed spectral heteroge-neityasaproxyofspeciesdiversityRecentadvancesandopenchal-lenges Ecological Informatics 5 318ndash329 httpsdoiorg101016jecoinf201006001

RocchiniDDelucchiLBacaroGCavalliniPFeilhauerHFoodyG M hellip Neteler M (2013) Calculating landscape diversity with

information-theorybased indicesAGRASSGISsolutionEcological Informatics1782ndash93httpsdoiorg101016jecoinf201204002

Rocchini D Hernaacutendez Stefanoni J L amp He K S (2015) Advancingspecies diversity estimate by remotely sensed proxiesA conceptualreview Ecological Informatics 25 22ndash28 httpsdoiorg101016jecoinf201410006

RocchiniDBoydDSFeacuteretJBFoodyGMHeKSLauschAhellipPettorelliN(2016)Satelliteremotesensingtomonitorspeciesdiver-sityPotentialandpitfallsRemote Sensing in Ecology and Conservation225ndash36httpsdoiorg101002rse29

Rocchini D Garzon-Lopez C X Marcantonio M Amici V BacaroG Bastin L hellip Rosaacute R (2017) Anticipating species distributionsHandlingsamplingeffortbiasunderaBayesianframeworkScience of the Total Environment584ndash585 282ndash290 httpsdoiorg101016jscitotenv201612038

RosauerDFFerrierSWilliamsKJManionGKeoghJSampLaffanSW (2014)PhylogeneticgeneraliseddissimilaritymodellingAnewapproachtoanalysingandpredictingspatialturnoverinthephyloge-neticcompositionofcommunitiesEcography3721ndash32httpsdoiorg101111j1600-0587201300466x

SchmellerDWeatherdonLLoyauABondeauABrotonsLBrummittNhellipReganE(inpress)AsuiteofessentialbiodiversityvariablesfordetectingcriticalbiodiversitychangeBiological Reviews

SchmidtleinSampSassinJ(2004)MappingcontinuousfloristicgradientsingrasslandsusinghyperspectralimageryRemote Sensing of Environment92126ndash138httpsdoiorg101016jrse200405004

Schmidtlein S Zimmermann P Schuumlpferling R amp Weiss C (2007)MappingthefloristiccontinuumOrdinationspacepositionestimatedfromimagingspectroscopyJournal of Vegetation Science18131ndash140httpsdoiorg101111j1654-11032007tb02523x

TahvanainenT (2011)Abrupt ombrotrophication of a boreal aapamiretriggered by hydrological disturbance in the catchment Journal of Ecology201199

Tuomisto H amp Ruokolainen K (2006) Analyzing or explaining betadiversityUnderstanding the targets of differentmethods of anal-ysis Ecology 87 2697ndash2708 httpsdoiorg1018900012-9658 (2006)87

TuomistoHPoulsenARuokolainenKMoranRQuintanaCCeliJampCanasG (2003) Linking floristicpatternswith soil heterogeneityandsatellite imagery inEcuadorianAmazoniaEcological Applications13352ndash371httpsdoiorg1018901051-0761(2003)013[0352lfp wsh]20co2

TyreAJPossinghamHPampLindenmayerDB(2001)InferringprocessfrompatternCanterritoryoccupancyprovide informationabout lifehistoryparametersEcological Applications111722ndash1737httpsdoiorg1023073061091

Ustin S L amp Gamon J A (2010) Remote sensing of plant functionaltypesNew Phytologist186795ndash816httpsdoiorg101111j1469- 8137201003284x

VaglioLaurinGChanJC-WChenQLindsellJACoomesDAGuerriero LhellipValentiniR (2014)Biodiversitymapping in a tropi-calWestAfricanforestwithairbornehyperspectraldataPLoS ONE9e97910httpsdoiorg101371journalpone0097910

VernesiC RocchiniD Pecchioli ENetelerMVendraminGGampPaffetti D (2012) A landscape genetics approach reveals ecolog-ical-based differentiation in populations of holm oak (Quercus ilexL)attheirnorthernmostdistributionEDGEBiological Journal of the Linnean Society107458ndash467httpsdoiorg101111j1095-8312 201201940x

VihervaaraPAuvinenA-PMononenLToumlrmaumlMAhlrothPAnttilaShellipVirkkalaR (2017)Howessentialbiodiversityvariablesandre-motesensingcanhelpnationalbiodiversitymonitoringGlobal Ecology and Conservation 10 43ndash59 httpsdoiorg101016jgecco2017 01007

1798emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

WegmannMLeutnerBFMetzMNetelerMDechSampRocchiniD(2017)rpiAGRASSGISpackageforsemi-automaticspatialpatternanalysis of remotely sensed land cover dataMethods in Ecology and Evolutioninpresshttpsdoiorg1011112041-210x12827

Whittaker R H (1960) Vegetation of the SiskiyouMountains OregonandCaliforniaEcological Monographs30280ndash338httpsdoiorg10 23071943563

Witten D Tibshirani R Gross S amp Narasimhan B (2013) PMAPenalized multivariate analysis R package version 109 RetrievedfromhttpsCRANR-projectorgpackage=PMA

Woolley SN C Foster SDOrsquoHaraTDWintle BA ampDunstanP K (2017) Characterising uncertainty in generalised dissimilaritymodels Methods in Ecology and Evolution 8 985ndash995 httpsdoiorg1011112041-210x12710

SUPPORTING INFORMATION

Additional Supporting Information may be found online in thesupportinginformationtabforthisarticle

How to cite this articleRocchiniDLuqueSPettorelliNetalMeasuringβ-diversitybyremotesensingAchallengeforbiodiversitymonitoringMethods Ecol Evol 201891787ndash1798 httpsdoiorg1011112041-210X12941

Page 5: Measuring β‐diversity by remote sensing: A challenge for ...€¦ · ment of remote sensing tools (Rocchini & Neteler, 2012) for diversity estimate in which the concept of β-diversity

emspensp emsp | emsp1791Methods in Ecology and Evolu13onROCCHINI et al

influenceofdecreasedspatialandspectralresolutionontheabilitytoproperlydifferentiateecologicallymeaningfulspectralspeciesacrosslandscapesandoverregionswillneedtobeinvestigatedTheapplica-tionofthisconceptbeyondtropicalforestsandsavannaecosystemsshouldalsobeinvestigatedasitmaynotholdwhenappliedonmoder-atelydiverseecosystemsorsystemswithindividualswhoseindividu-alshavedimensionswellbelowtheresolvingpoweroftheinstrument

4emsp |emspSELF-ORGANIZING FEATURE MAPS

TheKohonenself-organizingfeaturemap(SOFMKohonen1982)isaneuralnetworkthatmaybeusedtoundertakeunsupervisedcluster-ingofdataCriticallytheinputtoaSOFMcanbealargemulti-variatedatasetsuchasmaybeacquiredonspeciesfromquadrat-basedfieldsurveysTheSOFMsummarizesthedata ina lowtypicallytwodi-mensionaloutput(Figure4)Inthisoutputspacethedataforindivid-ualquadratsaretopologicallyorderedmdashwithsitesthataresimilarclosetogetherwhilethoseofhighlydifferentspeciescompositionaremoredistantBecause thedatasites in theoutputspacearearrangedby

F I G U R E 3 emsp Spectralspeciescanbeidentifiedinahyper-ormultispectralimagebyspatialclusteringmethodandtheirdistributioncanbemappedSuchmapscanfurtherbeusedtoapplylocal-basedheterogeneitymeasurements(α-diversity)aswellasiterativedistance-basedmethodstobuildβ-diversitymapsReproducedfromFeacuteretandAsner(2014a)

F I G U R E 4 emsp Aself-organizingfeaturemapcanbebuiltstartingfromaninputlayeregthepresenceorabsenceofatreespeciesorofapeculiarspectralvalue)whichisconnectedtoeveryunitintheoutputlayerbyaweightedconnectionTheself-organizingfeaturemapusesunsupervisedlearningtomapthelocationoffieldsiteswithintheoutputspaceonthebasisoftheirrelativesimilarityinspeciesorspectralcompositionRedrawnfromFoodyandCutler(2003)

Output layer

Input units

1792emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

relativesimilaritytheoutputspacemayalsobeusedtoaggregateorclassifyadatasetAssuchtheSOFMisattractiveasanon-parametricclusteringanalysisandasameanstoundertakeanordination(ChonParkMoonampCha1996)

ASOFMisunlikesomeoftheapproachesusedcommonlyincom-munityecologynotconstrainedbyassumptionsrelatingthestatisticaldistributionofthedatausedTheSOFMusesunsupervisedlearningtoproduceatopologicallyorderedoutputspaceinwhichthesamplesarearrangedspatiallyinrelationtotheirrelativesimilarityinspeciescompositionTheSOFMthusperformsanon-parametricordinationanalysis(Foody1999)TheproductionofaclassificationbyaSOFMcomprisestwomainstages(GiraudelampLek2001)Aniterativeanaly-sisinwhichtime-decayingparametersthatcontrolnetworklearningandthesizeoflocalneighbourhoodslocatedaroundoutputunitsisusedForthistheusermustspecifyanumberofkeyparameterssuchasthesizeandshapeofthenetworknumberofiterationsoftheal-gorithmthelearningrateanditsrateofdeclineandaneighbourhoodparameterTheneedforsuchparameterscanaddsomeuncertaintytotheanalysisWhile therearenoformal rules to follow in thede-signofaSOFMtherearerecommendationsforthedeterminationofSOFMparametersettings (GiraudelampLek2001)Afurtherconcernis thatasanunsupervisedclassifier theclassesdefinedmaynotal-waysbethemostusefulforaninvestigationInadditionthenatureof theanalysismeans thedirectionof thegradientscannotbecon-trolled(Fritzke1995)buttheanalysisperformswellincomparisontopopularordinationtechniquessuchasPCAandDCA(FoodyampCutler2003)TheSOFMmayalsouseavarietyofdifferentdatatypessuchaspresenceabsenceabundanceorimportancevaluesandcansolvecomplexnonlinearproblems(GiraudelampLek2001)

5emsp |emspMULTIDIMENSIONAL DISTANCE MATRICES GDMS AND SGDMS

Oneofthemostwidespreadmethodsforassessingdiversityisusingdistancematrices (LegendreBorcardampPeres-Neto2005) IndeedearlyworkbyWhittaker (1960)suggested thatβ-diversitycouldbequantifiedbydissimilaritymatricesamong(pairsof)sitesFurthermoretheManteltest(MantelampValand1970)designedtoestimatetheas-sociationbetweentwo independentdissimilaritymatriceshasbeenwidelyusedtocorrelateacommunitycompositiondissimilaritymatrixwithanenvironmentdissimilarityonethusprovidingusefulinsightsinto community composition and turnover (Legendre etal 2005Tahvanainen2011)

Generalized dissimilarity modelling (GDM Ferrier Manion Elith ampRichardson2007)canbeconsideredasanextensionoftheManteltestwhichisabletoaccommodatemultidimensionalenvironmentaldatatobecomparedwiththecompositionaldataGDMsalsoallowforthepredictionofcompositionalturnoveraswellasforegenvironmentalclassificationconstrainedtothecompositionaldissimilarity(Ferrieretal2007Leathwicketal2011)InGDMthecompositionaldissimilaritiesbetweenallpairsofsamplesaremodelledasafunctionoftheirrespectiveenvironmentaldis-tancesThisisdonethroughalinearcombinationofmonotonicI-splinebasis

functionsundertheassumptionthatincreasingenvironmentaldissimilarity (egalongagradient)canonlyresultinincreasingcompositionaldissimilar-ityThismethodisthuswellsuitedformeasuringandmappingβ-diversityandisthusbecomingwidelyusedinconservationscienceandmacroecol-ogyandrecentlybeensubject toseveraldevelopmentsaswedescribebelow

One such development is the phylogenetic GDM (phylo-GDMRosauer etal 2014) which incorporates phylogenetic dissimilari-ties intoGDMandallows foranalysingandpredictingphylogeneticβ-diversity thus linking ecological and evolutionary processes Thismethod can provide novel insights into themechanisms underlyingcurrentpatternsofbiologicaldiversity(GrahamampFine2008)Anotherrecent development of GDM is the multi-site GDM (MS-GDMLatombeHuiampMcGeoch2017)whichextendsGDMsfrompairwisetomulti-sitedissimilaritymodellingInsuchapapertheauthorstestedMS-GDMbymeansofbothconstrained(monotonical)additivemod-elsand I-splinesalthoughwithnoconclusive results relating to thebestmethod overallThey concluded however thatwhen applyingMS-GDMtoahighnumberofsamplestheycouldbetterexplainthedriversofspeciesturnoverAlsoanimportantdevelopmentofGDMis the Bayesian bootstrapGDM (BBGDMWoolley Foster OrsquoHaraWintleampDunstan2017)designedtocharacterizeuncertaintyingen-eralizeddissimilaritymodelsThisapproachallowsbetterrepresentingtheunderlyinguncertainty inthedatabyestimatingthevarianceinparametersbasedontheavailabledata

FinallyanimplementationofGDMwhichwascreatedparticularlyfordealingwithhigh-dimensional (andpotentiallyhigh-collinear) re-motesensingdataasinputinGDMisthesparsegeneralizeddissim-ilaritymodel (SGDMFigure5Leitatildeoetal2015)Thismethod isatwo-stageapproachthatconsistsofinitiallyreducingtheenvironmen-talspace(egreflectancedata)bymeansofasparsecanonicalcorrela-tionanalysis(SCCAFigure5WittenTibshiraniGrossampNarasimhan2013)andthenfittingtheresultingcomponentswithaGDMmodelTheSCCAisaformofpenalizedcanonicalcorrelationanalysisbasedontheL1(lasso)penaltyfunctionandisthusdesignedtodealwithhigh-dimensionaldataThetwoalgorithmsarecoupledinawaythattheSCCApenalizationisselectedthroughaheuristicgridsearchman-ner in order tominimize the cross-validate rootmean square errorin the dissimilarities predicted by the GDM In this procedure thehigh-dimensionalenvironmentaldata (suchascoming fromtimese-riesofmultispectralorhyperspectraldata)aresubjecttoasupervisedordinationapproachthatreducestheirdimensionwhilecapturingtheaxesofvariationthatmostcorrelatetothoseofthecommunitycom-positionalmatrixSGDMhasbeensuccessfullyusedformodellingandmappingthecompositionalturnoverofbothanimalandplantspeciesusingseveraldifferentsourcesofremotesensing(andauxiliary)data(Leitatildeoetal2015LeitatildeoSchwiederampSenf2017)

6emsp |emspRAOrsquoS Q DIVERSITY

Most of the previously shown metrics are based on the distanceamong pixel values in a multidimensional spectral space None

emspensp emsp | emsp1793Methods in Ecology and Evolu13onROCCHINI et al

of them considers the relative abundance of such pixel values in aneighbourhood

Bycontrastabundance-basedmetricssuchastheShannonentropycouldoutputsimilarresultsdespiteavariabledistanceamongpixelval-uesAsanexampleconsidera3times3matrixofremotelysenseddata

composedbythefollowingvalues

thenconsideradifferentmatrix

FromaShannonsentropyperspectivesuchmatricesareequalintermsofheterogeneityTheShannonsentropyisindeedbasedontherelativeabundance(andrichness)ofasampleanditsvalueis2197forboth thematricesThisvalue equalling thenatural logarithmofthenumberofclasses(pixelvalues)isalsoShannonsmaximumtheo-reticalvaluegivena3times3matrixduetothelackofidenticalnumbersinthematricesThisexampleexplicitlyshowsthataccountingforthedistanceamongvaluesandtheirrelativeabundanceiscrucialtodis-criminateamongareasintermsofmeasured(modelled)heterogeneity

Oneof themetrics accounting for both the abundance and thepairwisespectraldistanceamongpixelsistheRaosQdiversityindexasfollows

wheredij=spectraldistanceamongpixels i and j and p = proportion ofoccupiedarea

Hence RaosQ is capable of discriminating among the ecologi-caldiversityofmatrices(3)and(4)turningouttobe459and9070respectivelyAppendix S1provides an example spreadsheet to per-formthecalculationwhilethecompleteRcodeisstoredintheGitHubrepositoryhttpsgithubcommattmarspectralrao

Wedecidedtomakeuseofacasestudytohighlightthe impor-tanceofconsideringthedistanceamongpixelvaluesinremotesenseecologicalapplicationTheperformanceofRaosQindexindescrib-ing landscape diversitywas tested in a complex agro-forestry land-scapelocatedinsouthernPortugalAtestsitewithanareaofabout10times10km2(centroidlocatedat38∘39prime1074primeprimeN8∘12prime5230primeprimeW)wasselectedtoconducttheanalysisInthisareaasavanna-likeecosystemcalledmontadooccupiesabout40ofthetestsitefollowedbytra-ditionalolivegrovespasturesvineyardsandirrigatedmonocultures(egcornfields)Montadoisspatiallycharacterizedbythevariabilityofitstreedensity(egGodinhoGilGuiomarNevesampPinto-Correia2016)andthegradientbetweenlowandhightreedensityoverspacecanleadtodifferentstructuralheterogeneityandhabitatdiversity

Within the test site polyculture under the small farming con-text (eg vegetable gardens orchards and cereal crops) is an im-portantfeatureofthislandscapebygeneratingahighcompositionalandconfigurational spatialheterogeneity (Figure6)Themaingoalinusingthiscasestudy is todemonstrate thepotentialandeffec-tivenessoftheRaosQindexinproducingaccuratelyremotesens-ing-based maps of spatial diversity over such complex landscapeFor this study a cloud-free Sentinel-2A (S2A) image acquired onAugust 8 2016wasused to compute theNDVI at a 10m spatialresolutionTheS2Aimagedownloadaswellastheatmosphericcor-rection (DOSmethod)were performed using the Semi-automaticClassificationplugin(SCP)implementedintheQGISsoftware(QGISDevelopmentTeam2016)

TheNDVIwasusedasinputdataforRaosQindexcomputationusingawindowsizeof3times3pixelsTheperformanceoftheRaosQwascomparedtotheShannonEntropyindex(ShannonsH)whichisoneofthesimplestandwidelyusedremotesensing-baseddiversitymeasures for landscape heterogeneity assessment (Rocchini etal2016)To investigatewhetherbothdiversity indicesdifferbetween

(2)

⎛⎜⎜⎜⎝

x11 x12 x13

x21 x22 x23

xd1 xd2 xd3

⎞⎟⎟⎟⎠

(3)

⎛⎜⎜⎜⎝

10 13 15

18 20 23

19 21 22

⎞⎟⎟⎟⎠

(4)

⎛⎜⎜⎜⎝

10 121 227

1 40 251

7 100 149

⎞⎟⎟⎟⎠

(5)Q =

sumsumdij times pi times pj

F I G U R E 5 emsp AnexampleofthesparsegeneralizeddissimilaritymodelapproachRemotesensingdataandbiodiversitydatainthefieldcanbecoupledbysparsecanonicalcorrelationanalysis(SCCA)toproducecanonicalcomponentsandacommunitydissimilaritymatrixwhicharethenusedtobuildageneralizeddissimilaritymodel(GDM)tofinallyderiveaβ-diversitymap

0 0

SCCA

GDM

GDM

Remote sensing data Biodiversity data

Canonical components Community dissimilarity

Beta-diversity map

1794emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

land cover types one-wayANOVA testswere performedThis ap-proachwas used for analysing the degree of dissimilarity betweenRaosQandShannonH indexacross twohighcomplex landcovertypes (1) montado and (2) polyculture To do so a sample of 60squareswith 250times250m2 sizewas randomly selected over thesetwolandcovertypesEachsquarerepresentsasampleof625S2ANDVI pixels thus corresponding to a total of 37500pixels overthe60 squares For the comparisonbetweenboth indices the co-efficient of variation (CV) was calculated for each 250times250m2 Regarding the RaosQ performance Figure 6 clearly points to thesignificant improvementsshownbyRaosQ indexcomparedtotheShannonH index indescribing the spatialdiversity Inparticular itcanbeseenthroughtheFigure6 thatRaosQ indexcanhighlightdifferentgradientsofspatialdiversityofmontadoareaswhichpres-enthightreedensityvariability(Figure6)andthushighspatialhet-erogeneityOne-wayANOVAtestsrevealedthatbothindicesvaluesweresignificantlydifferentbetweenthetwolandcovertypes(mon-tado F=5033p lt 001 polyculture F=8898plt001)Overall

theobtainedresultsdemonstratethecapabilityofRaosQindex inproducingaccuratelandscapediversitymapsinacomplexlandscapesuchastheMediterraneanagro-forestrysystems

7emsp |emspCONCLUSION

In this paper we showed several methods based on ecologicalβ-diversitywhichcanbeinvestigatedbyremotesensingthroughthecalculationofecosystemheterogeneitytoestimatethespatialvariabil-ityofbiodiversityWhenthereisawiderangeofheterogeneityforex-amplewhenthedataincludehomogeneousandheterogeneouszonesnosinglemeasuremightcaptureallthedifferentaspectsofβ-diversity(egBaselga2013)Thatiswhywesuggestedinthismanuscriptmul-tivariateandmultidimensionalmethods(egmultivariatestatisticsandmultidimensionaldistancematrices)basedonthespectralsignalanditsvariabilityoverspacetoaccountfordifferentaspectsofdiversityalsoincludingdistance-andabundance-basedmethods(egtheRaosQ)

F I G U R E 6 emsp UpperpanelsSentinel-2Ascene(August82016)andderivedNDVIfortheagro-forestrysystemstestsitelocatedinsouthernPortugalLowerpanelsresultsfromShannonsHandRaosQindicescomputationShannonindextendstooverestimatethelandscapediversitywhencomparedtotheRaosQindex

emspensp emsp | emsp1795Methods in Ecology and Evolu13onROCCHINI et al

Biodiversitymeasuredasspeciesrichnessisoftenusedforconser-vationpurposeshencetheimportanceofavoidinganunder-orover-estimate has been highlighted (Chiarucci etal 2009) Furthermorepairwisedistance-basedmethodsmightbeprofitablyusedtodetectnotonlydiversityhotspotsinanareabutalsothevariationofbiodi-versityoverspaceandpotentiallyovertimeoncemultitemporalsetsofimagesareused

In this paperwe focused on optimizingmeasures of β-diversitybasedonremotesensingdataSuchmeasuresmightbeusedtoregressspeciesdiversityagainstremotelysensedheterogeneitybasedonnewregressiontechniqueswhichmaximizethepossibilityofpredictingthezones in a study area or at larger spatial scales of peculiar conser-vationvalueAsanexampleshrinkageregressionrecentlyappliedinbiodiversityconservation(AuthierSarauxampPeron2017)couldallowadirectfocusonhabitatmodellingwhichisoneofthemajorstrengthsofremotesensing(GillespieFoodyRocchiniGiorgiampSaatchi2008)MoreoversuchanalysismightbeperformedinaBayesianframeworkallowingto(1)modelmultidimensionalcovariateswithnon-stationaryvariationoverspace(RandellTurnbullEwansampJonathan2016)suchasthebandsofsatelliteimagesand(2)modeltheerrorsintheoutputandtheirvariationoverspace(Rocchinietal2017)

Aspreviouslystatedthesuggestedmethodsforβ-diversityes-timation from remote sensing aremainly based on distances butthey could be effectively translated to relative abundance-basedmethodsAsanexampleRocchinietal(2013)introducedthepos-sibility of applying generalized entropy theory to satellite imageswithonesingleformularepresentingacontinuumofdiversitymea-sures changing one parameter One of the best examples in thisframeworkcouldbe theuseofHill numbers inwhichdiversity isexpressedasfollows

whereS=numberofsamplespixelsandpi=relativeabundanceofaspeciesspectralvaluevaryingtheparameterqqDvariesaccordinglyinseveraldiversity indiceseg forq = 0 qD is thesimplenumberofspeciesforlim(q)=1qDequalsShannonsentropyetc(HsiehMaampChao2016)

