75
psl(2|2) n C 3 Quantum Double Quantum Double for sl(2|2) Contraction Limit Maximally extended sl(2|2) as a Quantum Double. arXiv:1602.04988, Beisert, de Leeuw. as a contraction limit. arXiv:1703.XXXX, Beisert, Hoare. Reimar Hecht, ETH Zurich TCD, 03.03.2017 1 / 24

Maximally extended sl(2 2) - Trinity College Dublintristan/YRISW_2017/Talks/Hecht.pdf · 2017. 3. 7. · psl(2|2) nC3 Quantum Double Quantum Double for sl(2|2) Contraction Limit Maximally

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    Maximally extended sl(2|2)

    as a Quantum Double. arXiv:1602.04988, Beisert, de Leeuw.

    as a contraction limit. arXiv:1703.XXXX, Beisert, Hoare.

    Reimar Hecht, ETH Zurich

    TCD, 03.03.2017

    1 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    Centrally extended sl(2|2)

    2 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    Centrally extended sl(2|2)

    Centrally extended sl(2|2) (psl(2|2)n C3) appears inHubbard Model

    AdS/CFT

    Special Lie algebra

    psl(2|2) only simple Lie superalgebra with threefold centralextension

    related to d(2, 1;↵), ↵ ! 0q-deformation Uq(psl(2|2)n C3)

    Goal: Universal R-matrix.R

    12

    R13

    R23

    = R23

    R13

    R12

    .

    3 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    Centrally extended sl(2|2)

    Centrally extended sl(2|2) (psl(2|2)n C3) appears inHubbard Model

    AdS/CFT

    Special Lie algebra

    psl(2|2) only simple Lie superalgebra with threefold centralextension

    related to d(2, 1;↵), ↵ ! 0q-deformation Uq(psl(2|2)n C3)

    Goal: Universal R-matrix.R

    12

    R13

    R23

    = R23

    R13

    R12

    .

    3 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    Centrally extended sl(2|2)

    Centrally extended sl(2|2) (psl(2|2)n C3) appears inHubbard Model

    AdS/CFT

    Special Lie algebra

    psl(2|2) only simple Lie superalgebra with threefold centralextension

    related to d(2, 1;↵), ↵ ! 0q-deformation Uq(psl(2|2)n C3)

    Goal: Universal R-matrix.R

    12

    R13

    R23

    = R23

    R13

    R12

    .

    3 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    Uq(psl(2|2)n C3)

    Chevalley-Serre generators q = e~,

    [Hi ,Ej ] = aijEj ,[Hi ,Fj ] = �aijFj ,

    [Ei ,Fj ] = �ijqHi � q�Hiq � q�1 ,

    E2

    ,F2

    fermionic, and Cartan matrix

    aij =

    0

    @2 �1 0�1 0 +10 +1 �2

    1

    A ,

    Note: Cartan matrix is degenerate

    C := 12

    H1

    + H2

    + 12

    H3

    is central.

    4 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    Uq(psl(2|2)n C3)

    Chevalley-Serre generators q = e~,

    [Hi ,Ej ] = aijEj ,[Hi ,Fj ] = �aijFj ,

    [Ei ,Fj ] = �ijqHi � q�Hiq � q�1 ,

    E2

    ,F2

    fermionic, and Cartan matrix

    aij =

    0

    @2 �1 0�1 0 +10 +1 �2

    1

    A ,

    Note: Cartan matrix is degenerate

    C := 12

    H1

    + H2

    + 12

    H3

    is central.

    4 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    Uq(psl(2|2)n C3)Serre relations: (Ei . Ej := EiEj � q�aijEjEi )

    E1

    . E3

    = 0 = F3

    . F1

    , Ei . (Ei . E2) = 0 = Fi . (Fi . F2),

    Quartic Serre relations give rise to additonal central elements P ,K

    {E1

    . E2

    ,E3

    . E2

    } = P , {F2

    . F1

    ,F2

    . F3

    } = K .

    In total three central generators

    P = K = 0 ) sl(2|2); C = 0 ) psl(2|2).

    Coproduct

    �Hi = Hi ⌦ 1 + 1⌦ Hi , �C = C ⌦ 1 + 1⌦ C�Ei = Ei ⌦ 1 + q�Hi ⌦ Ei , �Fi = Fi ⌦ qHi + 1⌦ Fi ,�P = P ⌦ 1 + q�2C ⌦ P , �K = K ⌦ q2C + 1⌦ K

    5 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    Uq(psl(2|2)n C3)Serre relations: (Ei . Ej := EiEj � q�aijEjEi )

    E1

    . E3

    = 0 = F3

    . F1

    , Ei . (Ei . E2) = 0 = Fi . (Fi . F2),

    Quartic Serre relations give rise to additonal central elements P ,K

    {E1

    . E2

    ,E3

    . E2

    } = P , {F2

    . F1

    ,F2

    . F3

    } = K .

    In total three central generators

    P = K = 0 ) sl(2|2); C = 0 ) psl(2|2).

    Coproduct

    �Hi = Hi ⌦ 1 + 1⌦ Hi , �C = C ⌦ 1 + 1⌦ C�Ei = Ei ⌦ 1 + q�Hi ⌦ Ei , �Fi = Fi ⌦ qHi + 1⌦ Fi ,�P = P ⌦ 1 + q�2C ⌦ P , �K = K ⌦ q2C + 1⌦ K

    5 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    Uq(psl(2|2)n C3)Serre relations: (Ei . Ej := EiEj � q�aijEjEi )

    E1

    . E3

    = 0 = F3

    . F1

    , Ei . (Ei . E2) = 0 = Fi . (Fi . F2),

    Quartic Serre relations give rise to additonal central elements P ,K

    {E1

    . E2

    ,E3

    . E2

    } = P , {F2

    . F1

    ,F2

    . F3

    } = K .

    In total three central generators

    P = K = 0 ) sl(2|2); C = 0 ) psl(2|2).

    Coproduct

    �Hi = Hi ⌦ 1 + 1⌦ Hi , �C = C ⌦ 1 + 1⌦ C�Ei = Ei ⌦ 1 + q�Hi ⌦ Ei , �Fi = Fi ⌦ qHi + 1⌦ Fi ,�P = P ⌦ 1 + q�2C ⌦ P , �K = K ⌦ q2C + 1⌦ K

    5 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    Quantum Double

    6 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    Universal R-matrix an invertible element R 2 H⌦H, s.t�op(a)R = R�(a), 8a 2 H,

    where�op := ⌧ ��, ⌧(a⌦ b) = b ⌦ a.

    Furthermore

    (�⌦ id)R = R13

    R23

    , (id⌦�)R = R13

    R12

    .

    Imply the Yang-Baxter equation

    R12

    R13

    R23

    = R23

    R13

    R12

    .

    Given a representation ⇢ : H ! End(V)R⇢ = (⇢⌦ ⇢)R

    Dual Hopf algebra H⇤non-degenerate bilinear pairing h·, ·i : H⇤ ⌦H ! C,

    hfg , ai = hf , a(1)

    ihg , a(2)

    i, hf , abi = hf(1)

    , aihf(2)

    , biproduct , coproduct

    7 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    Universal R-matrix an invertible element R 2 H⌦H, s.t�op(a)R = R�(a), 8a 2 H,

    where�op := ⌧ ��, ⌧(a⌦ b) = b ⌦ a.

    Furthermore

    (�⌦ id)R = R13

    R23

    , (id⌦�)R = R13

    R12

    .

    Imply the Yang-Baxter equation

    R12

    R13

    R23

    = R23

    R13

    R12

    .

    Given a representation ⇢ : H ! End(V)R⇢ = (⇢⌦ ⇢)R

    Dual Hopf algebra H⇤non-degenerate bilinear pairing h·, ·i : H⇤ ⌦H ! C,

    hfg , ai = hf , a(1)

    ihg , a(2)

    i, hf , abi = hf(1)

    , aihf(2)

    , biproduct , coproduct

    7 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    Universal R-matrix an invertible element R 2 H⌦H, s.t�op(a)R = R�(a), 8a 2 H,

    where�op := ⌧ ��, ⌧(a⌦ b) = b ⌦ a.

    Furthermore

    (�⌦ id)R = R13

    R23

    , (id⌦�)R = R13

    R12

    .

    Imply the Yang-Baxter equation

    R12

    R13

    R23

    = R23

    R13

    R12

    .

    Given a representation ⇢ : H ! End(V)R⇢ = (⇢⌦ ⇢)R

    Dual Hopf algebra H⇤non-degenerate bilinear pairing h·, ·i : H⇤ ⌦H ! C,

    hfg , ai = hf , a(1)

    ihg , a(2)

    i, hf , abi = hf(1)

    , aihf(2)

    , biproduct , coproduct

    7 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    [Drinfeld ’86]

    Quantum Double D(H) generated by H and H⇤op withcross-relations �a = a

    (1)

    ⌦ a(2)

    Xx(1)

    f(1)

    hf(2)

    , x(2)

    i =X

    hf(1)

    , x(1)

    if(2)

    x(2)

    , x 2 H, f 2 H⇤op

    Universal R-matrix

    R =X

    i2Iei ⌦ e⇤i 2 D(H)⌦D(H),

    where {ei}i2I ⇢ H and {e⇤i }i2I ⇢ H⇤op are dual bases.

    In practice

    For given H find subalgebra A ⇢ H s.t. H ⇠= D(A)

    8 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    [Drinfeld ’86]

    Quantum Double D(H) generated by H and H⇤op withcross-relations �a = a

    (1)

    ⌦ a(2)

    Xx(1)

    f(1)

    hf(2)

    , x(2)

    i =X

    hf(1)

    , x(1)

    if(2)

    x(2)

    , x 2 H, f 2 H⇤op

    Universal R-matrix

    R =X

    i2Iei ⌦ e⇤i 2 D(H)⌦D(H),

    where {ei}i2I ⇢ H and {e⇤i }i2I ⇢ H⇤op are dual bases.

    In practice

    For given H find subalgebra A ⇢ H s.t. H ⇠= D(A)

    8 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    How it works for Uq(sl(3)) [Drinfeld ’86],[Burroughs ’90]1.) positve Borel sub-algebra Uq(b+), basis {E n1

    1

    E n1212

    E n22

    Hm11

    Hm22

    }[Hi ,Ej ] = aijEj , �Ej = Ej ⌦ 1 + q�Hi ⌦ Ej

    2.) construct the dual Uq(b+)⇤, dual basis {(E n11

    E n1212

    E n22

    Hm11

    Hm22

    )⇤}[H⇤i ,E

    ⇤j ] = �~�ij E⇤j , �E⇤j = E⇤j ⌦ 1 + e

    Pi aij H

    ⇤i ⌦ E⇤j

    3.) built the Quantum Double, i.e. find the cross-relations

    [Ei ,E⇤j ] = �ij (e

    Pk akjH

    ⇤k � q�Hi )

    4.) Identify Uq(b+)⇤op ⇠= Uq(b�)