Furthermore connectivity analysis might also be taken into ac-count (Moilanen etal 2005 2009) For instance a remote sens-ing-based connectivity network among different sites based onβ-diversitymeasurescouldbeappliedfortheestimateof landscapeconnectivityandconsequentgeneticflowasdemonstratedbyVernesietal(2012)Ithasalsobeenshownthatcommunityrelatedbiodiver-sityindicatorsareoftenmissingfromcurrentmonitoringprogrammes(Vihervaaraetal2017)thusmethodssuchasremotesensing-basedRaosQdiversityappliedforvariousecosystemsmightimproveother-wisechallengingmonitoringofbiologicalcommunities

Withthismanuscriptwehopetostimulatediscussionontheavail-ablemethodsforestimatingβ-diversityfromremotelysensedimagerybyproposinginnovativetechniquesgroundedonecologicaltheory

ACKNOWLEDGEMENTS

WearegratefultothehandlingEditorandtotwoanonymousreview-erswhoimprovedwithskillfulsuggestionsapreviousversionofthepresentmanuscriptDRwaspartiallysupportedby (i) theEU-LIFEproject LIFE14ENVIT000514 FutureForCoppices (ii) the H2020project ECOPOTENTIAL (Grant Agreement no 641762) iii) theH2020TRuStEE-TrainingonRemoteSensingforEcosystemmodEl-ling-project(GrantAgreementno721995)

AUTHORSrsquo CONTRIBUTIONS

All authors contributed to the development and writing of themanuscript

DATA ACCESSIBILITY

Partofthedataandcorrespondingoriginalsourcesareavailableatthefollowinghttpsdoiorg105061dryaddg31k

ORCID

Duccio Rocchini httporcidorg0000-0003-0087-0594

Sandra Luque httporcidorg0000-0002-4002-3974

Nathalie Pettorelli httporcidorg0000-0002-1594-6208

Lucy Bastin httporcidorg0000-0003-1321-0800

Hannes Feilhauer httporcidorg0000-0001-5758-6303

Jean-Baptiste Feacuteret httporcidorg0000-0002-0151-1334

Giles M Foody httporcidorg0000-0001-6464-3054

Yoni Gavish httporcidorg0000-0002-6025-5668

William E Kunin httporcidorg0000-0002-9812-2326

Angela Lausch httporcidorg0000-0002-4490-7232

Pedro J Leitatildeo httporcidorg0000-0003-3038-9531

Markus Neteler httporcidorg0000-0003-1916-1966

Carlo Ricotta httporcidorg0000-0003-0818-3959 Martin Wegmann httporcidorg0000-0003-0335-9601

Harini Nagendra httporcidorg0000-0002-1585-0724

REFERENCES

AlahuhtaJKostenSAkasakaMAudersetDAzzellaMBolpagniRhellipHeinoJ(2017)Globalvariationinthebetadiversityoflakemacrophytesis driven by environmental heterogeneity rather than latitude Journal of Biogeography441758ndash1769httpsdoiorg101111jbi12978

AsnerGampMartinR(2008)Spectralandchemicalanalysisoftropicalfor-estsScalingfromleaftocanopylevelsRemote Sensing of Environment1123958ndash3970httpsdoiorg101016jrse200807003

AsnerGPMartinREAndersonCBampKnappDE(2015)QuantifyingforestcanopytraitsImagingspectroscopyversusfieldsurveyRemote Sensing of Environment15815ndash27httpsdoiorg101016jrse2014 11011

(6)qD=

(Ssumi=1

pqi

) 1

1minusq

1796emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

AuthierMSarauxCampPeronC(2017)VariableselectionandaccuratepredictionsinhabitatmodellingAshrinkageapproachEcography40549ndash560httpsdoiorg101111ecog01633

BaldeckCampAsnerG(2013)Estimatingvegetationbetadiversityfromairborne imaging spectroscopy and unsupervised clustering Remote Sensing52057ndash2071httpsdoiorg103390rs5052057

BaldeckCAampColganMSFeacuteretJ-BLevickSRMartinREampAsner G P (2014) Landscape-scale variation in plant communitycomposition of an African savanna from airborne species mappingEcological Applications2484ndash93httpsdoiorg10189013-03071

BaselgaA(2013)Multiplesitedissimilarityquantifiescompositionalhet-erogeneity among several sites while average pairwise dissimilaritymaybemisleadingEcography36124ndash128httpsdoiorg101111 j1600-0587201200124x

Chadwick K amp Asner G (2016) Organismic-scale remote sensing ofcanopyfoliar traits in lowlandtropical forestsRemote Sensing887httpsdoiorg103390rs8020087

ChiarucciABacaroGRocchiniDRicottaCPalmerMWampScheinerSM (2009) Spatially constrained rarefaction Incorporating the au-tocorrelatedstructureofbiologicalcommunitiesinsample-basedrar-efactionCommunity Ecology 10 209ndash214 httpsdoiorg101556comec102009211

ChonT-SParkYSMoonKYampChaEY(1996)Patternizingcom-munitiesbyusinganartificialneuralnetworkEcological Modelling9069ndash78httpsdoiorg1010160304-3800(95)00148-4

ClarkM LampRobertsDA (2012) Species-level differences inhyper-spectral metrics among tropical rainforest trees as determined bya tree-based classifier Remote Sensing 4 1820ndash1855 httpsdoiorg103390rs4061820

ClarkMRobertsDampClarkD(2005)HyperspectraldiscriminationoftropicalrainforesttreespeciesatleaftocrownscalesRemote Sensing of Environment96375ndash398httpsdoiorg101016jrse200503009

FeilhauerHampSchmidtleinS(2009)MappingcontinuousfieldsofalphaandbetadiversityApplied Vegetation Science12429ndash439httpsdoiorg101111j1654-109x200901037x

FeilhauerHFaudeUampSchmidtleinS(2011)CombiningIsomapordi-nationandimagingspectroscopytomapcontinuousfloristicgradientsin a heterogeneous landscape Remote Sensing of Environment 1152513ndash2524httpsdoiorg101016jrse201105011

FeilhauerHThonfeldFFaudeUHeKSRocchiniDSchmidtleinS(2013)Assessingfloristiccompositionwithmultispectralsensorsacomparisonbasedonmonotemporalandmultiseasonal fieldspectraInternational Journal of Applied Earth Observation and Geoinformation21218ndash229httpsdoiorg101016jjag201209002

FeilhauerHDoktorDLauschASchmidtleinSSchulzGampStenzelS(2014)MappingNatura2000habitatsandtheirlocalvariabilitywithremote sensingApplied Vegetation Science17 765ndash779httpsdoiorg101111avsc12115

FeilhauerHDoktorDSchmidtleinSampSkidmoreAK(2016)MappingpollinationtypeswithremotesensingJournal of Vegetation Science27999ndash1011httpsdoiorg101111jvs12421

FeacuteretJ-BampAsnerGP (2013)Tree speciesdiscrimination in tropicalforests using airborne imaging spectroscopy IEEE Transactions on Geoscience and Remote Sensing5173ndash84httpsdoiorg101109TG RS20122199323

FeacuteretJ-BampAsnerGP(2014a)Mappingtropicalforestcanopydiversityusing high-fidelity imaging spectroscopy Ecological Applications 241289ndash1296httpsdoiorg10189013-18241

FeacuteretJ-BampAsnerGP(2014b)MicrotopographiccontrolsonlowlandAmazonian canopy diversity from imaging spectroscopy Ecological Applications241297ndash1310httpsdoiorg10189013-18961

FerrierSManionGElithJampRichardsonK(2007)Usinggeneralizeddissimilaritymodelling toanalyseandpredictpatternsofbetadiver-sityinregionalbiodiversityassessmentDiversity and Distributions13252ndash264httpsdoiorg101111j1472-4642200700341x

FoodyGM(1999)Applicationsoftheself-organisingfeaturemapneuralnetworkincommunitydataanalysisEcological Modelling12097ndash107httpsdoiorg101016s0304-3800(99)00094-0

FoodyGMampCutlerMEJ(2003)TreebiodiversityinprotectedandloggedBorneantropicalrainforestsanditsmeasurementbysatelliteremote sensing Journal of Biogeography30 1053ndash1066 httpsdoiorg101046j1365-2699200300887x

FritzkeB(1995)GrowinggridndashAselforganizingnetworkwithconstantneighborhoodrangeandadaptationstrengthNeural Processing Letters29ndash13httpsdoiorg101007bf02332159

GillespieTW (2005) Predictingwoody-plant species richness in trop-ical dry forests a case study from South Florida USA Ecological Applications1527ndash37httpsdoiorg10189003-5304

Gillespie T W Foody G M Rocchini D Giorgi A P amp Saatchi S(2008)Measuring andmodeling biodiversity from spaceProgress in Physical Geography32203ndash221httpsdoiorg10117703091333 08093606

GiraudelJLampLekS(2001)AcomparisonofSOMalgorithmandsomeconventional statistical methods for ecological community ordina-tion Ecological Modelling 146 329ndash339 httpsdoiorg101016s0304-3800(01)00324-6

GodinhoSGilAGuiomarNNevesNampPinto-CorreiaT (2016)Aremote sensing-basedapproach toestimatingmontadocanopyden-sityusingtheFCDmodelAcontributiontoidentifyingHNVfarmlandsin southern Portugal Agroforestry Systems 90 23ndash34 httpsdoiorg101007s10457-014-9769-3

GrahamCHampFinePVA(2008)PhylogeneticbetadiversityLinkingeco-logicalandevolutionaryprocessesacrossspaceintimeEcology Letters111265ndash1277httpsdoiorg101111j1461-0248200801256x

GuHSinghAampTownsendPA(2015)Detectionofgradientsoffor-estcompositioninanurbanareausingimagingspectroscopyRemote Sensing of Environment 167 168ndash180 httpsdoiorg101016jrse201506010

HarrisACharnockRampLucasRM(2015)Hyperspectralremotesens-ingofpeatlandfloristicgradientsRemote Sensing of Environment16299ndash111httpsdoiorg101016jrse201501029

Hernandez-Stefanoni J L Gallardo-Cruz J A Meave J A RocchiniDBello-PinedaJampLoacutepez-MartiacutenezJO (2012)Modelingα- and β-diversityinatropicalforestfromremotelysensedandspatialdataInternational Journal of Applied Earth Observation and Geoinformation19359ndash368httpsdoiorg101016jjag201204002

Hill M O amp Gauch H G 1980 Detrended correspondence analysisAn improvedordination techniqueVegetatio42 47ndash58 httpsdoiorg101007978-94-009-9197-2_7

HsiehTCMaKHampChaoA(2016)iNEXTAnRpackageforrarefactionandextrapolationofspeciesdiversity(Hillnumbers)Methods in Ecology amp Evolution71451ndash1456httpsdoiorg1011112041-210x12613

KohonenT(1982)Analysisofasimpleself-organizingprocessBiological Cybernetics44135ndash140httpsdoiorg101007bf00317973

LatombeGHuiCampMcGeochMA(2017)Multi-sitegeneraliseddis-similaritymodellingUsingzetadiversitytodifferentiatedriversofturn-overinrareandwidespreadspeciesMethods in Ecology and Evolution8431ndash442httpsdoiorg1011112041-210x12756

LauschABannehrLBeckmannMBoehmCFeilhauerHHackerJMhellipCordAF (2016)Linkingearthobservationandtaxonomicstructural and functional biodiversity Local to ecosystem perspec-tives Ecological Indicators 70 317ndash339 httpsdoiorg101016jecolind201606022

LeathwickJRSnelderTChaddertonWLElithJJulianKampFerrierS(2011)Useofgeneraliseddissimilaritymodellingtoimprovethebiolog-icaldiscriminationofriverandstreamclassificationsFreshwater Biology5621ndash38httpsdoiorg101111j1365-2427201002414x

LegendrePBorcardDampPeres-NetoPR(2005)Analyzingbetadiver-sityPartitioningthespatialvariationofcommunitycompositiondataEcological Monographs75435ndash450httpsdoiorg10189005-0549

emspensp emsp | emsp1797Methods in Ecology and Evolu13onROCCHINI et al

LeitatildeoPJSchwiederMSuessSCatryIMiltonEJMoreiraFhellipHostert P (2015) Mapping beta diversity from space Sparse gen-eralised dissimilarity modelling (SGDM) for analysing high-dimen-sionaldataMethods in Ecology and Evolution6764ndash771httpsdoiorg1011112041-210x12378

LeitatildeoPSchwiederMampSenfC(2017)sgdmAnRpackageforperform-ingsparsegeneralizeddissimilaritymodellingwithtoolsforgdm ISPRS International Journal of Geo-Information623httpsdoiorg103390ijgi6010023

MantelNampValandRS(1970)AtechniqueofnonparametricmultivariateanalysisBiometrics26547ndash558httpsdoiorg1023072529108

MazorTKarkSPossinghamHPRocchiniDLevyYRichardsonAJampLevinN(2013)Cansatellite-basednightlightsbeusedforconser-vationThecaseofnestingseaturtlesintheMediterraneanBiological Conservation 159 63ndash72 httpsdoiorg101016jbiocon201211 004

MeentemeyerRKAnackerBLMarkWampRizzoDM(2008)Earlydetectionofemergingforestdiseaseusingdispersalstimationandeco-logical nichemodeling Ecological Applications18 377ndash390 httpsdoiorg10189007-11501

MetzMRocchiniDampNetelerM(2014)Surfacetemperaturesatthecontinental scaleTracking changeswith remote sensingatunprece-dented detail Remote Sensing63822ndash3840httpsdoiorg103390rs6053822

MoilanenA FrancoAMA Early R Fox RWintle B amp ThomasC D (2005) Prioritizing multiple-use landscapes for conservationMethods for large multi-species planning problems Proceedings of the Royal Society B Biological Sciences 272 1885ndash1891 httpsdoiorg101098rspb20053164

MoilanenA Kujala H amp Leathwick J R (2009)The zonation frame-workandsoftware forconservationprioritization InAMoilanenKWilson amp H P Possingham (Eds) Spatial conservation prioritization Quantitative methods amp computational tools (pp 196ndash210) OxfordOxfordUniversityPress

NeumannCWeissGSchmidtleinSItzerottSLauschADoktorDampBrellM(2015)Ecologicalgradient-basedhabitatqualityassessmentfor spectralecosystem monitoring Remote Sensing 7 2871ndash2898httpsdoiorg103390rs70302871

PalmerMWEarlsPGHoaglandBWWhitePSampWohlgemuthT(2002)QuantitativetoolsforperfectingspecieslistsEnvironmetrics13121ndash137httpsdoiorg101002env516

QGISDevelopmentTeam(2016)QGISgeographicinformationsystemOpenSourceGeospatialFoundationAvailableathttpqgisosgeoorg

RandellDTurnbullKEwansKampJonathanP(2016)Bayesianinfer-ence for nonstationary marginal extremes Environmetrics 27 439ndash450httpsdoiorg101002env2403

Rocchini D Petras V Petrasova A Horning N Furtkevicova LNetelerMhellipWegmannM(2017)OpendataandopensourceforremotesensingtraininginecologyEcological Informatics4057ndash61

RocchiniDampNetelerM(2012)Letthefourfreedomsparadigmapplyto ecology Trends in Ecology amp Evolution 27 310ndash311 httpsdoiorg101016jtree201203009

RocchiniDAndreiniButiniSampChiarucciA (2005)Maximizingplantspecies inventory efficiency by means of remotely sensed spectraldistancesGlobal Ecology and Biogeography14 431ndash437 httpsdoiorg101111j1466-822x200500169x

Rocchini D Balkenhol N Carter G A Foody G M Gillespie TWHeK ShellipNetelerM (2010)Remotely sensed spectral heteroge-neityasaproxyofspeciesdiversityRecentadvancesandopenchal-lenges Ecological Informatics 5 318ndash329 httpsdoiorg101016jecoinf201006001

RocchiniDDelucchiLBacaroGCavalliniPFeilhauerHFoodyG M hellip Neteler M (2013) Calculating landscape diversity with

information-theorybased indicesAGRASSGISsolutionEcological Informatics1782ndash93httpsdoiorg101016jecoinf201204002

Rocchini D Hernaacutendez Stefanoni J L amp He K S (2015) Advancingspecies diversity estimate by remotely sensed proxiesA conceptualreview Ecological Informatics 25 22ndash28 httpsdoiorg101016jecoinf201410006

RocchiniDBoydDSFeacuteretJBFoodyGMHeKSLauschAhellipPettorelliN(2016)Satelliteremotesensingtomonitorspeciesdiver-sityPotentialandpitfallsRemote Sensing in Ecology and Conservation225ndash36httpsdoiorg101002rse29

Rocchini D Garzon-Lopez C X Marcantonio M Amici V BacaroG Bastin L hellip Rosaacute R (2017) Anticipating species distributionsHandlingsamplingeffortbiasunderaBayesianframeworkScience of the Total Environment584ndash585 282ndash290 httpsdoiorg101016jscitotenv201612038

RosauerDFFerrierSWilliamsKJManionGKeoghJSampLaffanSW (2014)PhylogeneticgeneraliseddissimilaritymodellingAnewapproachtoanalysingandpredictingspatialturnoverinthephyloge-neticcompositionofcommunitiesEcography3721ndash32httpsdoiorg101111j1600-0587201300466x

SchmellerDWeatherdonLLoyauABondeauABrotonsLBrummittNhellipReganE(inpress)AsuiteofessentialbiodiversityvariablesfordetectingcriticalbiodiversitychangeBiological Reviews

SchmidtleinSampSassinJ(2004)MappingcontinuousfloristicgradientsingrasslandsusinghyperspectralimageryRemote Sensing of Environment92126ndash138httpsdoiorg101016jrse200405004

Schmidtlein S Zimmermann P Schuumlpferling R amp Weiss C (2007)MappingthefloristiccontinuumOrdinationspacepositionestimatedfromimagingspectroscopyJournal of Vegetation Science18131ndash140httpsdoiorg101111j1654-11032007tb02523x

TahvanainenT (2011)Abrupt ombrotrophication of a boreal aapamiretriggered by hydrological disturbance in the catchment Journal of Ecology201199

Tuomisto H amp Ruokolainen K (2006) Analyzing or explaining betadiversityUnderstanding the targets of differentmethods of anal-ysis Ecology 87 2697ndash2708 httpsdoiorg1018900012-9658 (2006)87

TuomistoHPoulsenARuokolainenKMoranRQuintanaCCeliJampCanasG (2003) Linking floristicpatternswith soil heterogeneityandsatellite imagery inEcuadorianAmazoniaEcological Applications13352ndash371httpsdoiorg1018901051-0761(2003)013[0352lfp wsh]20co2

TyreAJPossinghamHPampLindenmayerDB(2001)InferringprocessfrompatternCanterritoryoccupancyprovide informationabout lifehistoryparametersEcological Applications111722ndash1737httpsdoiorg1023073061091

Ustin S L amp Gamon J A (2010) Remote sensing of plant functionaltypesNew Phytologist186795ndash816httpsdoiorg101111j1469- 8137201003284x

VaglioLaurinGChanJC-WChenQLindsellJACoomesDAGuerriero LhellipValentiniR (2014)Biodiversitymapping in a tropi-calWestAfricanforestwithairbornehyperspectraldataPLoS ONE9e97910httpsdoiorg101371journalpone0097910

VernesiC RocchiniD Pecchioli ENetelerMVendraminGGampPaffetti D (2012) A landscape genetics approach reveals ecolog-ical-based differentiation in populations of holm oak (Quercus ilexL)attheirnorthernmostdistributionEDGEBiological Journal of the Linnean Society107458ndash467httpsdoiorg101111j1095-8312 201201940x

VihervaaraPAuvinenA-PMononenLToumlrmaumlMAhlrothPAnttilaShellipVirkkalaR (2017)Howessentialbiodiversityvariablesandre-motesensingcanhelpnationalbiodiversitymonitoringGlobal Ecology and Conservation 10 43ndash59 httpsdoiorg101016jgecco2017 01007

1798emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

WegmannMLeutnerBFMetzMNetelerMDechSampRocchiniD(2017)rpiAGRASSGISpackageforsemi-automaticspatialpatternanalysis of remotely sensed land cover dataMethods in Ecology and Evolutioninpresshttpsdoiorg1011112041-210x12827

Whittaker R H (1960) Vegetation of the SiskiyouMountains OregonandCaliforniaEcological Monographs30280ndash338httpsdoiorg10 23071943563

Witten D Tibshirani R Gross S amp Narasimhan B (2013) PMAPenalized multivariate analysis R package version 109 RetrievedfromhttpsCRANR-projectorgpackage=PMA

Woolley SN C Foster SDOrsquoHaraTDWintle BA ampDunstanP K (2017) Characterising uncertainty in generalised dissimilaritymodels Methods in Ecology and Evolution 8 985ndash995 httpsdoiorg1011112041-210x12710

SUPPORTING INFORMATION

Additional Supporting Information may be found online in thesupportinginformationtabforthisarticle

How to cite this articleRocchiniDLuqueSPettorelliNetalMeasuringβ-diversitybyremotesensingAchallengeforbiodiversitymonitoringMethods Ecol Evol 201891787ndash1798 httpsdoiorg1011112041-210X12941

Page 6: Measuring β‐diversity by remote sensing: A challenge for ...€¦ · ment of remote sensing tools (Rocchini & Neteler, 2012) for diversity estimate in which the concept of β-diversity

1792emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

relativesimilaritytheoutputspacemayalsobeusedtoaggregateorclassifyadatasetAssuchtheSOFMisattractiveasanon-parametricclusteringanalysisandasameanstoundertakeanordination(ChonParkMoonampCha1996)

ASOFMisunlikesomeoftheapproachesusedcommonlyincom-munityecologynotconstrainedbyassumptionsrelatingthestatisticaldistributionofthedatausedTheSOFMusesunsupervisedlearningtoproduceatopologicallyorderedoutputspaceinwhichthesamplesarearrangedspatiallyinrelationtotheirrelativesimilarityinspeciescompositionTheSOFMthusperformsanon-parametricordinationanalysis(Foody1999)TheproductionofaclassificationbyaSOFMcomprisestwomainstages(GiraudelampLek2001)Aniterativeanaly-sisinwhichtime-decayingparametersthatcontrolnetworklearningandthesizeoflocalneighbourhoodslocatedaroundoutputunitsisusedForthistheusermustspecifyanumberofkeyparameterssuchasthesizeandshapeofthenetworknumberofiterationsoftheal-gorithmthelearningrateanditsrateofdeclineandaneighbourhoodparameterTheneedforsuchparameterscanaddsomeuncertaintytotheanalysisWhile therearenoformal rules to follow in thede-signofaSOFMtherearerecommendationsforthedeterminationofSOFMparametersettings (GiraudelampLek2001)Afurtherconcernis thatasanunsupervisedclassifier theclassesdefinedmaynotal-waysbethemostusefulforaninvestigationInadditionthenatureof theanalysismeans thedirectionof thegradientscannotbecon-trolled(Fritzke1995)buttheanalysisperformswellincomparisontopopularordinationtechniquessuchasPCAandDCA(FoodyampCutler2003)TheSOFMmayalsouseavarietyofdifferentdatatypessuchaspresenceabsenceabundanceorimportancevaluesandcansolvecomplexnonlinearproblems(GiraudelampLek2001)

5emsp |emspMULTIDIMENSIONAL DISTANCE MATRICES GDMS AND SGDMS

Oneofthemostwidespreadmethodsforassessingdiversityisusingdistancematrices (LegendreBorcardampPeres-Neto2005) IndeedearlyworkbyWhittaker (1960)suggested thatβ-diversitycouldbequantifiedbydissimilaritymatricesamong(pairsof)sitesFurthermoretheManteltest(MantelampValand1970)designedtoestimatetheas-sociationbetweentwo independentdissimilaritymatriceshasbeenwidelyusedtocorrelateacommunitycompositiondissimilaritymatrixwithanenvironmentdissimilarityonethusprovidingusefulinsightsinto community composition and turnover (Legendre etal 2005Tahvanainen2011)

Generalized dissimilarity modelling (GDM Ferrier Manion Elith ampRichardson2007)canbeconsideredasanextensionoftheManteltestwhichisabletoaccommodatemultidimensionalenvironmentaldatatobecomparedwiththecompositionaldataGDMsalsoallowforthepredictionofcompositionalturnoveraswellasforegenvironmentalclassificationconstrainedtothecompositionaldissimilarity(Ferrieretal2007Leathwicketal2011)InGDMthecompositionaldissimilaritiesbetweenallpairsofsamplesaremodelledasafunctionoftheirrespectiveenvironmentaldis-tancesThisisdonethroughalinearcombinationofmonotonicI-splinebasis

functionsundertheassumptionthatincreasingenvironmentaldissimilarity (egalongagradient)canonlyresultinincreasingcompositionaldissimilar-ityThismethodisthuswellsuitedformeasuringandmappingβ-diversityandisthusbecomingwidelyusedinconservationscienceandmacroecol-ogyandrecentlybeensubject toseveraldevelopmentsaswedescribebelow

One such development is the phylogenetic GDM (phylo-GDMRosauer etal 2014) which incorporates phylogenetic dissimilari-ties intoGDMandallows foranalysingandpredictingphylogeneticβ-diversity thus linking ecological and evolutionary processes Thismethod can provide novel insights into themechanisms underlyingcurrentpatternsofbiologicaldiversity(GrahamampFine2008)Anotherrecent development of GDM is the multi-site GDM (MS-GDMLatombeHuiampMcGeoch2017)whichextendsGDMsfrompairwisetomulti-sitedissimilaritymodellingInsuchapapertheauthorstestedMS-GDMbymeansofbothconstrained(monotonical)additivemod-elsand I-splinesalthoughwithnoconclusive results relating to thebestmethod overallThey concluded however thatwhen applyingMS-GDMtoahighnumberofsamplestheycouldbetterexplainthedriversofspeciesturnoverAlsoanimportantdevelopmentofGDMis the Bayesian bootstrapGDM (BBGDMWoolley Foster OrsquoHaraWintleampDunstan2017)designedtocharacterizeuncertaintyingen-eralizeddissimilaritymodelsThisapproachallowsbetterrepresentingtheunderlyinguncertainty inthedatabyestimatingthevarianceinparametersbasedontheavailabledata

FinallyanimplementationofGDMwhichwascreatedparticularlyfordealingwithhigh-dimensional (andpotentiallyhigh-collinear) re-motesensingdataasinputinGDMisthesparsegeneralizeddissim-ilaritymodel (SGDMFigure5Leitatildeoetal2015)Thismethod isatwo-stageapproachthatconsistsofinitiallyreducingtheenvironmen-talspace(egreflectancedata)bymeansofasparsecanonicalcorrela-tionanalysis(SCCAFigure5WittenTibshiraniGrossampNarasimhan2013)andthenfittingtheresultingcomponentswithaGDMmodelTheSCCAisaformofpenalizedcanonicalcorrelationanalysisbasedontheL1(lasso)penaltyfunctionandisthusdesignedtodealwithhigh-dimensionaldataThetwoalgorithmsarecoupledinawaythattheSCCApenalizationisselectedthroughaheuristicgridsearchman-ner in order tominimize the cross-validate rootmean square errorin the dissimilarities predicted by the GDM In this procedure thehigh-dimensionalenvironmentaldata (suchascoming fromtimese-riesofmultispectralorhyperspectraldata)aresubjecttoasupervisedordinationapproachthatreducestheirdimensionwhilecapturingtheaxesofvariationthatmostcorrelatetothoseofthecommunitycom-positionalmatrixSGDMhasbeensuccessfullyusedformodellingandmappingthecompositionalturnoverofbothanimalandplantspeciesusingseveraldifferentsourcesofremotesensing(andauxiliary)data(Leitatildeoetal2015LeitatildeoSchwiederampSenf2017)

6emsp |emspRAOrsquoS Q DIVERSITY

Most of the previously shown metrics are based on the distanceamong pixel values in a multidimensional spectral space None

emspensp emsp | emsp1793Methods in Ecology and Evolu13onROCCHINI et al

of them considers the relative abundance of such pixel values in aneighbourhood

Bycontrastabundance-basedmetricssuchastheShannonentropycouldoutputsimilarresultsdespiteavariabledistanceamongpixelval-uesAsanexampleconsidera3times3matrixofremotelysenseddata

composedbythefollowingvalues

thenconsideradifferentmatrix

FromaShannonsentropyperspectivesuchmatricesareequalintermsofheterogeneityTheShannonsentropyisindeedbasedontherelativeabundance(andrichness)ofasampleanditsvalueis2197forboth thematricesThisvalue equalling thenatural logarithmofthenumberofclasses(pixelvalues)isalsoShannonsmaximumtheo-reticalvaluegivena3times3matrixduetothelackofidenticalnumbersinthematricesThisexampleexplicitlyshowsthataccountingforthedistanceamongvaluesandtheirrelativeabundanceiscrucialtodis-criminateamongareasintermsofmeasured(modelled)heterogeneity

Oneof themetrics accounting for both the abundance and thepairwisespectraldistanceamongpixelsistheRaosQdiversityindexasfollows

wheredij=spectraldistanceamongpixels i and j and p = proportion ofoccupiedarea

Hence RaosQ is capable of discriminating among the ecologi-caldiversityofmatrices(3)and(4)turningouttobe459and9070respectivelyAppendix S1provides an example spreadsheet to per-formthecalculationwhilethecompleteRcodeisstoredintheGitHubrepositoryhttpsgithubcommattmarspectralrao

Wedecidedtomakeuseofacasestudytohighlightthe impor-tanceofconsideringthedistanceamongpixelvaluesinremotesenseecologicalapplicationTheperformanceofRaosQindexindescrib-ing landscape diversitywas tested in a complex agro-forestry land-scapelocatedinsouthernPortugalAtestsitewithanareaofabout10times10km2(centroidlocatedat38∘39prime1074primeprimeN8∘12prime5230primeprimeW)wasselectedtoconducttheanalysisInthisareaasavanna-likeecosystemcalledmontadooccupiesabout40ofthetestsitefollowedbytra-ditionalolivegrovespasturesvineyardsandirrigatedmonocultures(egcornfields)Montadoisspatiallycharacterizedbythevariabilityofitstreedensity(egGodinhoGilGuiomarNevesampPinto-Correia2016)andthegradientbetweenlowandhightreedensityoverspacecanleadtodifferentstructuralheterogeneityandhabitatdiversity

Within the test site polyculture under the small farming con-text (eg vegetable gardens orchards and cereal crops) is an im-portantfeatureofthislandscapebygeneratingahighcompositionalandconfigurational spatialheterogeneity (Figure6)Themaingoalinusingthiscasestudy is todemonstrate thepotentialandeffec-tivenessoftheRaosQindexinproducingaccuratelyremotesens-ing-based maps of spatial diversity over such complex landscapeFor this study a cloud-free Sentinel-2A (S2A) image acquired onAugust 8 2016wasused to compute theNDVI at a 10m spatialresolutionTheS2Aimagedownloadaswellastheatmosphericcor-rection (DOSmethod)were performed using the Semi-automaticClassificationplugin(SCP)implementedintheQGISsoftware(QGISDevelopmentTeam2016)

TheNDVIwasusedasinputdataforRaosQindexcomputationusingawindowsizeof3times3pixelsTheperformanceoftheRaosQwascomparedtotheShannonEntropyindex(ShannonsH)whichisoneofthesimplestandwidelyusedremotesensing-baseddiversitymeasures for landscape heterogeneity assessment (Rocchini etal2016)To investigatewhetherbothdiversity indicesdifferbetween

(2)

⎛⎜⎜⎜⎝

x11 x12 x13

x21 x22 x23

xd1 xd2 xd3

⎞⎟⎟⎟⎠

(3)

⎛⎜⎜⎜⎝

10 13 15

18 20 23

19 21 22

⎞⎟⎟⎟⎠

(4)

⎛⎜⎜⎜⎝

10 121 227

1 40 251

7 100 149

⎞⎟⎟⎟⎠

(5)Q =

sumsumdij times pi times pj

F I G U R E 5 emsp AnexampleofthesparsegeneralizeddissimilaritymodelapproachRemotesensingdataandbiodiversitydatainthefieldcanbecoupledbysparsecanonicalcorrelationanalysis(SCCA)toproducecanonicalcomponentsandacommunitydissimilaritymatrixwhicharethenusedtobuildageneralizeddissimilaritymodel(GDM)tofinallyderiveaβ-diversitymap

0 0

SCCA

GDM

GDM

Remote sensing data Biodiversity data

Canonical components Community dissimilarity

Beta-diversity map

1794emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

land cover types one-wayANOVA testswere performedThis ap-proachwas used for analysing the degree of dissimilarity betweenRaosQandShannonH indexacross twohighcomplex landcovertypes (1) montado and (2) polyculture To do so a sample of 60squareswith 250times250m2 sizewas randomly selected over thesetwolandcovertypesEachsquarerepresentsasampleof625S2ANDVI pixels thus corresponding to a total of 37500pixels overthe60 squares For the comparisonbetweenboth indices the co-efficient of variation (CV) was calculated for each 250times250m2 Regarding the RaosQ performance Figure 6 clearly points to thesignificant improvementsshownbyRaosQ indexcomparedtotheShannonH index indescribing the spatialdiversity Inparticular itcanbeseenthroughtheFigure6 thatRaosQ indexcanhighlightdifferentgradientsofspatialdiversityofmontadoareaswhichpres-enthightreedensityvariability(Figure6)andthushighspatialhet-erogeneityOne-wayANOVAtestsrevealedthatbothindicesvaluesweresignificantlydifferentbetweenthetwolandcovertypes(mon-tado F=5033p lt 001 polyculture F=8898plt001)Overall

theobtainedresultsdemonstratethecapabilityofRaosQindex inproducingaccuratelandscapediversitymapsinacomplexlandscapesuchastheMediterraneanagro-forestrysystems

7emsp |emspCONCLUSION

In this paper we showed several methods based on ecologicalβ-diversitywhichcanbeinvestigatedbyremotesensingthroughthecalculationofecosystemheterogeneitytoestimatethespatialvariabil-ityofbiodiversityWhenthereisawiderangeofheterogeneityforex-amplewhenthedataincludehomogeneousandheterogeneouszonesnosinglemeasuremightcaptureallthedifferentaspectsofβ-diversity(egBaselga2013)Thatiswhywesuggestedinthismanuscriptmul-tivariateandmultidimensionalmethods(egmultivariatestatisticsandmultidimensionaldistancematrices)basedonthespectralsignalanditsvariabilityoverspacetoaccountfordifferentaspectsofdiversityalsoincludingdistance-andabundance-basedmethods(egtheRaosQ)

F I G U R E 6 emsp UpperpanelsSentinel-2Ascene(August82016)andderivedNDVIfortheagro-forestrysystemstestsitelocatedinsouthernPortugalLowerpanelsresultsfromShannonsHandRaosQindicescomputationShannonindextendstooverestimatethelandscapediversitywhencomparedtotheRaosQindex

emspensp emsp | emsp1795Methods in Ecology and Evolu13onROCCHINI et al

Biodiversitymeasuredasspeciesrichnessisoftenusedforconser-vationpurposeshencetheimportanceofavoidinganunder-orover-estimate has been highlighted (Chiarucci etal 2009) Furthermorepairwisedistance-basedmethodsmightbeprofitablyusedtodetectnotonlydiversityhotspotsinanareabutalsothevariationofbiodi-versityoverspaceandpotentiallyovertimeoncemultitemporalsetsofimagesareused

In this paperwe focused on optimizingmeasures of β-diversitybasedonremotesensingdataSuchmeasuresmightbeusedtoregressspeciesdiversityagainstremotelysensedheterogeneitybasedonnewregressiontechniqueswhichmaximizethepossibilityofpredictingthezones in a study area or at larger spatial scales of peculiar conser-vationvalueAsanexampleshrinkageregressionrecentlyappliedinbiodiversityconservation(AuthierSarauxampPeron2017)couldallowadirectfocusonhabitatmodellingwhichisoneofthemajorstrengthsofremotesensing(GillespieFoodyRocchiniGiorgiampSaatchi2008)MoreoversuchanalysismightbeperformedinaBayesianframeworkallowingto(1)modelmultidimensionalcovariateswithnon-stationaryvariationoverspace(RandellTurnbullEwansampJonathan2016)suchasthebandsofsatelliteimagesand(2)modeltheerrorsintheoutputandtheirvariationoverspace(Rocchinietal2017)

Aspreviouslystatedthesuggestedmethodsforβ-diversityes-timation from remote sensing aremainly based on distances butthey could be effectively translated to relative abundance-basedmethodsAsanexampleRocchinietal(2013)introducedthepos-sibility of applying generalized entropy theory to satellite imageswithonesingleformularepresentingacontinuumofdiversitymea-sures changing one parameter One of the best examples in thisframeworkcouldbe theuseofHill numbers inwhichdiversity isexpressedasfollows

whereS=numberofsamplespixelsandpi=relativeabundanceofaspeciesspectralvaluevaryingtheparameterqqDvariesaccordinglyinseveraldiversity indiceseg forq = 0 qD is thesimplenumberofspeciesforlim(q)=1qDequalsShannonsentropyetc(HsiehMaampChao2016)

Furthermore connectivity analysis might also be taken into ac-count (Moilanen etal 2005 2009) For instance a remote sens-ing-based connectivity network among different sites based onβ-diversitymeasurescouldbeappliedfortheestimateof landscapeconnectivityandconsequentgeneticflowasdemonstratedbyVernesietal(2012)Ithasalsobeenshownthatcommunityrelatedbiodiver-sityindicatorsareoftenmissingfromcurrentmonitoringprogrammes(Vihervaaraetal2017)thusmethodssuchasremotesensing-basedRaosQdiversityappliedforvariousecosystemsmightimproveother-wisechallengingmonitoringofbiologicalcommunities

Withthismanuscriptwehopetostimulatediscussionontheavail-ablemethodsforestimatingβ-diversityfromremotelysensedimagerybyproposinginnovativetechniquesgroundedonecologicaltheory

ACKNOWLEDGEMENTS

WearegratefultothehandlingEditorandtotwoanonymousreview-erswhoimprovedwithskillfulsuggestionsapreviousversionofthepresentmanuscriptDRwaspartiallysupportedby (i) theEU-LIFEproject LIFE14ENVIT000514 FutureForCoppices (ii) the H2020project ECOPOTENTIAL (Grant Agreement no 641762) iii) theH2020TRuStEE-TrainingonRemoteSensingforEcosystemmodEl-ling-project(GrantAgreementno721995)

AUTHORSrsquo CONTRIBUTIONS

All authors contributed to the development and writing of themanuscript

DATA ACCESSIBILITY

Partofthedataandcorrespondingoriginalsourcesareavailableatthefollowinghttpsdoiorg105061dryaddg31k

ORCID

Duccio Rocchini httporcidorg0000-0003-0087-0594

Sandra Luque httporcidorg0000-0002-4002-3974

Nathalie Pettorelli httporcidorg0000-0002-1594-6208

Lucy Bastin httporcidorg0000-0003-1321-0800

Hannes Feilhauer httporcidorg0000-0001-5758-6303

Jean-Baptiste Feacuteret httporcidorg0000-0002-0151-1334

Giles M Foody httporcidorg0000-0001-6464-3054

Yoni Gavish httporcidorg0000-0002-6025-5668

William E Kunin httporcidorg0000-0002-9812-2326

Angela Lausch httporcidorg0000-0002-4490-7232

Pedro J Leitatildeo httporcidorg0000-0003-3038-9531

Markus Neteler httporcidorg0000-0003-1916-1966

Carlo Ricotta httporcidorg0000-0003-0818-3959 Martin Wegmann httporcidorg0000-0003-0335-9601

Harini Nagendra httporcidorg0000-0002-1585-0724

REFERENCES

AlahuhtaJKostenSAkasakaMAudersetDAzzellaMBolpagniRhellipHeinoJ(2017)Globalvariationinthebetadiversityoflakemacrophytesis driven by environmental heterogeneity rather than latitude Journal of Biogeography441758ndash1769httpsdoiorg101111jbi12978

AsnerGampMartinR(2008)Spectralandchemicalanalysisoftropicalfor-estsScalingfromleaftocanopylevelsRemote Sensing of Environment1123958ndash3970httpsdoiorg101016jrse200807003

AsnerGPMartinREAndersonCBampKnappDE(2015)QuantifyingforestcanopytraitsImagingspectroscopyversusfieldsurveyRemote Sensing of Environment15815ndash27httpsdoiorg101016jrse2014 11011

(6)qD=

(Ssumi=1

pqi

) 1

1minusq

1796emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

AuthierMSarauxCampPeronC(2017)VariableselectionandaccuratepredictionsinhabitatmodellingAshrinkageapproachEcography40549ndash560httpsdoiorg101111ecog01633

BaldeckCampAsnerG(2013)Estimatingvegetationbetadiversityfromairborne imaging spectroscopy and unsupervised clustering Remote Sensing52057ndash2071httpsdoiorg103390rs5052057

BaldeckCAampColganMSFeacuteretJ-BLevickSRMartinREampAsner G P (2014) Landscape-scale variation in plant communitycomposition of an African savanna from airborne species mappingEcological Applications2484ndash93httpsdoiorg10189013-03071

BaselgaA(2013)Multiplesitedissimilarityquantifiescompositionalhet-erogeneity among several sites while average pairwise dissimilaritymaybemisleadingEcography36124ndash128httpsdoiorg101111 j1600-0587201200124x

Chadwick K amp Asner G (2016) Organismic-scale remote sensing ofcanopyfoliar traits in lowlandtropical forestsRemote Sensing887httpsdoiorg103390rs8020087

ChiarucciABacaroGRocchiniDRicottaCPalmerMWampScheinerSM (2009) Spatially constrained rarefaction Incorporating the au-tocorrelatedstructureofbiologicalcommunitiesinsample-basedrar-efactionCommunity Ecology 10 209ndash214 httpsdoiorg101556comec102009211

ChonT-SParkYSMoonKYampChaEY(1996)Patternizingcom-munitiesbyusinganartificialneuralnetworkEcological Modelling9069ndash78httpsdoiorg1010160304-3800(95)00148-4

ClarkM LampRobertsDA (2012) Species-level differences inhyper-spectral metrics among tropical rainforest trees as determined bya tree-based classifier Remote Sensing 4 1820ndash1855 httpsdoiorg103390rs4061820

ClarkMRobertsDampClarkD(2005)HyperspectraldiscriminationoftropicalrainforesttreespeciesatleaftocrownscalesRemote Sensing of Environment96375ndash398httpsdoiorg101016jrse200503009

FeilhauerHampSchmidtleinS(2009)MappingcontinuousfieldsofalphaandbetadiversityApplied Vegetation Science12429ndash439httpsdoiorg101111j1654-109x200901037x

FeilhauerHFaudeUampSchmidtleinS(2011)CombiningIsomapordi-nationandimagingspectroscopytomapcontinuousfloristicgradientsin a heterogeneous landscape Remote Sensing of Environment 1152513ndash2524httpsdoiorg101016jrse201105011

FeilhauerHThonfeldFFaudeUHeKSRocchiniDSchmidtleinS(2013)Assessingfloristiccompositionwithmultispectralsensorsacomparisonbasedonmonotemporalandmultiseasonal fieldspectraInternational Journal of Applied Earth Observation and Geoinformation21218ndash229httpsdoiorg101016jjag201209002

FeilhauerHDoktorDLauschASchmidtleinSSchulzGampStenzelS(2014)MappingNatura2000habitatsandtheirlocalvariabilitywithremote sensingApplied Vegetation Science17 765ndash779httpsdoiorg101111avsc12115

FeilhauerHDoktorDSchmidtleinSampSkidmoreAK(2016)MappingpollinationtypeswithremotesensingJournal of Vegetation Science27999ndash1011httpsdoiorg101111jvs12421

FeacuteretJ-BampAsnerGP (2013)Tree speciesdiscrimination in tropicalforests using airborne imaging spectroscopy IEEE Transactions on Geoscience and Remote Sensing5173ndash84httpsdoiorg101109TG RS20122199323

FeacuteretJ-BampAsnerGP(2014a)Mappingtropicalforestcanopydiversityusing high-fidelity imaging spectroscopy Ecological Applications 241289ndash1296httpsdoiorg10189013-18241

FeacuteretJ-BampAsnerGP(2014b)MicrotopographiccontrolsonlowlandAmazonian canopy diversity from imaging spectroscopy Ecological Applications241297ndash1310httpsdoiorg10189013-18961

FerrierSManionGElithJampRichardsonK(2007)Usinggeneralizeddissimilaritymodelling toanalyseandpredictpatternsofbetadiver-sityinregionalbiodiversityassessmentDiversity and Distributions13252ndash264httpsdoiorg101111j1472-4642200700341x

FoodyGM(1999)Applicationsoftheself-organisingfeaturemapneuralnetworkincommunitydataanalysisEcological Modelling12097ndash107httpsdoiorg101016s0304-3800(99)00094-0

FoodyGMampCutlerMEJ(2003)TreebiodiversityinprotectedandloggedBorneantropicalrainforestsanditsmeasurementbysatelliteremote sensing Journal of Biogeography30 1053ndash1066 httpsdoiorg101046j1365-2699200300887x

FritzkeB(1995)GrowinggridndashAselforganizingnetworkwithconstantneighborhoodrangeandadaptationstrengthNeural Processing Letters29ndash13httpsdoiorg101007bf02332159

GillespieTW (2005) Predictingwoody-plant species richness in trop-ical dry forests a case study from South Florida USA Ecological Applications1527ndash37httpsdoiorg10189003-5304

Gillespie T W Foody G M Rocchini D Giorgi A P amp Saatchi S(2008)Measuring andmodeling biodiversity from spaceProgress in Physical Geography32203ndash221httpsdoiorg10117703091333 08093606

GiraudelJLampLekS(2001)AcomparisonofSOMalgorithmandsomeconventional statistical methods for ecological community ordina-tion Ecological Modelling 146 329ndash339 httpsdoiorg101016s0304-3800(01)00324-6

GodinhoSGilAGuiomarNNevesNampPinto-CorreiaT (2016)Aremote sensing-basedapproach toestimatingmontadocanopyden-sityusingtheFCDmodelAcontributiontoidentifyingHNVfarmlandsin southern Portugal Agroforestry Systems 90 23ndash34 httpsdoiorg101007s10457-014-9769-3

GrahamCHampFinePVA(2008)PhylogeneticbetadiversityLinkingeco-logicalandevolutionaryprocessesacrossspaceintimeEcology Letters111265ndash1277httpsdoiorg101111j1461-0248200801256x

GuHSinghAampTownsendPA(2015)Detectionofgradientsoffor-estcompositioninanurbanareausingimagingspectroscopyRemote Sensing of Environment 167 168ndash180 httpsdoiorg101016jrse201506010

HarrisACharnockRampLucasRM(2015)Hyperspectralremotesens-ingofpeatlandfloristicgradientsRemote Sensing of Environment16299ndash111httpsdoiorg101016jrse201501029

Hernandez-Stefanoni J L Gallardo-Cruz J A Meave J A RocchiniDBello-PinedaJampLoacutepez-MartiacutenezJO (2012)Modelingα- and β-diversityinatropicalforestfromremotelysensedandspatialdataInternational Journal of Applied Earth Observation and Geoinformation19359ndash368httpsdoiorg101016jjag201204002

Hill M O amp Gauch H G 1980 Detrended correspondence analysisAn improvedordination techniqueVegetatio42 47ndash58 httpsdoiorg101007978-94-009-9197-2_7

HsiehTCMaKHampChaoA(2016)iNEXTAnRpackageforrarefactionandextrapolationofspeciesdiversity(Hillnumbers)Methods in Ecology amp Evolution71451ndash1456httpsdoiorg1011112041-210x12613