    ( issue for psl(2|2)n C3

    bHj ⇠1

    ~X

    i

    aijH⇤i , Fj ⇠ E

    ⇤i ,

    and thus Uq(sl(3)) ⇠= D(Uq(b+))/h bH � Hi5.) R-matrix eXq :=

    P1n=0

    Xn

    [n;q]! , [n; q] :=1�qn1�q

    R = e(q�q�1

    )E1

    ⌦F1

    q�2 e(q�q�1)E

    12

    ⌦F21

    q�2 e(q�q�1)E

    2

    ⌦F2

    q�2 qH1

    ⌦(2H1

    +H2

    )/3 qH2⌦(2H2+H1)/3,

    9 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    How it works for Uq(sl(3)) [Drinfeld ’86],[Burroughs ’90]1.) positve Borel sub-algebra Uq(b+), basis {E n1

    1

    E n1212

    E n22

    Hm11

    Hm22

    }[Hi ,Ej ] = aijEj , �Ej = Ej ⌦ 1 + q�Hi ⌦ Ej

    2.) construct the dual Uq(b+)⇤, dual basis {(E n11

    E n1212

    E n22

    Hm11

    Hm22

    )⇤}[H⇤i ,E

    ⇤j ] = �~�ij E⇤j , �E⇤j = E⇤j ⌦ 1 + e

    Pi aij H

    ⇤i ⌦ E⇤j

    3.) built the Quantum Double, i.e. find the cross-relations

    [Ei ,E⇤j ] = �ij (e

    Pk akjH

    ⇤k � q�Hi )

    4.) Identify Uq(b+)⇤op ⇠= Uq(b�)

    ( issue for psl(2|2)n C3

    bHj ⇠1

    ~X

    i

    aijH⇤i , Fj ⇠ E

    ⇤i ,

    and thus Uq(sl(3)) ⇠= D(Uq(b+))/h bH � Hi5.) R-matrix eXq :=

    P1n=0

    Xn

    [n;q]! , [n; q] :=1�qn1�q

    R = e(q�q�1

    )E1

    ⌦F1

    q�2 e(q�q�1)E

    12

    ⌦F21

    q�2 e(q�q�1)E

    2

    ⌦F2

    q�2 qH1

    ⌦(2H1

    +H2

    )/3 qH2⌦(2H2+H1)/3,

    9 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    2.) construct the dual Uq(b+)⇤

    Calculate the product of f , g 2 Uq(b+)⇤w.r.t. ei 2 {En1

    1

    En1212

    En22

    Hm11

    Hm22

    }

    fg =X

    i2Ihfg , ei ie⇤i =

    X

    i2Ihf , (ei )

    (1)

    ihg , (ei )(2)

    ie⇤i ,

    e.g.

    H⇤i E⇤j =

    E⇤j H⇤i =

    Calculate the coproduct of f 2 H⇤

    �(f ) =X

    i ,j2Ih�(f ), ei ⌦ ejie⇤i ⌦ e⇤j =

    X

    i ,j2Ihf , eiejie⇤i ⌦ e⇤j ,

    e.g. �E⇤i = ,

    10 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    2.) construct the dual Uq(b+)⇤

    Calculate the product of f , g 2 Uq(b+)⇤w.r.t. ei 2 {En1

    1

    En1212

    En22

    Hm11

    Hm22

    }

    fg =X

    i2Ihfg , ei ie⇤i =

    X

    i2Ihf , (ei )

    (1)

    ihg , (ei )(2)

    ie⇤i ,

    e.g.

    H⇤i E⇤j = � ~�ij E⇤j

    E⇤j H⇤i =

    �Ej = Ej ⌦ 1 + q�Hj ⌦ Ej

    Calculate the coproduct of f 2 H⇤

    �(f ) =X

    i ,j2Ih�(f ), ei ⌦ ejie⇤i ⌦ e⇤j =

    X

    i ,j2Ihf , eiejie⇤i ⌦ e⇤j ,

    e.g. �E⇤i = ,

    10 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    2.) construct the dual Uq(b+)⇤

    Calculate the product of f , g 2 Uq(b+)⇤w.r.t. ei 2 {En1

    1

    En1212

    En22

    Hm11

    Hm22

    }

    fg =X

    i2Ihfg , ei ie⇤i =

    X

    i2Ihf , (ei )

    (1)

    ihg , (ei )(2)

    ie⇤i ,

    e.g.

    H⇤i E⇤j = � ~�ij E⇤j + (EjHi )⇤

    E⇤j H⇤i = + (EjHi )

    ⇤ �EjHi = · · ·+ E⇤j ⌦ Hi + q�Hj Hi ⌦ Ej

    Calculate the coproduct of f 2 H⇤

    �(f ) =X

    i ,j2Ih�(f ), ei ⌦ ejie⇤i ⌦ e⇤j =

    X

    i ,j2Ihf , eiejie⇤i ⌦ e⇤j ,

    e.g. �E⇤i = ,

    10 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    2.) construct the dual Uq(b+)⇤

    Calculate the product of f , g 2 Uq(b+)⇤w.r.t. ei 2 {En1

    1

    En1212

    En22

    Hm11

    Hm22

    }

    fg =X

    i2Ihfg , ei ie⇤i =

    X

    i2Ihf , (ei )

    (1)

    ihg , (ei )(2)

    ie⇤i ,

    e.g.

    H⇤i E⇤j = � ~�ij E⇤j + (EjHi )⇤

    E⇤j H⇤i = + (EjHi )

    Calculate the coproduct of f 2 H⇤

    �(f ) =X

    i ,j2Ih�(f ), ei ⌦ ejie⇤i ⌦ e⇤j =

    X

    i ,j2Ihf , eiejie⇤i ⌦ e⇤j ,

    e.g. �E⇤i = ,

    10 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    2.) construct the dual Uq(b+)⇤

    Calculate the product of f , g 2 Uq(b+)⇤w.r.t. ei 2 {En1

    1

    En1212

    En22

    Hm11

    Hm22

    }

    fg =X

    i2Ihfg , ei ie⇤i =

    X

    i2Ihf , (ei )

    (1)

    ihg , (ei )(2)

    ie⇤i ,

    e.g.