KohonenT(1982)Analysisofasimpleself-organizingprocessBiological Cybernetics44135ndash140httpsdoiorg101007bf00317973

LatombeGHuiCampMcGeochMA(2017)Multi-sitegeneraliseddis-similaritymodellingUsingzetadiversitytodifferentiatedriversofturn-overinrareandwidespreadspeciesMethods in Ecology and Evolution8431ndash442httpsdoiorg1011112041-210x12756

LauschABannehrLBeckmannMBoehmCFeilhauerHHackerJMhellipCordAF (2016)Linkingearthobservationandtaxonomicstructural and functional biodiversity Local to ecosystem perspec-tives Ecological Indicators 70 317ndash339 httpsdoiorg101016jecolind201606022

LeathwickJRSnelderTChaddertonWLElithJJulianKampFerrierS(2011)Useofgeneraliseddissimilaritymodellingtoimprovethebiolog-icaldiscriminationofriverandstreamclassificationsFreshwater Biology5621ndash38httpsdoiorg101111j1365-2427201002414x

LegendrePBorcardDampPeres-NetoPR(2005)Analyzingbetadiver-sityPartitioningthespatialvariationofcommunitycompositiondataEcological Monographs75435ndash450httpsdoiorg10189005-0549

emspensp emsp | emsp1797Methods in Ecology and Evolu13onROCCHINI et al

LeitatildeoPJSchwiederMSuessSCatryIMiltonEJMoreiraFhellipHostert P (2015) Mapping beta diversity from space Sparse gen-eralised dissimilarity modelling (SGDM) for analysing high-dimen-sionaldataMethods in Ecology and Evolution6764ndash771httpsdoiorg1011112041-210x12378

LeitatildeoPSchwiederMampSenfC(2017)sgdmAnRpackageforperform-ingsparsegeneralizeddissimilaritymodellingwithtoolsforgdm ISPRS International Journal of Geo-Information623httpsdoiorg103390ijgi6010023

MantelNampValandRS(1970)AtechniqueofnonparametricmultivariateanalysisBiometrics26547ndash558httpsdoiorg1023072529108

MazorTKarkSPossinghamHPRocchiniDLevyYRichardsonAJampLevinN(2013)Cansatellite-basednightlightsbeusedforconser-vationThecaseofnestingseaturtlesintheMediterraneanBiological Conservation 159 63ndash72 httpsdoiorg101016jbiocon201211 004

MeentemeyerRKAnackerBLMarkWampRizzoDM(2008)Earlydetectionofemergingforestdiseaseusingdispersalstimationandeco-logical nichemodeling Ecological Applications18 377ndash390 httpsdoiorg10189007-11501

MetzMRocchiniDampNetelerM(2014)Surfacetemperaturesatthecontinental scaleTracking changeswith remote sensingatunprece-dented detail Remote Sensing63822ndash3840httpsdoiorg103390rs6053822

MoilanenA FrancoAMA Early R Fox RWintle B amp ThomasC D (2005) Prioritizing multiple-use landscapes for conservationMethods for large multi-species planning problems Proceedings of the Royal Society B Biological Sciences 272 1885ndash1891 httpsdoiorg101098rspb20053164

MoilanenA Kujala H amp Leathwick J R (2009)The zonation frame-workandsoftware forconservationprioritization InAMoilanenKWilson amp H P Possingham (Eds) Spatial conservation prioritization Quantitative methods amp computational tools (pp 196ndash210) OxfordOxfordUniversityPress

NeumannCWeissGSchmidtleinSItzerottSLauschADoktorDampBrellM(2015)Ecologicalgradient-basedhabitatqualityassessmentfor spectralecosystem monitoring Remote Sensing 7 2871ndash2898httpsdoiorg103390rs70302871

PalmerMWEarlsPGHoaglandBWWhitePSampWohlgemuthT(2002)QuantitativetoolsforperfectingspecieslistsEnvironmetrics13121ndash137httpsdoiorg101002env516

QGISDevelopmentTeam(2016)QGISgeographicinformationsystemOpenSourceGeospatialFoundationAvailableathttpqgisosgeoorg

RandellDTurnbullKEwansKampJonathanP(2016)Bayesianinfer-ence for nonstationary marginal extremes Environmetrics 27 439ndash450httpsdoiorg101002env2403

Rocchini D Petras V Petrasova A Horning N Furtkevicova LNetelerMhellipWegmannM(2017)OpendataandopensourceforremotesensingtraininginecologyEcological Informatics4057ndash61

RocchiniDampNetelerM(2012)Letthefourfreedomsparadigmapplyto ecology Trends in Ecology amp Evolution 27 310ndash311 httpsdoiorg101016jtree201203009

RocchiniDAndreiniButiniSampChiarucciA (2005)Maximizingplantspecies inventory efficiency by means of remotely sensed spectraldistancesGlobal Ecology and Biogeography14 431ndash437 httpsdoiorg101111j1466-822x200500169x

Rocchini D Balkenhol N Carter G A Foody G M Gillespie TWHeK ShellipNetelerM (2010)Remotely sensed spectral heteroge-neityasaproxyofspeciesdiversityRecentadvancesandopenchal-lenges Ecological Informatics 5 318ndash329 httpsdoiorg101016jecoinf201006001

RocchiniDDelucchiLBacaroGCavalliniPFeilhauerHFoodyG M hellip Neteler M (2013) Calculating landscape diversity with

information-theorybased indicesAGRASSGISsolutionEcological Informatics1782ndash93httpsdoiorg101016jecoinf201204002

Rocchini D Hernaacutendez Stefanoni J L amp He K S (2015) Advancingspecies diversity estimate by remotely sensed proxiesA conceptualreview Ecological Informatics 25 22ndash28 httpsdoiorg101016jecoinf201410006

RocchiniDBoydDSFeacuteretJBFoodyGMHeKSLauschAhellipPettorelliN(2016)Satelliteremotesensingtomonitorspeciesdiver-sityPotentialandpitfallsRemote Sensing in Ecology and Conservation225ndash36httpsdoiorg101002rse29

Rocchini D Garzon-Lopez C X Marcantonio M Amici V BacaroG Bastin L hellip Rosaacute R (2017) Anticipating species distributionsHandlingsamplingeffortbiasunderaBayesianframeworkScience of the Total Environment584ndash585 282ndash290 httpsdoiorg101016jscitotenv201612038

RosauerDFFerrierSWilliamsKJManionGKeoghJSampLaffanSW (2014)PhylogeneticgeneraliseddissimilaritymodellingAnewapproachtoanalysingandpredictingspatialturnoverinthephyloge-neticcompositionofcommunitiesEcography3721ndash32httpsdoiorg101111j1600-0587201300466x

SchmellerDWeatherdonLLoyauABondeauABrotonsLBrummittNhellipReganE(inpress)AsuiteofessentialbiodiversityvariablesfordetectingcriticalbiodiversitychangeBiological Reviews

SchmidtleinSampSassinJ(2004)MappingcontinuousfloristicgradientsingrasslandsusinghyperspectralimageryRemote Sensing of Environment92126ndash138httpsdoiorg101016jrse200405004

Schmidtlein S Zimmermann P Schuumlpferling R amp Weiss C (2007)MappingthefloristiccontinuumOrdinationspacepositionestimatedfromimagingspectroscopyJournal of Vegetation Science18131ndash140httpsdoiorg101111j1654-11032007tb02523x

TahvanainenT (2011)Abrupt ombrotrophication of a boreal aapamiretriggered by hydrological disturbance in the catchment Journal of Ecology201199

Tuomisto H amp Ruokolainen K (2006) Analyzing or explaining betadiversityUnderstanding the targets of differentmethods of anal-ysis Ecology 87 2697ndash2708 httpsdoiorg1018900012-9658 (2006)87

TuomistoHPoulsenARuokolainenKMoranRQuintanaCCeliJampCanasG (2003) Linking floristicpatternswith soil heterogeneityandsatellite imagery inEcuadorianAmazoniaEcological Applications13352ndash371httpsdoiorg1018901051-0761(2003)013[0352lfp wsh]20co2

TyreAJPossinghamHPampLindenmayerDB(2001)InferringprocessfrompatternCanterritoryoccupancyprovide informationabout lifehistoryparametersEcological Applications111722ndash1737httpsdoiorg1023073061091

Ustin S L amp Gamon J A (2010) Remote sensing of plant functionaltypesNew Phytologist186795ndash816httpsdoiorg101111j1469- 8137201003284x

VaglioLaurinGChanJC-WChenQLindsellJACoomesDAGuerriero LhellipValentiniR (2014)Biodiversitymapping in a tropi-calWestAfricanforestwithairbornehyperspectraldataPLoS ONE9e97910httpsdoiorg101371journalpone0097910

VernesiC RocchiniD Pecchioli ENetelerMVendraminGGampPaffetti D (2012) A landscape genetics approach reveals ecolog-ical-based differentiation in populations of holm oak (Quercus ilexL)attheirnorthernmostdistributionEDGEBiological Journal of the Linnean Society107458ndash467httpsdoiorg101111j1095-8312 201201940x

VihervaaraPAuvinenA-PMononenLToumlrmaumlMAhlrothPAnttilaShellipVirkkalaR (2017)Howessentialbiodiversityvariablesandre-motesensingcanhelpnationalbiodiversitymonitoringGlobal Ecology and Conservation 10 43ndash59 httpsdoiorg101016jgecco2017 01007

1798emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

WegmannMLeutnerBFMetzMNetelerMDechSampRocchiniD(2017)rpiAGRASSGISpackageforsemi-automaticspatialpatternanalysis of remotely sensed land cover dataMethods in Ecology and Evolutioninpresshttpsdoiorg1011112041-210x12827

Whittaker R H (1960) Vegetation of the SiskiyouMountains OregonandCaliforniaEcological Monographs30280ndash338httpsdoiorg10 23071943563

Witten D Tibshirani R Gross S amp Narasimhan B (2013) PMAPenalized multivariate analysis R package version 109 RetrievedfromhttpsCRANR-projectorgpackage=PMA

Woolley SN C Foster SDOrsquoHaraTDWintle BA ampDunstanP K (2017) Characterising uncertainty in generalised dissimilaritymodels Methods in Ecology and Evolution 8 985ndash995 httpsdoiorg1011112041-210x12710

SUPPORTING INFORMATION

Additional Supporting Information may be found online in thesupportinginformationtabforthisarticle

How to cite this articleRocchiniDLuqueSPettorelliNetalMeasuringβ-diversitybyremotesensingAchallengeforbiodiversitymonitoringMethods Ecol Evol 201891787ndash1798 httpsdoiorg1011112041-210X12941

Page 7: Measuring β‐diversity by remote sensing: A challenge for ...€¦ · ment of remote sensing tools (Rocchini & Neteler, 2012) for diversity estimate in which the concept of β-diversity

emspensp emsp | emsp1793Methods in Ecology and Evolu13onROCCHINI et al

of them considers the relative abundance of such pixel values in aneighbourhood

Bycontrastabundance-basedmetricssuchastheShannonentropycouldoutputsimilarresultsdespiteavariabledistanceamongpixelval-uesAsanexampleconsidera3times3matrixofremotelysenseddata

composedbythefollowingvalues

thenconsideradifferentmatrix

FromaShannonsentropyperspectivesuchmatricesareequalintermsofheterogeneityTheShannonsentropyisindeedbasedontherelativeabundance(andrichness)ofasampleanditsvalueis2197forboth thematricesThisvalue equalling thenatural logarithmofthenumberofclasses(pixelvalues)isalsoShannonsmaximumtheo-reticalvaluegivena3times3matrixduetothelackofidenticalnumbersinthematricesThisexampleexplicitlyshowsthataccountingforthedistanceamongvaluesandtheirrelativeabundanceiscrucialtodis-criminateamongareasintermsofmeasured(modelled)heterogeneity

Oneof themetrics accounting for both the abundance and thepairwisespectraldistanceamongpixelsistheRaosQdiversityindexasfollows

wheredij=spectraldistanceamongpixels i and j and p = proportion ofoccupiedarea

Hence RaosQ is capable of discriminating among the ecologi-caldiversityofmatrices(3)and(4)turningouttobe459and9070respectivelyAppendix S1provides an example spreadsheet to per-formthecalculationwhilethecompleteRcodeisstoredintheGitHubrepositoryhttpsgithubcommattmarspectralrao

Wedecidedtomakeuseofacasestudytohighlightthe impor-tanceofconsideringthedistanceamongpixelvaluesinremotesenseecologicalapplicationTheperformanceofRaosQindexindescrib-ing landscape diversitywas tested in a complex agro-forestry land-scapelocatedinsouthernPortugalAtestsitewithanareaofabout10times10km2(centroidlocatedat38∘39prime1074primeprimeN8∘12prime5230primeprimeW)wasselectedtoconducttheanalysisInthisareaasavanna-likeecosystemcalledmontadooccupiesabout40ofthetestsitefollowedbytra-ditionalolivegrovespasturesvineyardsandirrigatedmonocultures(egcornfields)Montadoisspatiallycharacterizedbythevariabilityofitstreedensity(egGodinhoGilGuiomarNevesampPinto-Correia2016)andthegradientbetweenlowandhightreedensityoverspacecanleadtodifferentstructuralheterogeneityandhabitatdiversity

Within the test site polyculture under the small farming con-text (eg vegetable gardens orchards and cereal crops) is an im-portantfeatureofthislandscapebygeneratingahighcompositionalandconfigurational spatialheterogeneity (Figure6)Themaingoalinusingthiscasestudy is todemonstrate thepotentialandeffec-tivenessoftheRaosQindexinproducingaccuratelyremotesens-ing-based maps of spatial diversity over such complex landscapeFor this study a cloud-free Sentinel-2A (S2A) image acquired onAugust 8 2016wasused to compute theNDVI at a 10m spatialresolutionTheS2Aimagedownloadaswellastheatmosphericcor-rection (DOSmethod)were performed using the Semi-automaticClassificationplugin(SCP)implementedintheQGISsoftware(QGISDevelopmentTeam2016)

TheNDVIwasusedasinputdataforRaosQindexcomputationusingawindowsizeof3times3pixelsTheperformanceoftheRaosQwascomparedtotheShannonEntropyindex(ShannonsH)whichisoneofthesimplestandwidelyusedremotesensing-baseddiversitymeasures for landscape heterogeneity assessment (Rocchini etal2016)To investigatewhetherbothdiversity indicesdifferbetween

(2)

⎛⎜⎜⎜⎝

x11 x12 x13

x21 x22 x23

xd1 xd2 xd3

⎞⎟⎟⎟⎠

(3)

⎛⎜⎜⎜⎝

10 13 15

18 20 23

19 21 22

⎞⎟⎟⎟⎠

(4)

⎛⎜⎜⎜⎝

10 121 227

1 40 251

7 100 149

⎞⎟⎟⎟⎠

(5)Q =

sumsumdij times pi times pj

F I G U R E 5 emsp AnexampleofthesparsegeneralizeddissimilaritymodelapproachRemotesensingdataandbiodiversitydatainthefieldcanbecoupledbysparsecanonicalcorrelationanalysis(SCCA)toproducecanonicalcomponentsandacommunitydissimilaritymatrixwhicharethenusedtobuildageneralizeddissimilaritymodel(GDM)tofinallyderiveaβ-diversitymap

0 0

SCCA

GDM

GDM

Remote sensing data Biodiversity data

Canonical components Community dissimilarity

Beta-diversity map

1794emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

land cover types one-wayANOVA testswere performedThis ap-proachwas used for analysing the degree of dissimilarity betweenRaosQandShannonH indexacross twohighcomplex landcovertypes (1) montado and (2) polyculture To do so a sample of 60squareswith 250times250m2 sizewas randomly selected over thesetwolandcovertypesEachsquarerepresentsasampleof625S2ANDVI pixels thus corresponding to a total of 37500pixels overthe60 squares For the comparisonbetweenboth indices the co-efficient of variation (CV) was calculated for each 250times250m2 Regarding the RaosQ performance Figure 6 clearly points to thesignificant improvementsshownbyRaosQ indexcomparedtotheShannonH index indescribing the spatialdiversity Inparticular itcanbeseenthroughtheFigure6 thatRaosQ indexcanhighlightdifferentgradientsofspatialdiversityofmontadoareaswhichpres-enthightreedensityvariability(Figure6)andthushighspatialhet-erogeneityOne-wayANOVAtestsrevealedthatbothindicesvaluesweresignificantlydifferentbetweenthetwolandcovertypes(mon-tado F=5033p lt 001 polyculture F=8898plt001)Overall

theobtainedresultsdemonstratethecapabilityofRaosQindex inproducingaccuratelandscapediversitymapsinacomplexlandscapesuchastheMediterraneanagro-forestrysystems

7emsp |emspCONCLUSION

In this paper we showed several methods based on ecologicalβ-diversitywhichcanbeinvestigatedbyremotesensingthroughthecalculationofecosystemheterogeneitytoestimatethespatialvariabil-ityofbiodiversityWhenthereisawiderangeofheterogeneityforex-amplewhenthedataincludehomogeneousandheterogeneouszonesnosinglemeasuremightcaptureallthedifferentaspectsofβ-diversity(egBaselga2013)Thatiswhywesuggestedinthismanuscriptmul-tivariateandmultidimensionalmethods(egmultivariatestatisticsandmultidimensionaldistancematrices)basedonthespectralsignalanditsvariabilityoverspacetoaccountfordifferentaspectsofdiversityalsoincludingdistance-andabundance-basedmethods(egtheRaosQ)

F I G U R E 6 emsp UpperpanelsSentinel-2Ascene(August82016)andderivedNDVIfortheagro-forestrysystemstestsitelocatedinsouthernPortugalLowerpanelsresultsfromShannonsHandRaosQindicescomputationShannonindextendstooverestimatethelandscapediversitywhencomparedtotheRaosQindex

emspensp emsp | emsp1795Methods in Ecology and Evolu13onROCCHINI et al

Biodiversitymeasuredasspeciesrichnessisoftenusedforconser-vationpurposeshencetheimportanceofavoidinganunder-orover-estimate has been highlighted (Chiarucci etal 2009) Furthermorepairwisedistance-basedmethodsmightbeprofitablyusedtodetectnotonlydiversityhotspotsinanareabutalsothevariationofbiodi-versityoverspaceandpotentiallyovertimeoncemultitemporalsetsofimagesareused

In this paperwe focused on optimizingmeasures of β-diversitybasedonremotesensingdataSuchmeasuresmightbeusedtoregressspeciesdiversityagainstremotelysensedheterogeneitybasedonnewregressiontechniqueswhichmaximizethepossibilityofpredictingthezones in a study area or at larger spatial scales of peculiar conser-vationvalueAsanexampleshrinkageregressionrecentlyappliedinbiodiversityconservation(AuthierSarauxampPeron2017)couldallowadirectfocusonhabitatmodellingwhichisoneofthemajorstrengthsofremotesensing(GillespieFoodyRocchiniGiorgiampSaatchi2008)MoreoversuchanalysismightbeperformedinaBayesianframeworkallowingto(1)modelmultidimensionalcovariateswithnon-stationaryvariationoverspace(RandellTurnbullEwansampJonathan2016)suchasthebandsofsatelliteimagesand(2)modeltheerrorsintheoutputandtheirvariationoverspace(Rocchinietal2017)

Aspreviouslystatedthesuggestedmethodsforβ-diversityes-timation from remote sensing aremainly based on distances butthey could be effectively translated to relative abundance-basedmethodsAsanexampleRocchinietal(2013)introducedthepos-sibility of applying generalized entropy theory to satellite imageswithonesingleformularepresentingacontinuumofdiversitymea-sures changing one parameter One of the best examples in thisframeworkcouldbe theuseofHill numbers inwhichdiversity isexpressedasfollows

whereS=numberofsamplespixelsandpi=relativeabundanceofaspeciesspectralvaluevaryingtheparameterqqDvariesaccordinglyinseveraldiversity indiceseg forq = 0 qD is thesimplenumberofspeciesforlim(q)=1qDequalsShannonsentropyetc(HsiehMaampChao2016)

Furthermore connectivity analysis might also be taken into ac-count (Moilanen etal 2005 2009) For instance a remote sens-ing-based connectivity network among different sites based onβ-diversitymeasurescouldbeappliedfortheestimateof landscapeconnectivityandconsequentgeneticflowasdemonstratedbyVernesietal(2012)Ithasalsobeenshownthatcommunityrelatedbiodiver-sityindicatorsareoftenmissingfromcurrentmonitoringprogrammes(Vihervaaraetal2017)thusmethodssuchasremotesensing-basedRaosQdiversityappliedforvariousecosystemsmightimproveother-wisechallengingmonitoringofbiologicalcommunities

Withthismanuscriptwehopetostimulatediscussionontheavail-ablemethodsforestimatingβ-diversityfromremotelysensedimagerybyproposinginnovativetechniquesgroundedonecologicaltheory

ACKNOWLEDGEMENTS

WearegratefultothehandlingEditorandtotwoanonymousreview-erswhoimprovedwithskillfulsuggestionsapreviousversionofthepresentmanuscriptDRwaspartiallysupportedby (i) theEU-LIFEproject LIFE14ENVIT000514 FutureForCoppices (ii) the H2020project ECOPOTENTIAL (Grant Agreement no 641762) iii) theH2020TRuStEE-TrainingonRemoteSensingforEcosystemmodEl-ling-project(GrantAgreementno721995)

AUTHORSrsquo CONTRIBUTIONS

All authors contributed to the development and writing of themanuscript

DATA ACCESSIBILITY

Partofthedataandcorrespondingoriginalsourcesareavailableatthefollowinghttpsdoiorg105061dryaddg31k

ORCID

Duccio Rocchini httporcidorg0000-0003-0087-0594

Sandra Luque httporcidorg0000-0002-4002-3974

Nathalie Pettorelli httporcidorg0000-0002-1594-6208

Lucy Bastin httporcidorg0000-0003-1321-0800

Hannes Feilhauer httporcidorg0000-0001-5758-6303

Jean-Baptiste Feacuteret httporcidorg0000-0002-0151-1334

Giles M Foody httporcidorg0000-0001-6464-3054

Yoni Gavish httporcidorg0000-0002-6025-5668

William E Kunin httporcidorg0000-0002-9812-2326

Angela Lausch httporcidorg0000-0002-4490-7232

Pedro J Leitatildeo httporcidorg0000-0003-3038-9531

Markus Neteler httporcidorg0000-0003-1916-1966

Carlo Ricotta httporcidorg0000-0003-0818-3959 Martin Wegmann httporcidorg0000-0003-0335-9601

Harini Nagendra httporcidorg0000-0002-1585-0724

REFERENCES

AlahuhtaJKostenSAkasakaMAudersetDAzzellaMBolpagniRhellipHeinoJ(2017)Globalvariationinthebetadiversityoflakemacrophytesis driven by environmental heterogeneity rather than latitude Journal of Biogeography441758ndash1769httpsdoiorg101111jbi12978

AsnerGampMartinR(2008)Spectralandchemicalanalysisoftropicalfor-estsScalingfromleaftocanopylevelsRemote Sensing of Environment1123958ndash3970httpsdoiorg101016jrse200807003

AsnerGPMartinREAndersonCBampKnappDE(2015)QuantifyingforestcanopytraitsImagingspectroscopyversusfieldsurveyRemote Sensing of Environment15815ndash27httpsdoiorg101016jrse2014 11011

(6)qD=

(Ssumi=1

pqi

) 1

1minusq

1796emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

AuthierMSarauxCampPeronC(2017)VariableselectionandaccuratepredictionsinhabitatmodellingAshrinkageapproachEcography40549ndash560httpsdoiorg101111ecog01633

BaldeckCampAsnerG(2013)Estimatingvegetationbetadiversityfromairborne imaging spectroscopy and unsupervised clustering Remote Sensing52057ndash2071httpsdoiorg103390rs5052057

BaldeckCAampColganMSFeacuteretJ-BLevickSRMartinREampAsner G P (2014) Landscape-scale variation in plant communitycomposition of an African savanna from airborne species mappingEcological Applications2484ndash93httpsdoiorg10189013-03071

BaselgaA(2013)Multiplesitedissimilarityquantifiescompositionalhet-erogeneity among several sites while average pairwise dissimilaritymaybemisleadingEcography36124ndash128httpsdoiorg101111 j1600-0587201200124x

Chadwick K amp Asner G (2016) Organismic-scale remote sensing ofcanopyfoliar traits in lowlandtropical forestsRemote Sensing887httpsdoiorg103390rs8020087

ChiarucciABacaroGRocchiniDRicottaCPalmerMWampScheinerSM (2009) Spatially constrained rarefaction Incorporating the au-tocorrelatedstructureofbiologicalcommunitiesinsample-basedrar-efactionCommunity Ecology 10 209ndash214 httpsdoiorg101556comec102009211

ChonT-SParkYSMoonKYampChaEY(1996)Patternizingcom-munitiesbyusinganartificialneuralnetworkEcological Modelling9069ndash78httpsdoiorg1010160304-3800(95)00148-4

ClarkM LampRobertsDA (2012) Species-level differences inhyper-spectral metrics among tropical rainforest trees as determined bya tree-based classifier Remote Sensing 4 1820ndash1855 httpsdoiorg103390rs4061820

ClarkMRobertsDampClarkD(2005)HyperspectraldiscriminationoftropicalrainforesttreespeciesatleaftocrownscalesRemote Sensing of Environment96375ndash398httpsdoiorg101016jrse200503009

FeilhauerHampSchmidtleinS(2009)MappingcontinuousfieldsofalphaandbetadiversityApplied Vegetation Science12429ndash439httpsdoiorg101111j1654-109x200901037x

FeilhauerHFaudeUampSchmidtleinS(2011)CombiningIsomapordi-nationandimagingspectroscopytomapcontinuousfloristicgradientsin a heterogeneous landscape Remote Sensing of Environment 1152513ndash2524httpsdoiorg101016jrse201105011

FeilhauerHThonfeldFFaudeUHeKSRocchiniDSchmidtleinS(2013)Assessingfloristiccompositionwithmultispectralsensorsacomparisonbasedonmonotemporalandmultiseasonal fieldspectraInternational Journal of Applied Earth Observation and Geoinformation21218ndash229httpsdoiorg101016jjag201209002

FeilhauerHDoktorDLauschASchmidtleinSSchulzGampStenzelS(2014)MappingNatura2000habitatsandtheirlocalvariabilitywithremote sensingApplied Vegetation Science17 765ndash779httpsdoiorg101111avsc12115

FeilhauerHDoktorDSchmidtleinSampSkidmoreAK(2016)MappingpollinationtypeswithremotesensingJournal of Vegetation Science27999ndash1011httpsdoiorg101111jvs12421

FeacuteretJ-BampAsnerGP (2013)Tree speciesdiscrimination in tropicalforests using airborne imaging spectroscopy IEEE Transactions on Geoscience and Remote Sensing5173ndash84httpsdoiorg101109TG RS20122199323

FeacuteretJ-BampAsnerGP(2014a)Mappingtropicalforestcanopydiversityusing high-fidelity imaging spectroscopy Ecological Applications 241289ndash1296httpsdoiorg10189013-18241

FeacuteretJ-BampAsnerGP(2014b)MicrotopographiccontrolsonlowlandAmazonian canopy diversity from imaging spectroscopy Ecological Applications241297ndash1310httpsdoiorg10189013-18961

FerrierSManionGElithJampRichardsonK(2007)Usinggeneralizeddissimilaritymodelling toanalyseandpredictpatternsofbetadiver-sityinregionalbiodiversityassessmentDiversity and Distributions13252ndash264httpsdoiorg101111j1472-4642200700341x

FoodyGM(1999)Applicationsoftheself-organisingfeaturemapneuralnetworkincommunitydataanalysisEcological Modelling12097ndash107httpsdoiorg101016s0304-3800(99)00094-0

FoodyGMampCutlerMEJ(2003)TreebiodiversityinprotectedandloggedBorneantropicalrainforestsanditsmeasurementbysatelliteremote sensing Journal of Biogeography30 1053ndash1066 httpsdoiorg101046j1365-2699200300887x

FritzkeB(1995)GrowinggridndashAselforganizingnetworkwithconstantneighborhoodrangeandadaptationstrengthNeural Processing Letters29ndash13httpsdoiorg101007bf02332159

GillespieTW (2005) Predictingwoody-plant species richness in trop-ical dry forests a case study from South Florida USA Ecological Applications1527ndash37httpsdoiorg10189003-5304

Gillespie T W Foody G M Rocchini D Giorgi A P amp Saatchi S(2008)Measuring andmodeling biodiversity from spaceProgress in Physical Geography32203ndash221httpsdoiorg10117703091333 08093606

GiraudelJLampLekS(2001)AcomparisonofSOMalgorithmandsomeconventional statistical methods for ecological community ordina-tion Ecological Modelling 146 329ndash339 httpsdoiorg101016s0304-3800(01)00324-6

GodinhoSGilAGuiomarNNevesNampPinto-CorreiaT (2016)Aremote sensing-basedapproach toestimatingmontadocanopyden-sityusingtheFCDmodelAcontributiontoidentifyingHNVfarmlandsin southern Portugal Agroforestry Systems 90 23ndash34 httpsdoiorg101007s10457-014-9769-3

GrahamCHampFinePVA(2008)PhylogeneticbetadiversityLinkingeco-logicalandevolutionaryprocessesacrossspaceintimeEcology Letters111265ndash1277httpsdoiorg101111j1461-0248200801256x

GuHSinghAampTownsendPA(2015)Detectionofgradientsoffor-estcompositioninanurbanareausingimagingspectroscopyRemote Sensing of Environment 167 168ndash180 httpsdoiorg101016jrse201506010

HarrisACharnockRampLucasRM(2015)Hyperspectralremotesens-ingofpeatlandfloristicgradientsRemote Sensing of Environment16299ndash111httpsdoiorg101016jrse201501029

Hernandez-Stefanoni J L Gallardo-Cruz J A Meave J A RocchiniDBello-PinedaJampLoacutepez-MartiacutenezJO (2012)Modelingα- and β-diversityinatropicalforestfromremotelysensedandspatialdataInternational Journal of Applied Earth Observation and Geoinformation19359ndash368httpsdoiorg101016jjag201204002

Hill M O amp Gauch H G 1980 Detrended correspondence analysisAn improvedordination techniqueVegetatio42 47ndash58 httpsdoiorg101007978-94-009-9197-2_7

HsiehTCMaKHampChaoA(2016)iNEXTAnRpackageforrarefactionandextrapolationofspeciesdiversity(Hillnumbers)Methods in Ecology amp Evolution71451ndash1456httpsdoiorg1011112041-210x12613

KohonenT(1982)Analysisofasimpleself-organizingprocessBiological Cybernetics44135ndash140httpsdoiorg101007bf00317973

LatombeGHuiCampMcGeochMA(2017)Multi-sitegeneraliseddis-similaritymodellingUsingzetadiversitytodifferentiatedriversofturn-overinrareandwidespreadspeciesMethods in Ecology and Evolution8431ndash442httpsdoiorg1011112041-210x12756

LauschABannehrLBeckmannMBoehmCFeilhauerHHackerJMhellipCordAF (2016)Linkingearthobservationandtaxonomicstructural and functional biodiversity Local to ecosystem perspec-tives Ecological Indicators 70 317ndash339 httpsdoiorg101016jecolind201606022

LeathwickJRSnelderTChaddertonWLElithJJulianKampFerrierS(2011)Useofgeneraliseddissimilaritymodellingtoimprovethebiolog-icaldiscriminationofriverandstreamclassificationsFreshwater Biology5621ndash38httpsdoiorg101111j1365-2427201002414x

LegendrePBorcardDampPeres-NetoPR(2005)Analyzingbetadiver-sityPartitioningthespatialvariationofcommunitycompositiondataEcological Monographs75435ndash450httpsdoiorg10189005-0549

emspensp emsp | emsp1797Methods in Ecology and Evolu13onROCCHINI et al

LeitatildeoPJSchwiederMSuessSCatryIMiltonEJMoreiraFhellipHostert P (2015) Mapping beta diversity from space Sparse gen-eralised dissimilarity modelling (SGDM) for analysing high-dimen-sionaldataMethods in Ecology and Evolution6764ndash771httpsdoiorg1011112041-210x12378

LeitatildeoPSchwiederMampSenfC(2017)sgdmAnRpackageforperform-ingsparsegeneralizeddissimilaritymodellingwithtoolsforgdm ISPRS International Journal of Geo-Information623httpsdoiorg103390ijgi6010023

MantelNampValandRS(1970)AtechniqueofnonparametricmultivariateanalysisBiometrics26547ndash558httpsdoiorg1023072529108

MazorTKarkSPossinghamHPRocchiniDLevyYRichardsonAJampLevinN(2013)Cansatellite-basednightlightsbeusedforconser-vationThecaseofnestingseaturtlesintheMediterraneanBiological Conservation 159 63ndash72 httpsdoiorg101016jbiocon201211 004

MeentemeyerRKAnackerBLMarkWampRizzoDM(2008)Earlydetectionofemergingforestdiseaseusingdispersalstimationandeco-logical nichemodeling Ecological Applications18 377ndash390 httpsdoiorg10189007-11501

MetzMRocchiniDampNetelerM(2014)Surfacetemperaturesatthecontinental scaleTracking changeswith remote sensingatunprece-dented detail Remote Sensing63822ndash3840httpsdoiorg103390rs6053822

MoilanenA FrancoAMA Early R Fox RWintle B amp ThomasC D (2005) Prioritizing multiple-use landscapes for conservationMethods for large multi-species planning problems Proceedings of the Royal Society B Biological Sciences 272 1885ndash1891 httpsdoiorg101098rspb20053164

MoilanenA Kujala H amp Leathwick J R (2009)The zonation frame-workandsoftware forconservationprioritization InAMoilanenKWilson amp H P Possingham (Eds) Spatial conservation prioritization Quantitative methods amp computational tools (pp 196ndash210) OxfordOxfordUniversityPress

NeumannCWeissGSchmidtleinSItzerottSLauschADoktorDampBrellM(2015)Ecologicalgradient-basedhabitatqualityassessmentfor spectralecosystem monitoring Remote Sensing 7 2871ndash2898httpsdoiorg103390rs70302871

PalmerMWEarlsPGHoaglandBWWhitePSampWohlgemuthT(2002)QuantitativetoolsforperfectingspecieslistsEnvironmetrics13121ndash137httpsdoiorg101002env516

QGISDevelopmentTeam(2016)QGISgeographicinformationsystemOpenSourceGeospatialFoundationAvailableathttpqgisosgeoorg

RandellDTurnbullKEwansKampJonathanP(2016)Bayesianinfer-ence for nonstationary marginal extremes Environmetrics 27 439ndash450httpsdoiorg101002env2403

Rocchini D Petras V Petrasova A Horning N Furtkevicova LNetelerMhellipWegmannM(2017)OpendataandopensourceforremotesensingtraininginecologyEcological Informatics4057ndash61

RocchiniDampNetelerM(2012)Letthefourfreedomsparadigmapplyto ecology Trends in Ecology amp Evolution 27 310ndash311 httpsdoiorg101016jtree201203009

RocchiniDAndreiniButiniSampChiarucciA (2005)Maximizingplantspecies inventory efficiency by means of remotely sensed spectraldistancesGlobal Ecology and Biogeography14 431ndash437 httpsdoiorg101111j1466-822x200500169x

Rocchini D Balkenhol N Carter G A Foody G M Gillespie TWHeK ShellipNetelerM (2010)Remotely sensed spectral heteroge-neityasaproxyofspeciesdiversityRecentadvancesandopenchal-lenges Ecological Informatics 5 318ndash329 httpsdoiorg101016jecoinf201006001

RocchiniDDelucchiLBacaroGCavalliniPFeilhauerHFoodyG M hellip Neteler M (2013) Calculating landscape diversity with

information-theorybased indicesAGRASSGISsolutionEcological Informatics1782ndash93httpsdoiorg101016jecoinf201204002

Rocchini D Hernaacutendez Stefanoni J L amp He K S (2015) Advancingspecies diversity estimate by remotely sensed proxiesA conceptualreview Ecological Informatics 25 22ndash28 httpsdoiorg101016jecoinf201410006

RocchiniDBoydDSFeacuteretJBFoodyGMHeKSLauschAhellipPettorelliN(2016)Satelliteremotesensingtomonitorspeciesdiver-sityPotentialandpitfallsRemote Sensing in Ecology and Conservation225ndash36httpsdoiorg101002rse29

Rocchini D Garzon-Lopez C X Marcantonio M Amici V BacaroG Bastin L hellip Rosaacute R (2017) Anticipating species distributionsHandlingsamplingeffortbiasunderaBayesianframeworkScience of the Total Environment584ndash585 282ndash290 httpsdoiorg101016jscitotenv201612038

RosauerDFFerrierSWilliamsKJManionGKeoghJSampLaffanSW (2014)PhylogeneticgeneraliseddissimilaritymodellingAnewapproachtoanalysingandpredictingspatialturnoverinthephyloge-neticcompositionofcommunitiesEcography3721ndash32httpsdoiorg101111j1600-0587201300466x

SchmellerDWeatherdonLLoyauABondeauABrotonsLBrummittNhellipReganE(inpress)AsuiteofessentialbiodiversityvariablesfordetectingcriticalbiodiversitychangeBiological Reviews

SchmidtleinSampSassinJ(2004)MappingcontinuousfloristicgradientsingrasslandsusinghyperspectralimageryRemote Sensing of Environment92126ndash138httpsdoiorg101016jrse200405004

Schmidtlein S Zimmermann P Schuumlpferling R amp Weiss C (2007)MappingthefloristiccontinuumOrdinationspacepositionestimatedfromimagingspectroscopyJournal of Vegetation Science18131ndash140httpsdoiorg101111j1654-11032007tb02523x

TahvanainenT (2011)Abrupt ombrotrophication of a boreal aapamiretriggered by hydrological disturbance in the catchment Journal of Ecology201199

Tuomisto H amp Ruokolainen K (2006) Analyzing or explaining betadiversityUnderstanding the targets of differentmethods of anal-ysis Ecology 87 2697ndash2708 httpsdoiorg1018900012-9658 (2006)87

TuomistoHPoulsenARuokolainenKMoranRQuintanaCCeliJampCanasG (2003) Linking floristicpatternswith soil heterogeneityandsatellite imagery inEcuadorianAmazoniaEcological Applications13352ndash371httpsdoiorg1018901051-0761(2003)013[0352lfp wsh]20co2

TyreAJPossinghamHPampLindenmayerDB(2001)InferringprocessfrompatternCanterritoryoccupancyprovide informationabout lifehistoryparametersEcological Applications111722ndash1737httpsdoiorg1023073061091

Ustin S L amp Gamon J A (2010) Remote sensing of plant functionaltypesNew Phytologist186795ndash816httpsdoiorg101111j1469- 8137201003284x

VaglioLaurinGChanJC-WChenQLindsellJACoomesDAGuerriero LhellipValentiniR (2014)Biodiversitymapping in a tropi-calWestAfricanforestwithairbornehyperspectraldataPLoS ONE9e97910httpsdoiorg101371journalpone0097910

VernesiC RocchiniD Pecchioli ENetelerMVendraminGGampPaffetti D (2012) A landscape genetics approach reveals ecolog-ical-based differentiation in populations of holm oak (Quercus ilexL)attheirnorthernmostdistributionEDGEBiological Journal of the Linnean Society107458ndash467httpsdoiorg101111j1095-8312 201201940x

VihervaaraPAuvinenA-PMononenLToumlrmaumlMAhlrothPAnttilaShellipVirkkalaR (2017)Howessentialbiodiversityvariablesandre-motesensingcanhelpnationalbiodiversitymonitoringGlobal Ecology and Conservation 10 43ndash59 httpsdoiorg101016jgecco2017 01007

1798emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

WegmannMLeutnerBFMetzMNetelerMDechSampRocchiniD(2017)rpiAGRASSGISpackageforsemi-automaticspatialpatternanalysis of remotely sensed land cover dataMethods in Ecology and Evolutioninpresshttpsdoiorg1011112041-210x12827

Whittaker R H (1960) Vegetation of the SiskiyouMountains OregonandCaliforniaEcological Monographs30280ndash338httpsdoiorg10 23071943563

Witten D Tibshirani R Gross S amp Narasimhan B (2013) PMAPenalized multivariate analysis R package version 109 RetrievedfromhttpsCRANR-projectorgpackage=PMA

Woolley SN C Foster SDOrsquoHaraTDWintle BA ampDunstanP K (2017) Characterising uncertainty in generalised dissimilaritymodels Methods in Ecology and Evolution 8 985ndash995 httpsdoiorg1011112041-210x12710

SUPPORTING INFORMATION

Additional Supporting Information may be found online in thesupportinginformationtabforthisarticle

How to cite this articleRocchiniDLuqueSPettorelliNetalMeasuringβ-diversitybyremotesensingAchallengeforbiodiversitymonitoringMethods Ecol Evol 201891787ndash1798 httpsdoiorg1011112041-210X12941

Page 8: Measuring β‐diversity by remote sensing: A challenge for ...€¦ · ment of remote sensing tools (Rocchini & Neteler, 2012) for diversity estimate in which the concept of β-diversity

1794emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

land cover types one-wayANOVA testswere performedThis ap-proachwas used for analysing the degree of dissimilarity betweenRaosQandShannonH indexacross twohighcomplex landcovertypes (1) montado and (2) polyculture To do so a sample of 60squareswith 250times250m2 sizewas randomly selected over thesetwolandcovertypesEachsquarerepresentsasampleof625S2ANDVI pixels thus corresponding to a total of 37500pixels overthe60 squares For the comparisonbetweenboth indices the co-efficient of variation (CV) was calculated for each 250times250m2 Regarding the RaosQ performance Figure 6 clearly points to thesignificant improvementsshownbyRaosQ indexcomparedtotheShannonH index indescribing the spatialdiversity Inparticular itcanbeseenthroughtheFigure6 thatRaosQ indexcanhighlightdifferentgradientsofspatialdiversityofmontadoareaswhichpres-enthightreedensityvariability(Figure6)andthushighspatialhet-erogeneityOne-wayANOVAtestsrevealedthatbothindicesvaluesweresignificantlydifferentbetweenthetwolandcovertypes(mon-tado F=5033p lt 001 polyculture F=8898plt001)Overall

theobtainedresultsdemonstratethecapabilityofRaosQindex inproducingaccuratelandscapediversitymapsinacomplexlandscapesuchastheMediterraneanagro-forestrysystems

7emsp |emspCONCLUSION

In this paper we showed several methods based on ecologicalβ-diversitywhichcanbeinvestigatedbyremotesensingthroughthecalculationofecosystemheterogeneitytoestimatethespatialvariabil-ityofbiodiversityWhenthereisawiderangeofheterogeneityforex-amplewhenthedataincludehomogeneousandheterogeneouszonesnosinglemeasuremightcaptureallthedifferentaspectsofβ-diversity(egBaselga2013)Thatiswhywesuggestedinthismanuscriptmul-tivariateandmultidimensionalmethods(egmultivariatestatisticsandmultidimensionaldistancematrices)basedonthespectralsignalanditsvariabilityoverspacetoaccountfordifferentaspectsofdiversityalsoincludingdistance-andabundance-basedmethods(egtheRaosQ)

F I G U R E 6 emsp UpperpanelsSentinel-2Ascene(August82016)andderivedNDVIfortheagro-forestrysystemstestsitelocatedinsouthernPortugalLowerpanelsresultsfromShannonsHandRaosQindicescomputationShannonindextendstooverestimatethelandscapediversitywhencomparedtotheRaosQindex

emspensp emsp | emsp1795Methods in Ecology and Evolu13onROCCHINI et al

Biodiversitymeasuredasspeciesrichnessisoftenusedforconser-vationpurposeshencetheimportanceofavoidinganunder-orover-estimate has been highlighted (Chiarucci etal 2009) Furthermorepairwisedistance-basedmethodsmightbeprofitablyusedtodetectnotonlydiversityhotspotsinanareabutalsothevariationofbiodi-versityoverspaceandpotentiallyovertimeoncemultitemporalsetsofimagesareused

In this paperwe focused on optimizingmeasures of β-diversitybasedonremotesensingdataSuchmeasuresmightbeusedtoregressspeciesdiversityagainstremotelysensedheterogeneitybasedonnewregressiontechniqueswhichmaximizethepossibilityofpredictingthezones in a study area or at larger spatial scales of peculiar conser-vationvalueAsanexampleshrinkageregressionrecentlyappliedinbiodiversityconservation(AuthierSarauxampPeron2017)couldallowadirectfocusonhabitatmodellingwhichisoneofthemajorstrengthsofremotesensing(GillespieFoodyRocchiniGiorgiampSaatchi2008)MoreoversuchanalysismightbeperformedinaBayesianframeworkallowingto(1)modelmultidimensionalcovariateswithnon-stationaryvariationoverspace(RandellTurnbullEwansampJonathan2016)suchasthebandsofsatelliteimagesand(2)modeltheerrorsintheoutputandtheirvariationoverspace(Rocchinietal2017)

Aspreviouslystatedthesuggestedmethodsforβ-diversityes-timation from remote sensing aremainly based on distances butthey could be effectively translated to relative abundance-basedmethodsAsanexampleRocchinietal(2013)introducedthepos-sibility of applying generalized entropy theory to satellite imageswithonesingleformularepresentingacontinuumofdiversitymea-sures changing one parameter One of the best examples in thisframeworkcouldbe theuseofHill numbers inwhichdiversity isexpressedasfollows

whereS=numberofsamplespixelsandpi=relativeabundanceofaspeciesspectralvaluevaryingtheparameterqqDvariesaccordinglyinseveraldiversity indiceseg forq = 0 qD is thesimplenumberofspeciesforlim(q)=1qDequalsShannonsentropyetc(HsiehMaampChao2016)

Furthermore connectivity analysis might also be taken into ac-count (Moilanen etal 2005 2009) For instance a remote sens-ing-based connectivity network among different sites based onβ-diversitymeasurescouldbeappliedfortheestimateof landscapeconnectivityandconsequentgeneticflowasdemonstratedbyVernesietal(2012)Ithasalsobeenshownthatcommunityrelatedbiodiver-sityindicatorsareoftenmissingfromcurrentmonitoringprogrammes(Vihervaaraetal2017)thusmethodssuchasremotesensing-basedRaosQdiversityappliedforvariousecosystemsmightimproveother-wisechallengingmonitoringofbiologicalcommunities

Withthismanuscriptwehopetostimulatediscussionontheavail-ablemethodsforestimatingβ-diversityfromremotelysensedimagerybyproposinginnovativetechniquesgroundedonecologicaltheory

ACKNOWLEDGEMENTS

WearegratefultothehandlingEditorandtotwoanonymousreview-erswhoimprovedwithskillfulsuggestionsapreviousversionofthepresentmanuscriptDRwaspartiallysupportedby (i) theEU-LIFEproject LIFE14ENVIT000514 FutureForCoppices (ii) the H2020project ECOPOTENTIAL (Grant Agreement no 641762) iii) theH2020TRuStEE-TrainingonRemoteSensingforEcosystemmodEl-ling-project(GrantAgreementno721995)

AUTHORSrsquo CONTRIBUTIONS

All authors contributed to the development and writing of themanuscript

DATA ACCESSIBILITY

Partofthedataandcorrespondingoriginalsourcesareavailableatthefollowinghttpsdoiorg105061dryaddg31k