    H⇤i E⇤j = � ~�ij E⇤j + (EjHi )⇤

    E⇤j H⇤i = + (EjHi )

    Calculate the coproduct of f 2 H⇤

    �(f ) =X

    i ,j2Ih�(f ), ei ⌦ ejie⇤i ⌦ e⇤j =

    X

    i ,j2Ihf , eiejie⇤i ⌦ e⇤j ,

    e.g. �E⇤i = E⇤i ⌦ 1, Ej1 = Ej

    10 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    2.) construct the dual Uq(b+)⇤

    Calculate the product of f , g 2 Uq(b+)⇤w.r.t. ei 2 {En1

    1

    En1212

    En22

    Hm11

    Hm22

    }

    fg =X

    i2Ihfg , ei ie⇤i =

    X

    i2Ihf , (ei )

    (1)

    ihg , (ei )(2)

    ie⇤i ,

    e.g.

    H⇤i E⇤j = � ~�ij E⇤j + (EjHi )⇤

    E⇤j H⇤i = + (EjHi )

    Calculate the coproduct of f 2 H⇤

    �(f ) =X

    i ,j2Ih�(f ), ei ⌦ ejie⇤i ⌦ e⇤j =

    X

    i ,j2Ihf , eiejie⇤i ⌦ e⇤j ,

    e.g. �E⇤i = E⇤i ⌦ 1 + e

    aij H⇤i ⌦ E⇤i , H

    ni Ej = Ej (Hi + aij )

    n= anijEj + · · ·

    10 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    How it works for Uq(sl(3)) [Drinfeld ’86],[Burroughs ’90]1.) positve Borel sub-algebra Uq(b+), basis {E n1

    1

    E n1212

    E n22

    Hm11

    Hm22

    }[Hi ,Ej ] = aijEj , �Ej = Ej ⌦ 1 + q�Hi ⌦ Ej

    2.) construct the dual Uq(b+)⇤, dual basis {(E n11

    E n1212

    E n22

    Hm11

    Hm22

    )⇤}[H⇤i ,E

    ⇤j ] = �~�ij E⇤j , �E⇤j = E⇤j ⌦ 1 + e

    Pi aij H

    ⇤i ⌦ E⇤j

    3.) built the Quantum Double, i.e. find the cross-relations

    [Ei ,E⇤j ] = �ij (e

    Pk akjH

    ⇤k � q�Hi )

    4.) Identify Uq(b+)⇤op ⇠= Uq(b�)

    ( issue for psl(2|2)n C3

    bHj ⇠1

    ~X

    i

    aijH⇤i , Fj ⇠ E

    ⇤i ,

    and thus Uq(sl(3)) ⇠= D(Uq(b+))/h bH � Hi5.) R-matrix eXq :=

    P1n=0

    Xn

    [n;q]! , [n; q] :=1�qn1�q

    R = e(q�q�1

    )E1

    ⌦F1

    q�2 e(q�q�1)E

    12

    ⌦F21

    q�2 e(q�q�1)E

    2

    ⌦F2

    q�2 qH1

    ⌦(2H1

    +H2

    )/3 qH2⌦(2H2+H1)/3,

    11 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    How it works for Uq(sl(3)) [Drinfeld ’86],[Burroughs ’90]1.) positve Borel sub-algebra Uq(b+), basis {E n1

    1

    E n1212

    E n22

    Hm11

    Hm22

    }[Hi ,Ej ] = aijEj , �Ej = Ej ⌦ 1 + q�Hi ⌦ Ej

    2.) construct the dual Uq(b+)⇤, dual basis {(E n11

    E n1212

    E n22

    Hm11

    Hm22

    )⇤}[H⇤i ,E

    ⇤j ] = �~�ij E⇤j , �E⇤j = E⇤j ⌦ 1 + e

    Pi aij H

    ⇤i ⌦ E⇤j

    3.) built the Quantum Double, i.e. find the cross-relations

    [Ei ,E⇤j ] = �ij (e

    Pk akjH

    ⇤k � q�Hi )

    4.) Identify Uq(b+)⇤op ⇠= Uq(b�)

    ( issue for psl(2|2)n C3

    bHj ⇠1

    ~X

    i

    aijH⇤i , Fj ⇠ E

    ⇤i ,

    and thus Uq(sl(3)) ⇠= D(Uq(b+))/h bH � Hi5.) R-matrix eXq :=

    P1n=0

    Xn

    [n;q]! , [n; q] :=1�qn1�q

    R = e(q�q�1

    )E1

    ⌦F1

    q�2 e(q�q�1)E

    12

    ⌦F21

    q�2 e(q�q�1)E

    2

    ⌦F2

    q�2 qH1

    ⌦(2H1

    +H2

    )/3 qH2⌦(2H2+H1)/3,

    11 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    How it works for Uq(sl(3)) [Drinfeld ’86],[Burroughs ’90]1.) positve Borel sub-algebra Uq(b+), basis {E n1

    1

    E n1212

    E n22

    Hm11

    Hm22

    }[Hi ,Ej ] = aijEj , �Ej = Ej ⌦ 1 + q�Hi ⌦ Ej

    2.) construct the dual Uq(b+)⇤, dual basis {(E n11

    E n1212

    E n22

    Hm11

    Hm22

    )⇤}[H⇤i ,E

    ⇤j ] = �~�ij E⇤j , �E⇤j = E⇤j ⌦ 1 + e

    Pi aij H

    ⇤i ⌦ E⇤j

    3.) built the Quantum Double, i.e. find the cross-relations

    [Ei ,E⇤j ] = �ij (e

    Pk akjH

    ⇤k � q�Hi )