ORCID

Duccio Rocchini httporcidorg0000-0003-0087-0594

Sandra Luque httporcidorg0000-0002-4002-3974

Nathalie Pettorelli httporcidorg0000-0002-1594-6208

Lucy Bastin httporcidorg0000-0003-1321-0800

Hannes Feilhauer httporcidorg0000-0001-5758-6303

Jean-Baptiste Feacuteret httporcidorg0000-0002-0151-1334

Giles M Foody httporcidorg0000-0001-6464-3054

Yoni Gavish httporcidorg0000-0002-6025-5668

William E Kunin httporcidorg0000-0002-9812-2326

Angela Lausch httporcidorg0000-0002-4490-7232

Pedro J Leitatildeo httporcidorg0000-0003-3038-9531

Markus Neteler httporcidorg0000-0003-1916-1966

Carlo Ricotta httporcidorg0000-0003-0818-3959 Martin Wegmann httporcidorg0000-0003-0335-9601

Harini Nagendra httporcidorg0000-0002-1585-0724

REFERENCES

AlahuhtaJKostenSAkasakaMAudersetDAzzellaMBolpagniRhellipHeinoJ(2017)Globalvariationinthebetadiversityoflakemacrophytesis driven by environmental heterogeneity rather than latitude Journal of Biogeography441758ndash1769httpsdoiorg101111jbi12978

AsnerGampMartinR(2008)Spectralandchemicalanalysisoftropicalfor-estsScalingfromleaftocanopylevelsRemote Sensing of Environment1123958ndash3970httpsdoiorg101016jrse200807003

AsnerGPMartinREAndersonCBampKnappDE(2015)QuantifyingforestcanopytraitsImagingspectroscopyversusfieldsurveyRemote Sensing of Environment15815ndash27httpsdoiorg101016jrse2014 11011

(6)qD=

(Ssumi=1

pqi

) 1

1minusq

1796emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

AuthierMSarauxCampPeronC(2017)VariableselectionandaccuratepredictionsinhabitatmodellingAshrinkageapproachEcography40549ndash560httpsdoiorg101111ecog01633

BaldeckCampAsnerG(2013)Estimatingvegetationbetadiversityfromairborne imaging spectroscopy and unsupervised clustering Remote Sensing52057ndash2071httpsdoiorg103390rs5052057

BaldeckCAampColganMSFeacuteretJ-BLevickSRMartinREampAsner G P (2014) Landscape-scale variation in plant communitycomposition of an African savanna from airborne species mappingEcological Applications2484ndash93httpsdoiorg10189013-03071

BaselgaA(2013)Multiplesitedissimilarityquantifiescompositionalhet-erogeneity among several sites while average pairwise dissimilaritymaybemisleadingEcography36124ndash128httpsdoiorg101111 j1600-0587201200124x

Chadwick K amp Asner G (2016) Organismic-scale remote sensing ofcanopyfoliar traits in lowlandtropical forestsRemote Sensing887httpsdoiorg103390rs8020087

ChiarucciABacaroGRocchiniDRicottaCPalmerMWampScheinerSM (2009) Spatially constrained rarefaction Incorporating the au-tocorrelatedstructureofbiologicalcommunitiesinsample-basedrar-efactionCommunity Ecology 10 209ndash214 httpsdoiorg101556comec102009211

ChonT-SParkYSMoonKYampChaEY(1996)Patternizingcom-munitiesbyusinganartificialneuralnetworkEcological Modelling9069ndash78httpsdoiorg1010160304-3800(95)00148-4

ClarkM LampRobertsDA (2012) Species-level differences inhyper-spectral metrics among tropical rainforest trees as determined bya tree-based classifier Remote Sensing 4 1820ndash1855 httpsdoiorg103390rs4061820

ClarkMRobertsDampClarkD(2005)HyperspectraldiscriminationoftropicalrainforesttreespeciesatleaftocrownscalesRemote Sensing of Environment96375ndash398httpsdoiorg101016jrse200503009

FeilhauerHampSchmidtleinS(2009)MappingcontinuousfieldsofalphaandbetadiversityApplied Vegetation Science12429ndash439httpsdoiorg101111j1654-109x200901037x

FeilhauerHFaudeUampSchmidtleinS(2011)CombiningIsomapordi-nationandimagingspectroscopytomapcontinuousfloristicgradientsin a heterogeneous landscape Remote Sensing of Environment 1152513ndash2524httpsdoiorg101016jrse201105011

FeilhauerHThonfeldFFaudeUHeKSRocchiniDSchmidtleinS(2013)Assessingfloristiccompositionwithmultispectralsensorsacomparisonbasedonmonotemporalandmultiseasonal fieldspectraInternational Journal of Applied Earth Observation and Geoinformation21218ndash229httpsdoiorg101016jjag201209002

FeilhauerHDoktorDLauschASchmidtleinSSchulzGampStenzelS(2014)MappingNatura2000habitatsandtheirlocalvariabilitywithremote sensingApplied Vegetation Science17 765ndash779httpsdoiorg101111avsc12115

FeilhauerHDoktorDSchmidtleinSampSkidmoreAK(2016)MappingpollinationtypeswithremotesensingJournal of Vegetation Science27999ndash1011httpsdoiorg101111jvs12421

FeacuteretJ-BampAsnerGP (2013)Tree speciesdiscrimination in tropicalforests using airborne imaging spectroscopy IEEE Transactions on Geoscience and Remote Sensing5173ndash84httpsdoiorg101109TG RS20122199323

FeacuteretJ-BampAsnerGP(2014a)Mappingtropicalforestcanopydiversityusing high-fidelity imaging spectroscopy Ecological Applications 241289ndash1296httpsdoiorg10189013-18241

FeacuteretJ-BampAsnerGP(2014b)MicrotopographiccontrolsonlowlandAmazonian canopy diversity from imaging spectroscopy Ecological Applications241297ndash1310httpsdoiorg10189013-18961

FerrierSManionGElithJampRichardsonK(2007)Usinggeneralizeddissimilaritymodelling toanalyseandpredictpatternsofbetadiver-sityinregionalbiodiversityassessmentDiversity and Distributions13252ndash264httpsdoiorg101111j1472-4642200700341x

FoodyGM(1999)Applicationsoftheself-organisingfeaturemapneuralnetworkincommunitydataanalysisEcological Modelling12097ndash107httpsdoiorg101016s0304-3800(99)00094-0

FoodyGMampCutlerMEJ(2003)TreebiodiversityinprotectedandloggedBorneantropicalrainforestsanditsmeasurementbysatelliteremote sensing Journal of Biogeography30 1053ndash1066 httpsdoiorg101046j1365-2699200300887x

FritzkeB(1995)GrowinggridndashAselforganizingnetworkwithconstantneighborhoodrangeandadaptationstrengthNeural Processing Letters29ndash13httpsdoiorg101007bf02332159

GillespieTW (2005) Predictingwoody-plant species richness in trop-ical dry forests a case study from South Florida USA Ecological Applications1527ndash37httpsdoiorg10189003-5304

Gillespie T W Foody G M Rocchini D Giorgi A P amp Saatchi S(2008)Measuring andmodeling biodiversity from spaceProgress in Physical Geography32203ndash221httpsdoiorg10117703091333 08093606

GiraudelJLampLekS(2001)AcomparisonofSOMalgorithmandsomeconventional statistical methods for ecological community ordina-tion Ecological Modelling 146 329ndash339 httpsdoiorg101016s0304-3800(01)00324-6

GodinhoSGilAGuiomarNNevesNampPinto-CorreiaT (2016)Aremote sensing-basedapproach toestimatingmontadocanopyden-sityusingtheFCDmodelAcontributiontoidentifyingHNVfarmlandsin southern Portugal Agroforestry Systems 90 23ndash34 httpsdoiorg101007s10457-014-9769-3

GrahamCHampFinePVA(2008)PhylogeneticbetadiversityLinkingeco-logicalandevolutionaryprocessesacrossspaceintimeEcology Letters111265ndash1277httpsdoiorg101111j1461-0248200801256x

GuHSinghAampTownsendPA(2015)Detectionofgradientsoffor-estcompositioninanurbanareausingimagingspectroscopyRemote Sensing of Environment 167 168ndash180 httpsdoiorg101016jrse201506010

HarrisACharnockRampLucasRM(2015)Hyperspectralremotesens-ingofpeatlandfloristicgradientsRemote Sensing of Environment16299ndash111httpsdoiorg101016jrse201501029

Hernandez-Stefanoni J L Gallardo-Cruz J A Meave J A RocchiniDBello-PinedaJampLoacutepez-MartiacutenezJO (2012)Modelingα- and β-diversityinatropicalforestfromremotelysensedandspatialdataInternational Journal of Applied Earth Observation and Geoinformation19359ndash368httpsdoiorg101016jjag201204002

Hill M O amp Gauch H G 1980 Detrended correspondence analysisAn improvedordination techniqueVegetatio42 47ndash58 httpsdoiorg101007978-94-009-9197-2_7

HsiehTCMaKHampChaoA(2016)iNEXTAnRpackageforrarefactionandextrapolationofspeciesdiversity(Hillnumbers)Methods in Ecology amp Evolution71451ndash1456httpsdoiorg1011112041-210x12613

KohonenT(1982)Analysisofasimpleself-organizingprocessBiological Cybernetics44135ndash140httpsdoiorg101007bf00317973

LatombeGHuiCampMcGeochMA(2017)Multi-sitegeneraliseddis-similaritymodellingUsingzetadiversitytodifferentiatedriversofturn-overinrareandwidespreadspeciesMethods in Ecology and Evolution8431ndash442httpsdoiorg1011112041-210x12756

LauschABannehrLBeckmannMBoehmCFeilhauerHHackerJMhellipCordAF (2016)Linkingearthobservationandtaxonomicstructural and functional biodiversity Local to ecosystem perspec-tives Ecological Indicators 70 317ndash339 httpsdoiorg101016jecolind201606022

LeathwickJRSnelderTChaddertonWLElithJJulianKampFerrierS(2011)Useofgeneraliseddissimilaritymodellingtoimprovethebiolog-icaldiscriminationofriverandstreamclassificationsFreshwater Biology5621ndash38httpsdoiorg101111j1365-2427201002414x

LegendrePBorcardDampPeres-NetoPR(2005)Analyzingbetadiver-sityPartitioningthespatialvariationofcommunitycompositiondataEcological Monographs75435ndash450httpsdoiorg10189005-0549

emspensp emsp | emsp1797Methods in Ecology and Evolu13onROCCHINI et al

LeitatildeoPJSchwiederMSuessSCatryIMiltonEJMoreiraFhellipHostert P (2015) Mapping beta diversity from space Sparse gen-eralised dissimilarity modelling (SGDM) for analysing high-dimen-sionaldataMethods in Ecology and Evolution6764ndash771httpsdoiorg1011112041-210x12378

LeitatildeoPSchwiederMampSenfC(2017)sgdmAnRpackageforperform-ingsparsegeneralizeddissimilaritymodellingwithtoolsforgdm ISPRS International Journal of Geo-Information623httpsdoiorg103390ijgi6010023

MantelNampValandRS(1970)AtechniqueofnonparametricmultivariateanalysisBiometrics26547ndash558httpsdoiorg1023072529108

MazorTKarkSPossinghamHPRocchiniDLevyYRichardsonAJampLevinN(2013)Cansatellite-basednightlightsbeusedforconser-vationThecaseofnestingseaturtlesintheMediterraneanBiological Conservation 159 63ndash72 httpsdoiorg101016jbiocon201211 004

MeentemeyerRKAnackerBLMarkWampRizzoDM(2008)Earlydetectionofemergingforestdiseaseusingdispersalstimationandeco-logical nichemodeling Ecological Applications18 377ndash390 httpsdoiorg10189007-11501

MetzMRocchiniDampNetelerM(2014)Surfacetemperaturesatthecontinental scaleTracking changeswith remote sensingatunprece-dented detail Remote Sensing63822ndash3840httpsdoiorg103390rs6053822

MoilanenA FrancoAMA Early R Fox RWintle B amp ThomasC D (2005) Prioritizing multiple-use landscapes for conservationMethods for large multi-species planning problems Proceedings of the Royal Society B Biological Sciences 272 1885ndash1891 httpsdoiorg101098rspb20053164

MoilanenA Kujala H amp Leathwick J R (2009)The zonation frame-workandsoftware forconservationprioritization InAMoilanenKWilson amp H P Possingham (Eds) Spatial conservation prioritization Quantitative methods amp computational tools (pp 196ndash210) OxfordOxfordUniversityPress

NeumannCWeissGSchmidtleinSItzerottSLauschADoktorDampBrellM(2015)Ecologicalgradient-basedhabitatqualityassessmentfor spectralecosystem monitoring Remote Sensing 7 2871ndash2898httpsdoiorg103390rs70302871

PalmerMWEarlsPGHoaglandBWWhitePSampWohlgemuthT(2002)QuantitativetoolsforperfectingspecieslistsEnvironmetrics13121ndash137httpsdoiorg101002env516

QGISDevelopmentTeam(2016)QGISgeographicinformationsystemOpenSourceGeospatialFoundationAvailableathttpqgisosgeoorg

RandellDTurnbullKEwansKampJonathanP(2016)Bayesianinfer-ence for nonstationary marginal extremes Environmetrics 27 439ndash450httpsdoiorg101002env2403

Rocchini D Petras V Petrasova A Horning N Furtkevicova LNetelerMhellipWegmannM(2017)OpendataandopensourceforremotesensingtraininginecologyEcological Informatics4057ndash61

RocchiniDampNetelerM(2012)Letthefourfreedomsparadigmapplyto ecology Trends in Ecology amp Evolution 27 310ndash311 httpsdoiorg101016jtree201203009

RocchiniDAndreiniButiniSampChiarucciA (2005)Maximizingplantspecies inventory efficiency by means of remotely sensed spectraldistancesGlobal Ecology and Biogeography14 431ndash437 httpsdoiorg101111j1466-822x200500169x

Rocchini D Balkenhol N Carter G A Foody G M Gillespie TWHeK ShellipNetelerM (2010)Remotely sensed spectral heteroge-neityasaproxyofspeciesdiversityRecentadvancesandopenchal-lenges Ecological Informatics 5 318ndash329 httpsdoiorg101016jecoinf201006001

RocchiniDDelucchiLBacaroGCavalliniPFeilhauerHFoodyG M hellip Neteler M (2013) Calculating landscape diversity with

information-theorybased indicesAGRASSGISsolutionEcological Informatics1782ndash93httpsdoiorg101016jecoinf201204002

Rocchini D Hernaacutendez Stefanoni J L amp He K S (2015) Advancingspecies diversity estimate by remotely sensed proxiesA conceptualreview Ecological Informatics 25 22ndash28 httpsdoiorg101016jecoinf201410006

RocchiniDBoydDSFeacuteretJBFoodyGMHeKSLauschAhellipPettorelliN(2016)Satelliteremotesensingtomonitorspeciesdiver-sityPotentialandpitfallsRemote Sensing in Ecology and Conservation225ndash36httpsdoiorg101002rse29

Rocchini D Garzon-Lopez C X Marcantonio M Amici V BacaroG Bastin L hellip Rosaacute R (2017) Anticipating species distributionsHandlingsamplingeffortbiasunderaBayesianframeworkScience of the Total Environment584ndash585 282ndash290 httpsdoiorg101016jscitotenv201612038

RosauerDFFerrierSWilliamsKJManionGKeoghJSampLaffanSW (2014)PhylogeneticgeneraliseddissimilaritymodellingAnewapproachtoanalysingandpredictingspatialturnoverinthephyloge-neticcompositionofcommunitiesEcography3721ndash32httpsdoiorg101111j1600-0587201300466x

SchmellerDWeatherdonLLoyauABondeauABrotonsLBrummittNhellipReganE(inpress)AsuiteofessentialbiodiversityvariablesfordetectingcriticalbiodiversitychangeBiological Reviews

SchmidtleinSampSassinJ(2004)MappingcontinuousfloristicgradientsingrasslandsusinghyperspectralimageryRemote Sensing of Environment92126ndash138httpsdoiorg101016jrse200405004

Schmidtlein S Zimmermann P Schuumlpferling R amp Weiss C (2007)MappingthefloristiccontinuumOrdinationspacepositionestimatedfromimagingspectroscopyJournal of Vegetation Science18131ndash140httpsdoiorg101111j1654-11032007tb02523x

TahvanainenT (2011)Abrupt ombrotrophication of a boreal aapamiretriggered by hydrological disturbance in the catchment Journal of Ecology201199

Tuomisto H amp Ruokolainen K (2006) Analyzing or explaining betadiversityUnderstanding the targets of differentmethods of anal-ysis Ecology 87 2697ndash2708 httpsdoiorg1018900012-9658 (2006)87

TuomistoHPoulsenARuokolainenKMoranRQuintanaCCeliJampCanasG (2003) Linking floristicpatternswith soil heterogeneityandsatellite imagery inEcuadorianAmazoniaEcological Applications13352ndash371httpsdoiorg1018901051-0761(2003)013[0352lfp wsh]20co2

TyreAJPossinghamHPampLindenmayerDB(2001)InferringprocessfrompatternCanterritoryoccupancyprovide informationabout lifehistoryparametersEcological Applications111722ndash1737httpsdoiorg1023073061091

Ustin S L amp Gamon J A (2010) Remote sensing of plant functionaltypesNew Phytologist186795ndash816httpsdoiorg101111j1469- 8137201003284x

VaglioLaurinGChanJC-WChenQLindsellJACoomesDAGuerriero LhellipValentiniR (2014)Biodiversitymapping in a tropi-calWestAfricanforestwithairbornehyperspectraldataPLoS ONE9e97910httpsdoiorg101371journalpone0097910

VernesiC RocchiniD Pecchioli ENetelerMVendraminGGampPaffetti D (2012) A landscape genetics approach reveals ecolog-ical-based differentiation in populations of holm oak (Quercus ilexL)attheirnorthernmostdistributionEDGEBiological Journal of the Linnean Society107458ndash467httpsdoiorg101111j1095-8312 201201940x

VihervaaraPAuvinenA-PMononenLToumlrmaumlMAhlrothPAnttilaShellipVirkkalaR (2017)Howessentialbiodiversityvariablesandre-motesensingcanhelpnationalbiodiversitymonitoringGlobal Ecology and Conservation 10 43ndash59 httpsdoiorg101016jgecco2017 01007

1798emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

WegmannMLeutnerBFMetzMNetelerMDechSampRocchiniD(2017)rpiAGRASSGISpackageforsemi-automaticspatialpatternanalysis of remotely sensed land cover dataMethods in Ecology and Evolutioninpresshttpsdoiorg1011112041-210x12827

Whittaker R H (1960) Vegetation of the SiskiyouMountains OregonandCaliforniaEcological Monographs30280ndash338httpsdoiorg10 23071943563

Witten D Tibshirani R Gross S amp Narasimhan B (2013) PMAPenalized multivariate analysis R package version 109 RetrievedfromhttpsCRANR-projectorgpackage=PMA

Woolley SN C Foster SDOrsquoHaraTDWintle BA ampDunstanP K (2017) Characterising uncertainty in generalised dissimilaritymodels Methods in Ecology and Evolution 8 985ndash995 httpsdoiorg1011112041-210x12710

SUPPORTING INFORMATION

Additional Supporting Information may be found online in thesupportinginformationtabforthisarticle

How to cite this articleRocchiniDLuqueSPettorelliNetalMeasuringβ-diversitybyremotesensingAchallengeforbiodiversitymonitoringMethods Ecol Evol 201891787ndash1798 httpsdoiorg1011112041-210X12941

Page 9: Measuring β‐diversity by remote sensing: A challenge for ...€¦ · ment of remote sensing tools (Rocchini & Neteler, 2012) for diversity estimate in which the concept of β-diversity

emspensp emsp | emsp1795Methods in Ecology and Evolu13onROCCHINI et al

Biodiversitymeasuredasspeciesrichnessisoftenusedforconser-vationpurposeshencetheimportanceofavoidinganunder-orover-estimate has been highlighted (Chiarucci etal 2009) Furthermorepairwisedistance-basedmethodsmightbeprofitablyusedtodetectnotonlydiversityhotspotsinanareabutalsothevariationofbiodi-versityoverspaceandpotentiallyovertimeoncemultitemporalsetsofimagesareused

In this paperwe focused on optimizingmeasures of β-diversitybasedonremotesensingdataSuchmeasuresmightbeusedtoregressspeciesdiversityagainstremotelysensedheterogeneitybasedonnewregressiontechniqueswhichmaximizethepossibilityofpredictingthezones in a study area or at larger spatial scales of peculiar conser-vationvalueAsanexampleshrinkageregressionrecentlyappliedinbiodiversityconservation(AuthierSarauxampPeron2017)couldallowadirectfocusonhabitatmodellingwhichisoneofthemajorstrengthsofremotesensing(GillespieFoodyRocchiniGiorgiampSaatchi2008)MoreoversuchanalysismightbeperformedinaBayesianframeworkallowingto(1)modelmultidimensionalcovariateswithnon-stationaryvariationoverspace(RandellTurnbullEwansampJonathan2016)suchasthebandsofsatelliteimagesand(2)modeltheerrorsintheoutputandtheirvariationoverspace(Rocchinietal2017)

Aspreviouslystatedthesuggestedmethodsforβ-diversityes-timation from remote sensing aremainly based on distances butthey could be effectively translated to relative abundance-basedmethodsAsanexampleRocchinietal(2013)introducedthepos-sibility of applying generalized entropy theory to satellite imageswithonesingleformularepresentingacontinuumofdiversitymea-sures changing one parameter One of the best examples in thisframeworkcouldbe theuseofHill numbers inwhichdiversity isexpressedasfollows

whereS=numberofsamplespixelsandpi=relativeabundanceofaspeciesspectralvaluevaryingtheparameterqqDvariesaccordinglyinseveraldiversity indiceseg forq = 0 qD is thesimplenumberofspeciesforlim(q)=1qDequalsShannonsentropyetc(HsiehMaampChao2016)

Furthermore connectivity analysis might also be taken into ac-count (Moilanen etal 2005 2009) For instance a remote sens-ing-based connectivity network among different sites based onβ-diversitymeasurescouldbeappliedfortheestimateof landscapeconnectivityandconsequentgeneticflowasdemonstratedbyVernesietal(2012)Ithasalsobeenshownthatcommunityrelatedbiodiver-sityindicatorsareoftenmissingfromcurrentmonitoringprogrammes(Vihervaaraetal2017)thusmethodssuchasremotesensing-basedRaosQdiversityappliedforvariousecosystemsmightimproveother-wisechallengingmonitoringofbiologicalcommunities

Withthismanuscriptwehopetostimulatediscussionontheavail-ablemethodsforestimatingβ-diversityfromremotelysensedimagerybyproposinginnovativetechniquesgroundedonecologicaltheory

ACKNOWLEDGEMENTS

WearegratefultothehandlingEditorandtotwoanonymousreview-erswhoimprovedwithskillfulsuggestionsapreviousversionofthepresentmanuscriptDRwaspartiallysupportedby (i) theEU-LIFEproject LIFE14ENVIT000514 FutureForCoppices (ii) the H2020project ECOPOTENTIAL (Grant Agreement no 641762) iii) theH2020TRuStEE-TrainingonRemoteSensingforEcosystemmodEl-ling-project(GrantAgreementno721995)

AUTHORSrsquo CONTRIBUTIONS

All authors contributed to the development and writing of themanuscript

DATA ACCESSIBILITY

Partofthedataandcorrespondingoriginalsourcesareavailableatthefollowinghttpsdoiorg105061dryaddg31k

ORCID

Duccio Rocchini httporcidorg0000-0003-0087-0594

Sandra Luque httporcidorg0000-0002-4002-3974

Nathalie Pettorelli httporcidorg0000-0002-1594-6208

Lucy Bastin httporcidorg0000-0003-1321-0800

Hannes Feilhauer httporcidorg0000-0001-5758-6303

Jean-Baptiste Feacuteret httporcidorg0000-0002-0151-1334

Giles M Foody httporcidorg0000-0001-6464-3054

Yoni Gavish httporcidorg0000-0002-6025-5668

William E Kunin httporcidorg0000-0002-9812-2326

Angela Lausch httporcidorg0000-0002-4490-7232

Pedro J Leitatildeo httporcidorg0000-0003-3038-9531

Markus Neteler httporcidorg0000-0003-1916-1966

Carlo Ricotta httporcidorg0000-0003-0818-3959 Martin Wegmann httporcidorg0000-0003-0335-9601

Harini Nagendra httporcidorg0000-0002-1585-0724

REFERENCES

AlahuhtaJKostenSAkasakaMAudersetDAzzellaMBolpagniRhellipHeinoJ(2017)Globalvariationinthebetadiversityoflakemacrophytesis driven by environmental heterogeneity rather than latitude Journal of Biogeography441758ndash1769httpsdoiorg101111jbi12978

AsnerGampMartinR(2008)Spectralandchemicalanalysisoftropicalfor-estsScalingfromleaftocanopylevelsRemote Sensing of Environment1123958ndash3970httpsdoiorg101016jrse200807003

AsnerGPMartinREAndersonCBampKnappDE(2015)QuantifyingforestcanopytraitsImagingspectroscopyversusfieldsurveyRemote Sensing of Environment15815ndash27httpsdoiorg101016jrse2014 11011

(6)qD=

(Ssumi=1

pqi

) 1

1minusq

1796emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

AuthierMSarauxCampPeronC(2017)VariableselectionandaccuratepredictionsinhabitatmodellingAshrinkageapproachEcography40549ndash560httpsdoiorg101111ecog01633

BaldeckCampAsnerG(2013)Estimatingvegetationbetadiversityfromairborne imaging spectroscopy and unsupervised clustering Remote Sensing52057ndash2071httpsdoiorg103390rs5052057

BaldeckCAampColganMSFeacuteretJ-BLevickSRMartinREampAsner G P (2014) Landscape-scale variation in plant communitycomposition of an African savanna from airborne species mappingEcological Applications2484ndash93httpsdoiorg10189013-03071

BaselgaA(2013)Multiplesitedissimilarityquantifiescompositionalhet-erogeneity among several sites while average pairwise dissimilaritymaybemisleadingEcography36124ndash128httpsdoiorg101111 j1600-0587201200124x

Chadwick K amp Asner G (2016) Organismic-scale remote sensing ofcanopyfoliar traits in lowlandtropical forestsRemote Sensing887httpsdoiorg103390rs8020087

ChiarucciABacaroGRocchiniDRicottaCPalmerMWampScheinerSM (2009) Spatially constrained rarefaction Incorporating the au-tocorrelatedstructureofbiologicalcommunitiesinsample-basedrar-efactionCommunity Ecology 10 209ndash214 httpsdoiorg101556comec102009211

ChonT-SParkYSMoonKYampChaEY(1996)Patternizingcom-munitiesbyusinganartificialneuralnetworkEcological Modelling9069ndash78httpsdoiorg1010160304-3800(95)00148-4

ClarkM LampRobertsDA (2012) Species-level differences inhyper-spectral metrics among tropical rainforest trees as determined bya tree-based classifier Remote Sensing 4 1820ndash1855 httpsdoiorg103390rs4061820

ClarkMRobertsDampClarkD(2005)HyperspectraldiscriminationoftropicalrainforesttreespeciesatleaftocrownscalesRemote Sensing of Environment96375ndash398httpsdoiorg101016jrse200503009

FeilhauerHampSchmidtleinS(2009)MappingcontinuousfieldsofalphaandbetadiversityApplied Vegetation Science12429ndash439httpsdoiorg101111j1654-109x200901037x

FeilhauerHFaudeUampSchmidtleinS(2011)CombiningIsomapordi-nationandimagingspectroscopytomapcontinuousfloristicgradientsin a heterogeneous landscape Remote Sensing of Environment 1152513ndash2524httpsdoiorg101016jrse201105011

FeilhauerHThonfeldFFaudeUHeKSRocchiniDSchmidtleinS(2013)Assessingfloristiccompositionwithmultispectralsensorsacomparisonbasedonmonotemporalandmultiseasonal fieldspectraInternational Journal of Applied Earth Observation and Geoinformation21218ndash229httpsdoiorg101016jjag201209002

FeilhauerHDoktorDLauschASchmidtleinSSchulzGampStenzelS(2014)MappingNatura2000habitatsandtheirlocalvariabilitywithremote sensingApplied Vegetation Science17 765ndash779httpsdoiorg101111avsc12115

FeilhauerHDoktorDSchmidtleinSampSkidmoreAK(2016)MappingpollinationtypeswithremotesensingJournal of Vegetation Science27999ndash1011httpsdoiorg101111jvs12421

FeacuteretJ-BampAsnerGP (2013)Tree speciesdiscrimination in tropicalforests using airborne imaging spectroscopy IEEE Transactions on Geoscience and Remote Sensing5173ndash84httpsdoiorg101109TG RS20122199323

FeacuteretJ-BampAsnerGP(2014a)Mappingtropicalforestcanopydiversityusing high-fidelity imaging spectroscopy Ecological Applications 241289ndash1296httpsdoiorg10189013-18241

FeacuteretJ-BampAsnerGP(2014b)MicrotopographiccontrolsonlowlandAmazonian canopy diversity from imaging spectroscopy Ecological Applications241297ndash1310httpsdoiorg10189013-18961

FerrierSManionGElithJampRichardsonK(2007)Usinggeneralizeddissimilaritymodelling toanalyseandpredictpatternsofbetadiver-sityinregionalbiodiversityassessmentDiversity and Distributions13252ndash264httpsdoiorg101111j1472-4642200700341x

FoodyGM(1999)Applicationsoftheself-organisingfeaturemapneuralnetworkincommunitydataanalysisEcological Modelling12097ndash107httpsdoiorg101016s0304-3800(99)00094-0

FoodyGMampCutlerMEJ(2003)TreebiodiversityinprotectedandloggedBorneantropicalrainforestsanditsmeasurementbysatelliteremote sensing Journal of Biogeography30 1053ndash1066 httpsdoiorg101046j1365-2699200300887x

FritzkeB(1995)GrowinggridndashAselforganizingnetworkwithconstantneighborhoodrangeandadaptationstrengthNeural Processing Letters29ndash13httpsdoiorg101007bf02332159

GillespieTW (2005) Predictingwoody-plant species richness in trop-ical dry forests a case study from South Florida USA Ecological Applications1527ndash37httpsdoiorg10189003-5304

Gillespie T W Foody G M Rocchini D Giorgi A P amp Saatchi S(2008)Measuring andmodeling biodiversity from spaceProgress in Physical Geography32203ndash221httpsdoiorg10117703091333 08093606

GiraudelJLampLekS(2001)AcomparisonofSOMalgorithmandsomeconventional statistical methods for ecological community ordina-tion Ecological Modelling 146 329ndash339 httpsdoiorg101016s0304-3800(01)00324-6

GodinhoSGilAGuiomarNNevesNampPinto-CorreiaT (2016)Aremote sensing-basedapproach toestimatingmontadocanopyden-sityusingtheFCDmodelAcontributiontoidentifyingHNVfarmlandsin southern Portugal Agroforestry Systems 90 23ndash34 httpsdoiorg101007s10457-014-9769-3

GrahamCHampFinePVA(2008)PhylogeneticbetadiversityLinkingeco-logicalandevolutionaryprocessesacrossspaceintimeEcology Letters111265ndash1277httpsdoiorg101111j1461-0248200801256x

GuHSinghAampTownsendPA(2015)Detectionofgradientsoffor-estcompositioninanurbanareausingimagingspectroscopyRemote Sensing of Environment 167 168ndash180 httpsdoiorg101016jrse201506010

HarrisACharnockRampLucasRM(2015)Hyperspectralremotesens-ingofpeatlandfloristicgradientsRemote Sensing of Environment16299ndash111httpsdoiorg101016jrse201501029

Hernandez-Stefanoni J L Gallardo-Cruz J A Meave J A RocchiniDBello-PinedaJampLoacutepez-MartiacutenezJO (2012)Modelingα- and β-diversityinatropicalforestfromremotelysensedandspatialdataInternational Journal of Applied Earth Observation and Geoinformation19359ndash368httpsdoiorg101016jjag201204002

Hill M O amp Gauch H G 1980 Detrended correspondence analysisAn improvedordination techniqueVegetatio42 47ndash58 httpsdoiorg101007978-94-009-9197-2_7

HsiehTCMaKHampChaoA(2016)iNEXTAnRpackageforrarefactionandextrapolationofspeciesdiversity(Hillnumbers)Methods in Ecology amp Evolution71451ndash1456httpsdoiorg1011112041-210x12613

KohonenT(1982)Analysisofasimpleself-organizingprocessBiological Cybernetics44135ndash140httpsdoiorg101007bf00317973

LatombeGHuiCampMcGeochMA(2017)Multi-sitegeneraliseddis-similaritymodellingUsingzetadiversitytodifferentiatedriversofturn-overinrareandwidespreadspeciesMethods in Ecology and Evolution8431ndash442httpsdoiorg1011112041-210x12756

LauschABannehrLBeckmannMBoehmCFeilhauerHHackerJMhellipCordAF (2016)Linkingearthobservationandtaxonomicstructural and functional biodiversity Local to ecosystem perspec-tives Ecological Indicators 70 317ndash339 httpsdoiorg101016jecolind201606022

LeathwickJRSnelderTChaddertonWLElithJJulianKampFerrierS(2011)Useofgeneraliseddissimilaritymodellingtoimprovethebiolog-icaldiscriminationofriverandstreamclassificationsFreshwater Biology5621ndash38httpsdoiorg101111j1365-2427201002414x

LegendrePBorcardDampPeres-NetoPR(2005)Analyzingbetadiver-sityPartitioningthespatialvariationofcommunitycompositiondataEcological Monographs75435ndash450httpsdoiorg10189005-0549

emspensp emsp | emsp1797Methods in Ecology and Evolu13onROCCHINI et al

LeitatildeoPJSchwiederMSuessSCatryIMiltonEJMoreiraFhellipHostert P (2015) Mapping beta diversity from space Sparse gen-eralised dissimilarity modelling (SGDM) for analysing high-dimen-sionaldataMethods in Ecology and Evolution6764ndash771httpsdoiorg1011112041-210x12378

LeitatildeoPSchwiederMampSenfC(2017)sgdmAnRpackageforperform-ingsparsegeneralizeddissimilaritymodellingwithtoolsforgdm ISPRS International Journal of Geo-Information623httpsdoiorg103390ijgi6010023

MantelNampValandRS(1970)AtechniqueofnonparametricmultivariateanalysisBiometrics26547ndash558httpsdoiorg1023072529108

MazorTKarkSPossinghamHPRocchiniDLevyYRichardsonAJampLevinN(2013)Cansatellite-basednightlightsbeusedforconser-vationThecaseofnestingseaturtlesintheMediterraneanBiological Conservation 159 63ndash72 httpsdoiorg101016jbiocon201211 004

MeentemeyerRKAnackerBLMarkWampRizzoDM(2008)Earlydetectionofemergingforestdiseaseusingdispersalstimationandeco-logical nichemodeling Ecological Applications18 377ndash390 httpsdoiorg10189007-11501

MetzMRocchiniDampNetelerM(2014)Surfacetemperaturesatthecontinental scaleTracking changeswith remote sensingatunprece-dented detail Remote Sensing63822ndash3840httpsdoiorg103390rs6053822

MoilanenA FrancoAMA Early R Fox RWintle B amp ThomasC D (2005) Prioritizing multiple-use landscapes for conservationMethods for large multi-species planning problems Proceedings of the Royal Society B Biological Sciences 272 1885ndash1891 httpsdoiorg101098rspb20053164

MoilanenA Kujala H amp Leathwick J R (2009)The zonation frame-workandsoftware forconservationprioritization InAMoilanenKWilson amp H P Possingham (Eds) Spatial conservation prioritization Quantitative methods amp computational tools (pp 196ndash210) OxfordOxfordUniversityPress

NeumannCWeissGSchmidtleinSItzerottSLauschADoktorDampBrellM(2015)Ecologicalgradient-basedhabitatqualityassessmentfor spectralecosystem monitoring Remote Sensing 7 2871ndash2898httpsdoiorg103390rs70302871

PalmerMWEarlsPGHoaglandBWWhitePSampWohlgemuthT(2002)QuantitativetoolsforperfectingspecieslistsEnvironmetrics13121ndash137httpsdoiorg101002env516

QGISDevelopmentTeam(2016)QGISgeographicinformationsystemOpenSourceGeospatialFoundationAvailableathttpqgisosgeoorg

RandellDTurnbullKEwansKampJonathanP(2016)Bayesianinfer-ence for nonstationary marginal extremes Environmetrics 27 439ndash450httpsdoiorg101002env2403

Rocchini D Petras V Petrasova A Horning N Furtkevicova LNetelerMhellipWegmannM(2017)OpendataandopensourceforremotesensingtraininginecologyEcological Informatics4057ndash61

RocchiniDampNetelerM(2012)Letthefourfreedomsparadigmapplyto ecology Trends in Ecology amp Evolution 27 310ndash311 httpsdoiorg101016jtree201203009

RocchiniDAndreiniButiniSampChiarucciA (2005)Maximizingplantspecies inventory efficiency by means of remotely sensed spectraldistancesGlobal Ecology and Biogeography14 431ndash437 httpsdoiorg101111j1466-822x200500169x

Rocchini D Balkenhol N Carter G A Foody G M Gillespie TWHeK ShellipNetelerM (2010)Remotely sensed spectral heteroge-neityasaproxyofspeciesdiversityRecentadvancesandopenchal-lenges Ecological Informatics 5 318ndash329 httpsdoiorg101016jecoinf201006001

RocchiniDDelucchiLBacaroGCavalliniPFeilhauerHFoodyG M hellip Neteler M (2013) Calculating landscape diversity with

information-theorybased indicesAGRASSGISsolutionEcological Informatics1782ndash93httpsdoiorg101016jecoinf201204002

Rocchini D Hernaacutendez Stefanoni J L amp He K S (2015) Advancingspecies diversity estimate by remotely sensed proxiesA conceptualreview Ecological Informatics 25 22ndash28 httpsdoiorg101016jecoinf201410006

RocchiniDBoydDSFeacuteretJBFoodyGMHeKSLauschAhellipPettorelliN(2016)Satelliteremotesensingtomonitorspeciesdiver-sityPotentialandpitfallsRemote Sensing in Ecology and Conservation225ndash36httpsdoiorg101002rse29

Rocchini D Garzon-Lopez C X Marcantonio M Amici V BacaroG Bastin L hellip Rosaacute R (2017) Anticipating species distributionsHandlingsamplingeffortbiasunderaBayesianframeworkScience of the Total Environment584ndash585 282ndash290 httpsdoiorg101016jscitotenv201612038

RosauerDFFerrierSWilliamsKJManionGKeoghJSampLaffanSW (2014)PhylogeneticgeneraliseddissimilaritymodellingAnewapproachtoanalysingandpredictingspatialturnoverinthephyloge-neticcompositionofcommunitiesEcography3721ndash32httpsdoiorg101111j1600-0587201300466x

SchmellerDWeatherdonLLoyauABondeauABrotonsLBrummittNhellipReganE(inpress)AsuiteofessentialbiodiversityvariablesfordetectingcriticalbiodiversitychangeBiological Reviews

SchmidtleinSampSassinJ(2004)MappingcontinuousfloristicgradientsingrasslandsusinghyperspectralimageryRemote Sensing of Environment92126ndash138httpsdoiorg101016jrse200405004

Schmidtlein S Zimmermann P Schuumlpferling R amp Weiss C (2007)MappingthefloristiccontinuumOrdinationspacepositionestimatedfromimagingspectroscopyJournal of Vegetation Science18131ndash140httpsdoiorg101111j1654-11032007tb02523x

TahvanainenT (2011)Abrupt ombrotrophication of a boreal aapamiretriggered by hydrological disturbance in the catchment Journal of Ecology201199

Tuomisto H amp Ruokolainen K (2006) Analyzing or explaining betadiversityUnderstanding the targets of differentmethods of anal-ysis Ecology 87 2697ndash2708 httpsdoiorg1018900012-9658 (2006)87

TuomistoHPoulsenARuokolainenKMoranRQuintanaCCeliJampCanasG (2003) Linking floristicpatternswith soil heterogeneityandsatellite imagery inEcuadorianAmazoniaEcological Applications13352ndash371httpsdoiorg1018901051-0761(2003)013[0352lfp wsh]20co2

TyreAJPossinghamHPampLindenmayerDB(2001)InferringprocessfrompatternCanterritoryoccupancyprovide informationabout lifehistoryparametersEcological Applications111722ndash1737httpsdoiorg1023073061091

Ustin S L amp Gamon J A (2010) Remote sensing of plant functionaltypesNew Phytologist186795ndash816httpsdoiorg101111j1469- 8137201003284x

VaglioLaurinGChanJC-WChenQLindsellJACoomesDAGuerriero LhellipValentiniR (2014)Biodiversitymapping in a tropi-calWestAfricanforestwithairbornehyperspectraldataPLoS ONE9e97910httpsdoiorg101371journalpone0097910

VernesiC RocchiniD Pecchioli ENetelerMVendraminGGampPaffetti D (2012) A landscape genetics approach reveals ecolog-ical-based differentiation in populations of holm oak (Quercus ilexL)attheirnorthernmostdistributionEDGEBiological Journal of the Linnean Society107458ndash467httpsdoiorg101111j1095-8312 201201940x

VihervaaraPAuvinenA-PMononenLToumlrmaumlMAhlrothPAnttilaShellipVirkkalaR (2017)Howessentialbiodiversityvariablesandre-motesensingcanhelpnationalbiodiversitymonitoringGlobal Ecology and Conservation 10 43ndash59 httpsdoiorg101016jgecco2017 01007

1798emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

WegmannMLeutnerBFMetzMNetelerMDechSampRocchiniD(2017)rpiAGRASSGISpackageforsemi-automaticspatialpatternanalysis of remotely sensed land cover dataMethods in Ecology and Evolutioninpresshttpsdoiorg1011112041-210x12827

Whittaker R H (1960) Vegetation of the SiskiyouMountains OregonandCaliforniaEcological Monographs30280ndash338httpsdoiorg10 23071943563

Witten D Tibshirani R Gross S amp Narasimhan B (2013) PMAPenalized multivariate analysis R package version 109 RetrievedfromhttpsCRANR-projectorgpackage=PMA

Woolley SN C Foster SDOrsquoHaraTDWintle BA ampDunstanP K (2017) Characterising uncertainty in generalised dissimilaritymodels Methods in Ecology and Evolution 8 985ndash995 httpsdoiorg1011112041-210x12710

SUPPORTING INFORMATION

Additional Supporting Information may be found online in thesupportinginformationtabforthisarticle

How to cite this articleRocchiniDLuqueSPettorelliNetalMeasuringβ-diversitybyremotesensingAchallengeforbiodiversitymonitoringMethods Ecol Evol 201891787ndash1798 httpsdoiorg1011112041-210X12941

Page 10: Measuring β‐diversity by remote sensing: A challenge for ...€¦ · ment of remote sensing tools (Rocchini & Neteler, 2012) for diversity estimate in which the concept of β-diversity

1796emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

AuthierMSarauxCampPeronC(2017)VariableselectionandaccuratepredictionsinhabitatmodellingAshrinkageapproachEcography40549ndash560httpsdoiorg101111ecog01633

BaldeckCampAsnerG(2013)Estimatingvegetationbetadiversityfromairborne imaging spectroscopy and unsupervised clustering Remote Sensing52057ndash2071httpsdoiorg103390rs5052057

BaldeckCAampColganMSFeacuteretJ-BLevickSRMartinREampAsner G P (2014) Landscape-scale variation in plant communitycomposition of an African savanna from airborne species mappingEcological Applications2484ndash93httpsdoiorg10189013-03071

BaselgaA(2013)Multiplesitedissimilarityquantifiescompositionalhet-erogeneity among several sites while average pairwise dissimilaritymaybemisleadingEcography36124ndash128httpsdoiorg101111 j1600-0587201200124x

Chadwick K amp Asner G (2016) Organismic-scale remote sensing ofcanopyfoliar traits in lowlandtropical forestsRemote Sensing887httpsdoiorg103390rs8020087

ChiarucciABacaroGRocchiniDRicottaCPalmerMWampScheinerSM (2009) Spatially constrained rarefaction Incorporating the au-tocorrelatedstructureofbiologicalcommunitiesinsample-basedrar-efactionCommunity Ecology 10 209ndash214 httpsdoiorg101556comec102009211

ChonT-SParkYSMoonKYampChaEY(1996)Patternizingcom-munitiesbyusinganartificialneuralnetworkEcological Modelling9069ndash78httpsdoiorg1010160304-3800(95)00148-4

ClarkM LampRobertsDA (2012) Species-level differences inhyper-spectral metrics among tropical rainforest trees as determined bya tree-based classifier Remote Sensing 4 1820ndash1855 httpsdoiorg103390rs4061820

ClarkMRobertsDampClarkD(2005)HyperspectraldiscriminationoftropicalrainforesttreespeciesatleaftocrownscalesRemote Sensing of Environment96375ndash398httpsdoiorg101016jrse200503009

FeilhauerHampSchmidtleinS(2009)MappingcontinuousfieldsofalphaandbetadiversityApplied Vegetation Science12429ndash439httpsdoiorg101111j1654-109x200901037x

FeilhauerHFaudeUampSchmidtleinS(2011)CombiningIsomapordi-nationandimagingspectroscopytomapcontinuousfloristicgradientsin a heterogeneous landscape Remote Sensing of Environment 1152513ndash2524httpsdoiorg101016jrse201105011

FeilhauerHThonfeldFFaudeUHeKSRocchiniDSchmidtleinS(2013)Assessingfloristiccompositionwithmultispectralsensorsacomparisonbasedonmonotemporalandmultiseasonal fieldspectraInternational Journal of Applied Earth Observation and Geoinformation21218ndash229httpsdoiorg101016jjag201209002

FeilhauerHDoktorDLauschASchmidtleinSSchulzGampStenzelS(2014)MappingNatura2000habitatsandtheirlocalvariabilitywithremote sensingApplied Vegetation Science17 765ndash779httpsdoiorg101111avsc12115

FeilhauerHDoktorDSchmidtleinSampSkidmoreAK(2016)MappingpollinationtypeswithremotesensingJournal of Vegetation Science27999ndash1011httpsdoiorg101111jvs12421

FeacuteretJ-BampAsnerGP (2013)Tree speciesdiscrimination in tropicalforests using airborne imaging spectroscopy IEEE Transactions on Geoscience and Remote Sensing5173ndash84httpsdoiorg101109TG RS20122199323

FeacuteretJ-BampAsnerGP(2014a)Mappingtropicalforestcanopydiversityusing high-fidelity imaging spectroscopy Ecological Applications 241289ndash1296httpsdoiorg10189013-18241

FeacuteretJ-BampAsnerGP(2014b)MicrotopographiccontrolsonlowlandAmazonian canopy diversity from imaging spectroscopy Ecological Applications241297ndash1310httpsdoiorg10189013-18961

FerrierSManionGElithJampRichardsonK(2007)Usinggeneralizeddissimilaritymodelling toanalyseandpredictpatternsofbetadiver-sityinregionalbiodiversityassessmentDiversity and Distributions13252ndash264httpsdoiorg101111j1472-4642200700341x

FoodyGM(1999)Applicationsoftheself-organisingfeaturemapneuralnetworkincommunitydataanalysisEcological Modelling12097ndash107httpsdoiorg101016s0304-3800(99)00094-0

FoodyGMampCutlerMEJ(2003)TreebiodiversityinprotectedandloggedBorneantropicalrainforestsanditsmeasurementbysatelliteremote sensing Journal of Biogeography30 1053ndash1066 httpsdoiorg101046j1365-2699200300887x