    4.) Identify Uq(b+)⇤op ⇠= Uq(b�)

    ( issue for psl(2|2)n C3

    bHj ⇠1

    ~X

    i

    aijH⇤i , Fj ⇠ E

    ⇤i ,

    and thus Uq(sl(3)) ⇠= D(Uq(b+))/h bH � Hi

    5.) R-matrix eXq :=P1

    n=0Xn

    [n;q]! , [n; q] :=1�qn1�q

    R = e(q�q�1

    )E1

    ⌦F1

    q�2 e(q�q�1)E

    12

    ⌦F21

    q�2 e(q�q�1)E

    2

    ⌦F2

    q�2 qH1

    ⌦(2H1

    +H2

    )/3 qH2⌦(2H2+H1)/3,

    11 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    How it works for Uq(sl(3)) [Drinfeld ’86],[Burroughs ’90]1.) positve Borel sub-algebra Uq(b+), basis {E n1

    1

    E n1212

    E n22

    Hm11

    Hm22

    }[Hi ,Ej ] = aijEj , �Ej = Ej ⌦ 1 + q�Hi ⌦ Ej

    2.) construct the dual Uq(b+)⇤, dual basis {(E n11

    E n1212

    E n22

    Hm11

    Hm22

    )⇤}[H⇤i ,E

    ⇤j ] = �~�ij E⇤j , �E⇤j = E⇤j ⌦ 1 + e

    Pi aij H

    ⇤i ⌦ E⇤j

    3.) built the Quantum Double, i.e. find the cross-relations

    [Ei ,E⇤j ] = �ij (e

    Pk akjH

    ⇤k � q�Hi )

    4.) Identify Uq(b+)⇤op ⇠= Uq(b�)

    ( issue for psl(2|2)n C3

    bHj ⇠1

    ~X

    i

    aijH⇤i , Fj ⇠ E

    ⇤i ,

    and thus Uq(sl(3)) ⇠= D(Uq(b+))/h bH � Hi5.) R-matrix eXq :=

    P1n=0

    Xn

    [n;q]! , [n; q] :=1�qn1�q

    R = e(q�q�1

    )E1

    ⌦F1

    q�2 e(q�q�1)E

    12

    ⌦F21

    q�2 e(q�q�1)E

    2

    ⌦F2

    q�2 qH1

    ⌦(2H1

    +H2

    )/3 qH2⌦(2H2+H1)/3,

    11 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    How it works for Uq(sl(3)) [Drinfeld ’86],[Burroughs ’90]1.) positve Borel sub-algebra Uq(b+), basis {E n1

    1

    E n1212

    E n22

    Hm11

    Hm22

    }[Hi ,Ej ] = aijEj , �Ej = Ej ⌦ 1 + q�Hi ⌦ Ej

    2.) construct the dual Uq(b+)⇤, dual basis {(E n11

    E n1212

    E n22

    Hm11

    Hm22

    )⇤}[H⇤i ,E

    ⇤j ] = �~�ij E⇤j , �E⇤j = E⇤j ⌦ 1 + e

    Pi aij H

    ⇤i ⌦ E⇤j

    3.) built the Quantum Double, i.e. find the cross-relations

    [Ei ,E⇤j ] = �ij (e

    Pk akjH

    ⇤k � q�Hi )

    4.) Identify Uq(b+)⇤op ⇠= Uq(b�) ( issue for psl(2|2)n C3

    bHj ⇠1

    ~X

    i

    aijH⇤i , Fj ⇠ E

    ⇤i ,

    and thus Uq(sl(3)) ⇠= D(Uq(b+))/h bH � Hi5.) R-matrix eXq :=

    P1n=0

    Xn

    [n;q]! , [n; q] :=1�qn1�q

    R = e(q�q�1

    )E1

    ⌦F1

    q�2 e(q�q�1)E

    12

    ⌦F21

    q�2 e(q�q�1)E

    2

    ⌦F2

    q�2 qH1

    ⌦(2H1

    +H2

    )/3 qH2⌦(2H2+H1)/3,

    11 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    Quantum Double for sl(2|2)

    12 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    Now for Uq(psl(2|2)n C3)cartan sub-algebra

    [H⇤i ,E⇤j ] =

    a⇤ijz }| {�~�ijE ⇤j

    dual Cartan matrix a⇤ij is not degenerate

    Serre relations

    E ⇤1

    . E ⇤3

    = 0, E ⇤i . (E⇤i . E

    ⇤2

    ) = 0, {E ⇤12

    ,E ⇤32

    } = 0

    no central extension from quartic Serre relation

    Instead non central P⇤

    [H⇤i ,P⇤] = �~(�i1 + 2�2i + �i3)P⇤,

    ⇥P⇤,E⇤j

    ⇤= �j3

    �q � q�1

    �E⇤32

    E⇤132

    .

    P⇤ not central

    ) no chance to identify: Uq(b+)⇤op � Uq(b�)

    13 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    Now for Uq(psl(2|2)n C3)cartan sub-algebra

    [H⇤i ,E⇤j ] =

    a⇤ijz }| {�~�ijE ⇤j

    dual Cartan matrix a⇤ij is not degenerate

    Serre relations

    E ⇤1

    . E ⇤3

    = 0, E ⇤i . (E⇤i . E

    ⇤2

    ) = 0, {E ⇤12

    ,E ⇤32

    } = 0

    no central extension from quartic Serre relation

    Instead non central P⇤

    [H⇤i ,P⇤] = �~(�i1 + 2�2i + �i3)P⇤,

    ⇥P⇤,E⇤j

    ⇤= �j3

    �q � q�1

    �E⇤32

    E⇤132

    .