FritzkeB(1995)GrowinggridndashAselforganizingnetworkwithconstantneighborhoodrangeandadaptationstrengthNeural Processing Letters29ndash13httpsdoiorg101007bf02332159

GillespieTW (2005) Predictingwoody-plant species richness in trop-ical dry forests a case study from South Florida USA Ecological Applications1527ndash37httpsdoiorg10189003-5304

Gillespie T W Foody G M Rocchini D Giorgi A P amp Saatchi S(2008)Measuring andmodeling biodiversity from spaceProgress in Physical Geography32203ndash221httpsdoiorg10117703091333 08093606

GiraudelJLampLekS(2001)AcomparisonofSOMalgorithmandsomeconventional statistical methods for ecological community ordina-tion Ecological Modelling 146 329ndash339 httpsdoiorg101016s0304-3800(01)00324-6

GodinhoSGilAGuiomarNNevesNampPinto-CorreiaT (2016)Aremote sensing-basedapproach toestimatingmontadocanopyden-sityusingtheFCDmodelAcontributiontoidentifyingHNVfarmlandsin southern Portugal Agroforestry Systems 90 23ndash34 httpsdoiorg101007s10457-014-9769-3

GrahamCHampFinePVA(2008)PhylogeneticbetadiversityLinkingeco-logicalandevolutionaryprocessesacrossspaceintimeEcology Letters111265ndash1277httpsdoiorg101111j1461-0248200801256x

GuHSinghAampTownsendPA(2015)Detectionofgradientsoffor-estcompositioninanurbanareausingimagingspectroscopyRemote Sensing of Environment 167 168ndash180 httpsdoiorg101016jrse201506010

HarrisACharnockRampLucasRM(2015)Hyperspectralremotesens-ingofpeatlandfloristicgradientsRemote Sensing of Environment16299ndash111httpsdoiorg101016jrse201501029

Hernandez-Stefanoni J L Gallardo-Cruz J A Meave J A RocchiniDBello-PinedaJampLoacutepez-MartiacutenezJO (2012)Modelingα- and β-diversityinatropicalforestfromremotelysensedandspatialdataInternational Journal of Applied Earth Observation and Geoinformation19359ndash368httpsdoiorg101016jjag201204002

Hill M O amp Gauch H G 1980 Detrended correspondence analysisAn improvedordination techniqueVegetatio42 47ndash58 httpsdoiorg101007978-94-009-9197-2_7

HsiehTCMaKHampChaoA(2016)iNEXTAnRpackageforrarefactionandextrapolationofspeciesdiversity(Hillnumbers)Methods in Ecology amp Evolution71451ndash1456httpsdoiorg1011112041-210x12613

KohonenT(1982)Analysisofasimpleself-organizingprocessBiological Cybernetics44135ndash140httpsdoiorg101007bf00317973

LatombeGHuiCampMcGeochMA(2017)Multi-sitegeneraliseddis-similaritymodellingUsingzetadiversitytodifferentiatedriversofturn-overinrareandwidespreadspeciesMethods in Ecology and Evolution8431ndash442httpsdoiorg1011112041-210x12756

LauschABannehrLBeckmannMBoehmCFeilhauerHHackerJMhellipCordAF (2016)Linkingearthobservationandtaxonomicstructural and functional biodiversity Local to ecosystem perspec-tives Ecological Indicators 70 317ndash339 httpsdoiorg101016jecolind201606022

LeathwickJRSnelderTChaddertonWLElithJJulianKampFerrierS(2011)Useofgeneraliseddissimilaritymodellingtoimprovethebiolog-icaldiscriminationofriverandstreamclassificationsFreshwater Biology5621ndash38httpsdoiorg101111j1365-2427201002414x

LegendrePBorcardDampPeres-NetoPR(2005)Analyzingbetadiver-sityPartitioningthespatialvariationofcommunitycompositiondataEcological Monographs75435ndash450httpsdoiorg10189005-0549

emspensp emsp | emsp1797Methods in Ecology and Evolu13onROCCHINI et al

LeitatildeoPJSchwiederMSuessSCatryIMiltonEJMoreiraFhellipHostert P (2015) Mapping beta diversity from space Sparse gen-eralised dissimilarity modelling (SGDM) for analysing high-dimen-sionaldataMethods in Ecology and Evolution6764ndash771httpsdoiorg1011112041-210x12378

LeitatildeoPSchwiederMampSenfC(2017)sgdmAnRpackageforperform-ingsparsegeneralizeddissimilaritymodellingwithtoolsforgdm ISPRS International Journal of Geo-Information623httpsdoiorg103390ijgi6010023

MantelNampValandRS(1970)AtechniqueofnonparametricmultivariateanalysisBiometrics26547ndash558httpsdoiorg1023072529108

MazorTKarkSPossinghamHPRocchiniDLevyYRichardsonAJampLevinN(2013)Cansatellite-basednightlightsbeusedforconser-vationThecaseofnestingseaturtlesintheMediterraneanBiological Conservation 159 63ndash72 httpsdoiorg101016jbiocon201211 004

MeentemeyerRKAnackerBLMarkWampRizzoDM(2008)Earlydetectionofemergingforestdiseaseusingdispersalstimationandeco-logical nichemodeling Ecological Applications18 377ndash390 httpsdoiorg10189007-11501

MetzMRocchiniDampNetelerM(2014)Surfacetemperaturesatthecontinental scaleTracking changeswith remote sensingatunprece-dented detail Remote Sensing63822ndash3840httpsdoiorg103390rs6053822

MoilanenA FrancoAMA Early R Fox RWintle B amp ThomasC D (2005) Prioritizing multiple-use landscapes for conservationMethods for large multi-species planning problems Proceedings of the Royal Society B Biological Sciences 272 1885ndash1891 httpsdoiorg101098rspb20053164

MoilanenA Kujala H amp Leathwick J R (2009)The zonation frame-workandsoftware forconservationprioritization InAMoilanenKWilson amp H P Possingham (Eds) Spatial conservation prioritization Quantitative methods amp computational tools (pp 196ndash210) OxfordOxfordUniversityPress

NeumannCWeissGSchmidtleinSItzerottSLauschADoktorDampBrellM(2015)Ecologicalgradient-basedhabitatqualityassessmentfor spectralecosystem monitoring Remote Sensing 7 2871ndash2898httpsdoiorg103390rs70302871

PalmerMWEarlsPGHoaglandBWWhitePSampWohlgemuthT(2002)QuantitativetoolsforperfectingspecieslistsEnvironmetrics13121ndash137httpsdoiorg101002env516

QGISDevelopmentTeam(2016)QGISgeographicinformationsystemOpenSourceGeospatialFoundationAvailableathttpqgisosgeoorg

RandellDTurnbullKEwansKampJonathanP(2016)Bayesianinfer-ence for nonstationary marginal extremes Environmetrics 27 439ndash450httpsdoiorg101002env2403

Rocchini D Petras V Petrasova A Horning N Furtkevicova LNetelerMhellipWegmannM(2017)OpendataandopensourceforremotesensingtraininginecologyEcological Informatics4057ndash61

RocchiniDampNetelerM(2012)Letthefourfreedomsparadigmapplyto ecology Trends in Ecology amp Evolution 27 310ndash311 httpsdoiorg101016jtree201203009

RocchiniDAndreiniButiniSampChiarucciA (2005)Maximizingplantspecies inventory efficiency by means of remotely sensed spectraldistancesGlobal Ecology and Biogeography14 431ndash437 httpsdoiorg101111j1466-822x200500169x

Rocchini D Balkenhol N Carter G A Foody G M Gillespie TWHeK ShellipNetelerM (2010)Remotely sensed spectral heteroge-neityasaproxyofspeciesdiversityRecentadvancesandopenchal-lenges Ecological Informatics 5 318ndash329 httpsdoiorg101016jecoinf201006001

RocchiniDDelucchiLBacaroGCavalliniPFeilhauerHFoodyG M hellip Neteler M (2013) Calculating landscape diversity with

information-theorybased indicesAGRASSGISsolutionEcological Informatics1782ndash93httpsdoiorg101016jecoinf201204002

Rocchini D Hernaacutendez Stefanoni J L amp He K S (2015) Advancingspecies diversity estimate by remotely sensed proxiesA conceptualreview Ecological Informatics 25 22ndash28 httpsdoiorg101016jecoinf201410006

RocchiniDBoydDSFeacuteretJBFoodyGMHeKSLauschAhellipPettorelliN(2016)Satelliteremotesensingtomonitorspeciesdiver-sityPotentialandpitfallsRemote Sensing in Ecology and Conservation225ndash36httpsdoiorg101002rse29

Rocchini D Garzon-Lopez C X Marcantonio M Amici V BacaroG Bastin L hellip Rosaacute R (2017) Anticipating species distributionsHandlingsamplingeffortbiasunderaBayesianframeworkScience of the Total Environment584ndash585 282ndash290 httpsdoiorg101016jscitotenv201612038

RosauerDFFerrierSWilliamsKJManionGKeoghJSampLaffanSW (2014)PhylogeneticgeneraliseddissimilaritymodellingAnewapproachtoanalysingandpredictingspatialturnoverinthephyloge-neticcompositionofcommunitiesEcography3721ndash32httpsdoiorg101111j1600-0587201300466x

SchmellerDWeatherdonLLoyauABondeauABrotonsLBrummittNhellipReganE(inpress)AsuiteofessentialbiodiversityvariablesfordetectingcriticalbiodiversitychangeBiological Reviews

SchmidtleinSampSassinJ(2004)MappingcontinuousfloristicgradientsingrasslandsusinghyperspectralimageryRemote Sensing of Environment92126ndash138httpsdoiorg101016jrse200405004

Schmidtlein S Zimmermann P Schuumlpferling R amp Weiss C (2007)MappingthefloristiccontinuumOrdinationspacepositionestimatedfromimagingspectroscopyJournal of Vegetation Science18131ndash140httpsdoiorg101111j1654-11032007tb02523x

TahvanainenT (2011)Abrupt ombrotrophication of a boreal aapamiretriggered by hydrological disturbance in the catchment Journal of Ecology201199

Tuomisto H amp Ruokolainen K (2006) Analyzing or explaining betadiversityUnderstanding the targets of differentmethods of anal-ysis Ecology 87 2697ndash2708 httpsdoiorg1018900012-9658 (2006)87

TuomistoHPoulsenARuokolainenKMoranRQuintanaCCeliJampCanasG (2003) Linking floristicpatternswith soil heterogeneityandsatellite imagery inEcuadorianAmazoniaEcological Applications13352ndash371httpsdoiorg1018901051-0761(2003)013[0352lfp wsh]20co2

TyreAJPossinghamHPampLindenmayerDB(2001)InferringprocessfrompatternCanterritoryoccupancyprovide informationabout lifehistoryparametersEcological Applications111722ndash1737httpsdoiorg1023073061091

Ustin S L amp Gamon J A (2010) Remote sensing of plant functionaltypesNew Phytologist186795ndash816httpsdoiorg101111j1469- 8137201003284x

VaglioLaurinGChanJC-WChenQLindsellJACoomesDAGuerriero LhellipValentiniR (2014)Biodiversitymapping in a tropi-calWestAfricanforestwithairbornehyperspectraldataPLoS ONE9e97910httpsdoiorg101371journalpone0097910

VernesiC RocchiniD Pecchioli ENetelerMVendraminGGampPaffetti D (2012) A landscape genetics approach reveals ecolog-ical-based differentiation in populations of holm oak (Quercus ilexL)attheirnorthernmostdistributionEDGEBiological Journal of the Linnean Society107458ndash467httpsdoiorg101111j1095-8312 201201940x

VihervaaraPAuvinenA-PMononenLToumlrmaumlMAhlrothPAnttilaShellipVirkkalaR (2017)Howessentialbiodiversityvariablesandre-motesensingcanhelpnationalbiodiversitymonitoringGlobal Ecology and Conservation 10 43ndash59 httpsdoiorg101016jgecco2017 01007

1798emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

WegmannMLeutnerBFMetzMNetelerMDechSampRocchiniD(2017)rpiAGRASSGISpackageforsemi-automaticspatialpatternanalysis of remotely sensed land cover dataMethods in Ecology and Evolutioninpresshttpsdoiorg1011112041-210x12827

Whittaker R H (1960) Vegetation of the SiskiyouMountains OregonandCaliforniaEcological Monographs30280ndash338httpsdoiorg10 23071943563

Witten D Tibshirani R Gross S amp Narasimhan B (2013) PMAPenalized multivariate analysis R package version 109 RetrievedfromhttpsCRANR-projectorgpackage=PMA

Woolley SN C Foster SDOrsquoHaraTDWintle BA ampDunstanP K (2017) Characterising uncertainty in generalised dissimilaritymodels Methods in Ecology and Evolution 8 985ndash995 httpsdoiorg1011112041-210x12710

SUPPORTING INFORMATION

Additional Supporting Information may be found online in thesupportinginformationtabforthisarticle

How to cite this articleRocchiniDLuqueSPettorelliNetalMeasuringβ-diversitybyremotesensingAchallengeforbiodiversitymonitoringMethods Ecol Evol 201891787ndash1798 httpsdoiorg1011112041-210X12941

Page 11: Measuring β‐diversity by remote sensing: A challenge for ...€¦ · ment of remote sensing tools (Rocchini & Neteler, 2012) for diversity estimate in which the concept of β-diversity

emspensp emsp | emsp1797Methods in Ecology and Evolu13onROCCHINI et al

LeitatildeoPJSchwiederMSuessSCatryIMiltonEJMoreiraFhellipHostert P (2015) Mapping beta diversity from space Sparse gen-eralised dissimilarity modelling (SGDM) for analysing high-dimen-sionaldataMethods in Ecology and Evolution6764ndash771httpsdoiorg1011112041-210x12378

LeitatildeoPSchwiederMampSenfC(2017)sgdmAnRpackageforperform-ingsparsegeneralizeddissimilaritymodellingwithtoolsforgdm ISPRS International Journal of Geo-Information623httpsdoiorg103390ijgi6010023

MantelNampValandRS(1970)AtechniqueofnonparametricmultivariateanalysisBiometrics26547ndash558httpsdoiorg1023072529108

MazorTKarkSPossinghamHPRocchiniDLevyYRichardsonAJampLevinN(2013)Cansatellite-basednightlightsbeusedforconser-vationThecaseofnestingseaturtlesintheMediterraneanBiological Conservation 159 63ndash72 httpsdoiorg101016jbiocon201211 004

MeentemeyerRKAnackerBLMarkWampRizzoDM(2008)Earlydetectionofemergingforestdiseaseusingdispersalstimationandeco-logical nichemodeling Ecological Applications18 377ndash390 httpsdoiorg10189007-11501

MetzMRocchiniDampNetelerM(2014)Surfacetemperaturesatthecontinental scaleTracking changeswith remote sensingatunprece-dented detail Remote Sensing63822ndash3840httpsdoiorg103390rs6053822

MoilanenA FrancoAMA Early R Fox RWintle B amp ThomasC D (2005) Prioritizing multiple-use landscapes for conservationMethods for large multi-species planning problems Proceedings of the Royal Society B Biological Sciences 272 1885ndash1891 httpsdoiorg101098rspb20053164

MoilanenA Kujala H amp Leathwick J R (2009)The zonation frame-workandsoftware forconservationprioritization InAMoilanenKWilson amp H P Possingham (Eds) Spatial conservation prioritization Quantitative methods amp computational tools (pp 196ndash210) OxfordOxfordUniversityPress

NeumannCWeissGSchmidtleinSItzerottSLauschADoktorDampBrellM(2015)Ecologicalgradient-basedhabitatqualityassessmentfor spectralecosystem monitoring Remote Sensing 7 2871ndash2898httpsdoiorg103390rs70302871

PalmerMWEarlsPGHoaglandBWWhitePSampWohlgemuthT(2002)QuantitativetoolsforperfectingspecieslistsEnvironmetrics13121ndash137httpsdoiorg101002env516

QGISDevelopmentTeam(2016)QGISgeographicinformationsystemOpenSourceGeospatialFoundationAvailableathttpqgisosgeoorg

RandellDTurnbullKEwansKampJonathanP(2016)Bayesianinfer-ence for nonstationary marginal extremes Environmetrics 27 439ndash450httpsdoiorg101002env2403

Rocchini D Petras V Petrasova A Horning N Furtkevicova LNetelerMhellipWegmannM(2017)OpendataandopensourceforremotesensingtraininginecologyEcological Informatics4057ndash61

RocchiniDampNetelerM(2012)Letthefourfreedomsparadigmapplyto ecology Trends in Ecology amp Evolution 27 310ndash311 httpsdoiorg101016jtree201203009

RocchiniDAndreiniButiniSampChiarucciA (2005)Maximizingplantspecies inventory efficiency by means of remotely sensed spectraldistancesGlobal Ecology and Biogeography14 431ndash437 httpsdoiorg101111j1466-822x200500169x

Rocchini D Balkenhol N Carter G A Foody G M Gillespie TWHeK ShellipNetelerM (2010)Remotely sensed spectral heteroge-neityasaproxyofspeciesdiversityRecentadvancesandopenchal-lenges Ecological Informatics 5 318ndash329 httpsdoiorg101016jecoinf201006001

RocchiniDDelucchiLBacaroGCavalliniPFeilhauerHFoodyG M hellip Neteler M (2013) Calculating landscape diversity with

information-theorybased indicesAGRASSGISsolutionEcological Informatics1782ndash93httpsdoiorg101016jecoinf201204002

Rocchini D Hernaacutendez Stefanoni J L amp He K S (2015) Advancingspecies diversity estimate by remotely sensed proxiesA conceptualreview Ecological Informatics 25 22ndash28 httpsdoiorg101016jecoinf201410006

RocchiniDBoydDSFeacuteretJBFoodyGMHeKSLauschAhellipPettorelliN(2016)Satelliteremotesensingtomonitorspeciesdiver-sityPotentialandpitfallsRemote Sensing in Ecology and Conservation225ndash36httpsdoiorg101002rse29

Rocchini D Garzon-Lopez C X Marcantonio M Amici V BacaroG Bastin L hellip Rosaacute R (2017) Anticipating species distributionsHandlingsamplingeffortbiasunderaBayesianframeworkScience of the Total Environment584ndash585 282ndash290 httpsdoiorg101016jscitotenv201612038

RosauerDFFerrierSWilliamsKJManionGKeoghJSampLaffanSW (2014)PhylogeneticgeneraliseddissimilaritymodellingAnewapproachtoanalysingandpredictingspatialturnoverinthephyloge-neticcompositionofcommunitiesEcography3721ndash32httpsdoiorg101111j1600-0587201300466x

SchmellerDWeatherdonLLoyauABondeauABrotonsLBrummittNhellipReganE(inpress)AsuiteofessentialbiodiversityvariablesfordetectingcriticalbiodiversitychangeBiological Reviews

SchmidtleinSampSassinJ(2004)MappingcontinuousfloristicgradientsingrasslandsusinghyperspectralimageryRemote Sensing of Environment92126ndash138httpsdoiorg101016jrse200405004

Schmidtlein S Zimmermann P Schuumlpferling R amp Weiss C (2007)MappingthefloristiccontinuumOrdinationspacepositionestimatedfromimagingspectroscopyJournal of Vegetation Science18131ndash140httpsdoiorg101111j1654-11032007tb02523x

TahvanainenT (2011)Abrupt ombrotrophication of a boreal aapamiretriggered by hydrological disturbance in the catchment Journal of Ecology201199

Tuomisto H amp Ruokolainen K (2006) Analyzing or explaining betadiversityUnderstanding the targets of differentmethods of anal-ysis Ecology 87 2697ndash2708 httpsdoiorg1018900012-9658 (2006)87

TuomistoHPoulsenARuokolainenKMoranRQuintanaCCeliJampCanasG (2003) Linking floristicpatternswith soil heterogeneityandsatellite imagery inEcuadorianAmazoniaEcological Applications13352ndash371httpsdoiorg1018901051-0761(2003)013[0352lfp wsh]20co2

TyreAJPossinghamHPampLindenmayerDB(2001)InferringprocessfrompatternCanterritoryoccupancyprovide informationabout lifehistoryparametersEcological Applications111722ndash1737httpsdoiorg1023073061091

Ustin S L amp Gamon J A (2010) Remote sensing of plant functionaltypesNew Phytologist186795ndash816httpsdoiorg101111j1469- 8137201003284x

VaglioLaurinGChanJC-WChenQLindsellJACoomesDAGuerriero LhellipValentiniR (2014)Biodiversitymapping in a tropi-calWestAfricanforestwithairbornehyperspectraldataPLoS ONE9e97910httpsdoiorg101371journalpone0097910

VernesiC RocchiniD Pecchioli ENetelerMVendraminGGampPaffetti D (2012) A landscape genetics approach reveals ecolog-ical-based differentiation in populations of holm oak (Quercus ilexL)attheirnorthernmostdistributionEDGEBiological Journal of the Linnean Society107458ndash467httpsdoiorg101111j1095-8312 201201940x

VihervaaraPAuvinenA-PMononenLToumlrmaumlMAhlrothPAnttilaShellipVirkkalaR (2017)Howessentialbiodiversityvariablesandre-motesensingcanhelpnationalbiodiversitymonitoringGlobal Ecology and Conservation 10 43ndash59 httpsdoiorg101016jgecco2017 01007

1798emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

WegmannMLeutnerBFMetzMNetelerMDechSampRocchiniD(2017)rpiAGRASSGISpackageforsemi-automaticspatialpatternanalysis of remotely sensed land cover dataMethods in Ecology and Evolutioninpresshttpsdoiorg1011112041-210x12827

Whittaker R H (1960) Vegetation of the SiskiyouMountains OregonandCaliforniaEcological Monographs30280ndash338httpsdoiorg10 23071943563

Witten D Tibshirani R Gross S amp Narasimhan B (2013) PMAPenalized multivariate analysis R package version 109 RetrievedfromhttpsCRANR-projectorgpackage=PMA

Woolley SN C Foster SDOrsquoHaraTDWintle BA ampDunstanP K (2017) Characterising uncertainty in generalised dissimilaritymodels Methods in Ecology and Evolution 8 985ndash995 httpsdoiorg1011112041-210x12710

SUPPORTING INFORMATION

Additional Supporting Information may be found online in thesupportinginformationtabforthisarticle

How to cite this articleRocchiniDLuqueSPettorelliNetalMeasuringβ-diversitybyremotesensingAchallengeforbiodiversitymonitoringMethods Ecol Evol 201891787ndash1798 httpsdoiorg1011112041-210X12941

Page 12: Measuring β‐diversity by remote sensing: A challenge for ...€¦ · ment of remote sensing tools (Rocchini & Neteler, 2012) for diversity estimate in which the concept of β-diversity

1798emsp |emsp emspenspMethods in Ecology and Evolu13on ROCCHINI et al

WegmannMLeutnerBFMetzMNetelerMDechSampRocchiniD(2017)rpiAGRASSGISpackageforsemi-automaticspatialpatternanalysis of remotely sensed land cover dataMethods in Ecology and Evolutioninpresshttpsdoiorg1011112041-210x12827

Whittaker R H (1960) Vegetation of the SiskiyouMountains OregonandCaliforniaEcological Monographs30280ndash338httpsdoiorg10 23071943563

Witten D Tibshirani R Gross S amp Narasimhan B (2013) PMAPenalized multivariate analysis R package version 109 RetrievedfromhttpsCRANR-projectorgpackage=PMA

Woolley SN C Foster SDOrsquoHaraTDWintle BA ampDunstanP K (2017) Characterising uncertainty in generalised dissimilaritymodels Methods in Ecology and Evolution 8 985ndash995 httpsdoiorg1011112041-210x12710

SUPPORTING INFORMATION

Additional Supporting Information may be found online in thesupportinginformationtabforthisarticle

How to cite this articleRocchiniDLuqueSPettorelliNetalMeasuringβ-diversitybyremotesensingAchallengeforbiodiversitymonitoringMethods Ecol Evol 201891787ndash1798 httpsdoiorg1011112041-210X12941