    P⇤ not central

    ) no chance to identify: Uq(b+)⇤op � Uq(b�)

    13 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    Now for Uq(psl(2|2)n C3)cartan sub-algebra

    [H⇤i ,E⇤j ] =

    a⇤ijz }| {�~�ijE ⇤j

    dual Cartan matrix a⇤ij is not degenerate

    Serre relations

    E ⇤1

    . E ⇤3

    = 0, E ⇤i . (E⇤i . E

    ⇤2

    ) = 0, {E ⇤12

    ,E ⇤32

    } = 0

    no central extension from quartic Serre relation

    Instead non central P⇤

    [H⇤i ,P⇤] = �~(�i1 + 2�2i + �i3)P⇤,

    ⇥P⇤,E⇤j

    ⇤= �j3

    �q � q�1

    �E⇤32

    E⇤132

    .

    P⇤ not central

    ) no chance to identify: Uq(b+)⇤op � Uq(b�)

    13 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    Now for Uq(psl(2|2)n C3)cartan sub-algebra

    [H⇤i ,E⇤j ] =

    a⇤ijz }| {�~�ijE ⇤j

    dual Cartan matrix a⇤ij is not degenerate

    Serre relations

    E ⇤1

    . E ⇤3

    = 0, E ⇤i . (E⇤i . E

    ⇤2

    ) = 0, {E ⇤12

    ,E ⇤32

    } = 0

    no central extension from quartic Serre relation

    Instead non central P⇤

    [H⇤i ,P⇤] = �~(�i1 + 2�2i + �i3)P⇤,

    ⇥P⇤,E⇤j

    ⇤= �j3

    �q � q�1

    �E⇤32

    E⇤132

    .

    P⇤ not central

    ) no chance to identify: Uq(b+)⇤op � Uq(b�)13 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    Overview

    Uq(b+)

    Uq(b+)⇤

    Uq(b�)

    psl(2|2) H1/3

    H⇤1/3

    H1/3

    Ei

    E ⇤i

    Fi

    C3 C

    H⇤A

    C

    P

    E ⇤A

    K

    sl(2) HA

    C ⇤ HA

    EA

    P⇤ FA

    Solution: Enlarge Hopf algebra with additional generatorsEA

    ,HA

    ,FA

    14 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    Overview

    Uq(b+) Uq(b+)⇤ Uq(b�)

    psl(2|2) H1/3

    ⇤ // H⇤1/3

    ⇠ H1/3

    Ei⇤ // E ⇤i

    ⇠ Fi

    C3 C⇤

    %%

    H⇤A

    C

    P⇤

    %%

    E ⇤A

    K

    sl(2) HA

    C ⇤

    HA

    EA

    P⇤

    FA

    Solution: Enlarge Hopf algebra with additional generatorsEA

    ,HA

    ,FA

    14 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    Overview

    Uq(b+) Uq(b+)⇤ Uq(b�)

    psl(2|2) H1/3

    ⇤ // H⇤1/3

    ⇠ H1/3

    Ei⇤ // E ⇤i

    ⇠ Fi

    C3 C⇤

    %%

    H⇤A

    ⇠ C

    P⇤

    %%

    E ⇤A

    ⇠ K

    sl(2) HA

    ⇤99

    C ⇤ ⇠ HA

    EA

    ⇤99

    P⇤ ⇠ FA

    Solution: Enlarge Hopf algebra with additional generatorsEA

    ,HA

    ,FA

    14 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    How to find Hopf algebra of EA, HA, K?

    add HA

    , s.t its dual H⇤A

    is central (in psl(2|2)n C3).

    [H⇤A

    ,E ⇤j ] = 0,[H⇤

    A

    ,F ⇤j ] = 0,�H⇤

    A

    = H⇤A

    ⌦ 1 + 1⌦ H⇤A

    .

    add EA

    , s.t. E ⇤A

    is central (in psl(2|2)n C3) and

    {E ⇤12

    ,E ⇤32

    } = E ⇤A

    , �E ⇤A

    = E ⇤A

    ⌦ 1 + e2H⇤A ⌦ E ⇤A

    add FA

    , as given by P⇤

    requireUq(b+)⇤op ⇠= Uq(b�)

    ) one-parameter (⇠) family of consistent Hopf algebras

    15 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    How to find Hopf algebra of EA, HA, K?

    add HA

    , s.t its dual H⇤A

    is central (in psl(2|2)n C3).

    [H⇤A

    ,E ⇤j ] = 0,[H⇤

    A

    ,F ⇤j ] = 0,�H⇤

    A

    = H⇤A

    ⌦ 1 + 1⌦ H⇤A

    .

    add EA

    , s.t. E ⇤A

    is central (in psl(2|2)n C3) and

    {E ⇤12

    ,E ⇤32

    } = E ⇤A

    , �E ⇤A

    = E ⇤A

    ⌦ 1 + e2H⇤A ⌦ E ⇤A

    add FA

    , as given by P⇤

    requireUq(b+)⇤op ⇠= Uq(b�)

    ) one-parameter (⇠) family of consistent Hopf algebras

    15 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    How to find Hopf algebra of EA, HA, K?

    add HA

    , s.t its dual H⇤A

    is central (in psl(2|2)n C3).

    [H⇤A

    ,E ⇤j ] = 0,[H⇤

    A

    ,F ⇤j ] = 0,�H⇤

    A

    = H⇤A

    ⌦ 1 + 1⌦ H⇤A

    .

    add EA

    , s.t. E ⇤A

    is central (in psl(2|2)n C3) and

    {E ⇤12

    ,E ⇤32

    } = E ⇤A

    , �E ⇤A

    = E ⇤A

    ⌦ 1 + e2H⇤A ⌦ E ⇤A

    add FA

    , as given by P⇤

    requireUq(b+)⇤op ⇠= Uq(b�)

    ) one-parameter (⇠) family of consistent Hopf algebras

    15 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    How to find Hopf algebra of EA, HA, K?

    add HA

    , s.t its dual H⇤A

    is central (in psl(2|2)n C3).

    [H⇤A

    ,E ⇤j ] = 0,[H⇤

    A

    ,F ⇤j ] = 0,�H⇤

    A

    = H⇤A

    ⌦ 1 + 1⌦ H⇤A

    .

    add EA

    , s.t. E ⇤A

    is central (in psl(2|2)n C3) and

    {E ⇤12

    ,E ⇤32

    } = E ⇤A

    , �E ⇤A

    = E ⇤A

    ⌦ 1 + e2H⇤A ⌦ E ⇤A

    add FA

    , as given by P⇤

    requireUq(b+)⇤op ⇠= Uq(b�)

    ) one-parameter (⇠) family of consistent Hopf algebras

    15 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    How to find Hopf algebra of EA, HA, K?

    add HA

    , s.t its dual H⇤A

    is central (in psl(2|2)n C3).

    [H⇤A

    ,E ⇤j ] = 0,[H⇤

    A

    ,F ⇤j ] = 0,�H⇤

    A

    = H⇤A

    ⌦ 1 + 1⌦ H⇤A

    .

    add EA

    , s.t. E ⇤A

    is central (in psl(2|2)n C3) and

    {E ⇤12

    ,E ⇤32

    } = E ⇤A

    , �E ⇤A

    = E ⇤A

    ⌦ 1 + e2H⇤A ⌦ E ⇤A

    add FA

    , as given by P⇤

    requireUq(b+)⇤op ⇠= Uq(b�)

    ) one-parameter (⇠) family of consistent Hopf algebras

    15 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    Hopf structure of sl(2) automorphism

    sl(2)

    [HA

    ,EA

    ] = 2EA

    , [HA

    ,FA

    ] = �2FA

    , [EA

    ,FA

    ] = (HA

    + ⇠C)q2C + q�2C

    2

    � ⇠q2C � q�2C

    4~,

    acting on central extensions

    [HA

    ,P] = 2P, [HA

    ,C ] = 0, [HA

    ,K ] = �2K ,

    [EA

    ,P] = 0, [EA

    ,C ] =q � q�1

    2~P, [E

    A

    ,K ] =q2C � q�2C

    q � q�1,

    [FA

    ,P] = �q2C � q�2C

    q � q�1, [F

    A

    ,C ] = �q � q�1

    2~K , [F

    A

    ,K ] = 0,

    acting on psl(2|2)[H

    A

    ,Ej ] = �j2E2, [HA,Fj ] = ��j2Fj[E

    A

    ,Ej ] = (q � q�1)(�j2 12

    E2

    P + �j3E32E132),

    [EA

    ,Fj ] = �j2(E132 + (q � q�1)E32E1)q�H2 + �j3(q � q�1)E2E12qH3 ,E $ F , P $ K ,

    16 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    Hopf structure of sl(2) automorphism

    sl(2)

    [HA

    ,EA

    ] = 2EA

    , [HA

    ,FA

    ] = �2FA

    , [EA

    ,FA

    ] = (HA

    + ⇠C)q2C + q�2C

    2

    � ⇠q2C � q�2C

    4~,

    acting on central extensions

    [HA

    ,P] = 2P, [HA

    ,C ] = 0, [HA

    ,K ] = �2K ,

    [EA

    ,P] = 0, [EA

    ,C ] =q � q�1

    2~P, [E

    A

    ,K ] =q2C � q�2C

    q � q�1,

    [FA

    ,P] = �q2C � q�2C

    q � q�1, [F

    A

    ,C ] = �q � q�1

    2~K , [F

    A

    ,K ] = 0,

    acting on psl(2|2)[H

    A

    ,Ej ] = �j2E2, [HA,Fj ] = ��j2Fj[E

    A

    ,Ej ] = (q � q�1)(�j2 12

    E2

    P + �j3E32E132),

    [EA

    ,Fj ] = �j2(E132 + (q � q�1)E32E1)q�H2 + �j3(q � q�1)E2E12qH3 ,E $ F , P $ K ,

    16 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    Hopf structure of sl(2) automorphism

    sl(2)

    [HA

    ,EA

    ] = 2EA

    , [HA

    ,FA

    ] = �2FA

    , [EA

    ,FA

    ] = (HA

    + ⇠C)q2C + q�2C

    2

    � ⇠q2C � q�2C

    4~,

    acting on central extensions

    [HA

    ,P] = 2P, [HA

    ,C ] = 0, [HA

    ,K ] = �2K ,

    [EA

    ,P] = 0, [EA

    ,C ] =q � q�1

    2~P, [E

    A

    ,K ] =q2C � q�2C

    q � q�1,

    [FA

    ,P] = �q2C � q�2C

    q � q�1, [F

    A

    ,C ] = �q � q�1

    2~K , [F

    A

    ,K ] = 0,

    acting on psl(2|2)[H

    A

    ,Ej ] = �j2E2, [HA,Fj ] = ��j2Fj[E

    A

    ,Ej ] = (q � q�1)(�j2 12

    E2

    P + �j3E32E132),

    [EA

    ,Fj ] = �j2(E132 + (q � q�1)E32E1)q�H2 + �j3(q � q�1)E2E12qH3 ,E $ F , P $ K ,

    16 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    Hopf structure of sl(2) automorphisms

    coproduct

    �HA

    = HA

    ⌦ 1 + 1⌦ HA

    �EA

    = EA

    ⌦ 1 + q�2C ⌦ EA

    +q � q�1

    2(H

    A

    + ⇠C )q�2C ⌦ P

    + (q � q�1)(E132

    + (q � q�1)E32

    E1

    )q�H2 ⌦ E2

    � (q � q�1)E32

    q�H1�H2 ⌦ E12

    � (q � q�1)2E3

    q�H1�2H2 ⌦ E2

    E12

    �FA

    = analogously

    17 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    R-matrix

    R =1X

    n1

    ,··· ,nl

    �en11

    · · · enll�⌦�en11

    · · · enll�⇤

    =1X

    n1

    en11

    ⌦ e⇤n11

    he⇤n11

    , en11

    i · · ·1X

    nl

    enll ⌦ e⇤nll

    he⇤nll , en1

    l i.

    provided e⇤n11

    · · · e⇤nll = he⇤n

    1

    1

    , en11

    i · · · he⇤nll , enll i

    �en11

    · · · enll�⇤

    .

    ) choose your basis wisely!! Problem: sl(2) and C3 generators do not factorize

    R = e�E2⌦F2e�E12⌦F21

    · exp✓

    EA

    ⌦ K + P ⌦ FA

    �P ⌦ K �⇠

    2~

    ◆log(1 + �2P ⌦ K )� ⇠

    4~ Li2(��2P ⌦ K )

    ·e�E32⌦F32e�E132⌦F132e�E1⌦F1q�2 e��E

    3

    ⌦F3

    q2 q1

    2

    H1

    ⌦H1

    � 12

    H3

    ⌦H3

    +C⌦HA

    +HA

    ⌦C+ ⇠C⌦C

    � = (q � q�1)

    18 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    R-matrix

    R =1X

    n1

    ,··· ,nl

    �en11

    · · · enll�⌦�en11

    · · · enll�⇤

    =1X

    n1

    en11

    ⌦ e⇤n11

    he⇤n11

    , en11

    i · · ·1X

    nl

    enll ⌦ e⇤nll

    he⇤nll , en1

    l i.

    provided e⇤n11

    · · · e⇤nll = he⇤n

    1

    1

    , en11

    i · · · he⇤nll , enll i

    �en11

    · · · enll�⇤

    .

    ) choose your basis wisely!! Problem: sl(2) and C3 generators do not factorize

    R = e�E2⌦F2e�E12⌦F21

    · exp✓

    EA

    ⌦ K + P ⌦ FA

    �P ⌦ K �⇠

    2~

    ◆log(1 + �2P ⌦ K )� ⇠

    4~ Li2(��2P ⌦ K )

    ·e�E32⌦F32e�E132⌦F132e�E1⌦F1q�2 e��E

    3

    ⌦F3

    q2 q1

    2

    H1

    ⌦H1

    � 12

    H3

    ⌦H3

    +C⌦HA

    +HA

    ⌦C+ ⇠C⌦C

    � = (q � q�1)

    18 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    R-matrix

    R =1X

    n1

    ,··· ,nl

    �en11

    · · · enll�⌦�en11

    · · · enll�⇤

    =1X

    n1

    en11

    ⌦ e⇤n11

    he⇤n11

    , en11

    i · · ·1X

    nl

    enll ⌦ e⇤nll

    he⇤nll , en1

    l i.

    provided e⇤n11

    · · · e⇤nll = he⇤n

    1

    1

    , en11

    i · · · he⇤nll , enll i

    �en11

    · · · enll�⇤

    .

    ) choose your basis wisely!

    ! Problem: sl(2) and C3 generators do not factorize

    R = e�E2⌦F2e�E12⌦F21

    · exp✓

    EA

    ⌦ K + P ⌦ FA

    �P ⌦ K �⇠

    2~

    ◆log(1 + �2P ⌦ K )� ⇠

    4~ Li2(��2P ⌦ K )

    ·e�E32⌦F32e�E132⌦F132e�E1⌦F1q�2 e��E

    3

    ⌦F3

    q2 q1

    2

    H1

    ⌦H1

    � 12

    H3

    ⌦H3

    +C⌦HA

    +HA

    ⌦C+ ⇠C⌦C

    � = (q � q�1)

    18 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    R-matrix

    R =1X

    n1

    ,··· ,nl

    �en11

    · · · enll�⌦�en11

    · · · enll�⇤

    =1X

    n1

    en11

    ⌦ e⇤n11

    he⇤n11

    , en11

    i · · ·1X

    nl

    enll ⌦ e⇤nll

    he⇤nll , en1

    l i.

    provided e⇤n11

    · · · e⇤nll = he⇤n

    1

    1

    , en11

    i · · · he⇤nll , enll i

    �en11

    · · · enll�⇤

    .

    ) choose your basis wisely!! Problem: sl(2) and C3 generators do not factorize

    R = e�E2⌦F2e�E12⌦F21

    · exp✓

    EA

    ⌦ K + P ⌦ FA

    �P ⌦ K �⇠

    2~

    ◆log(1 + �2P ⌦ K )� ⇠

    4~ Li2(��2P ⌦ K )

    ·e�E32⌦F32e�E132⌦F132e�E1⌦F1q�2 e��E

    3

    ⌦F3

    q2 q1

    2

    H1

    ⌦H1

    � 12

    H3

    ⌦H3

    +C⌦HA

    +HA

    ⌦C+ ⇠C⌦C

    � = (q � q�1)

    18 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    R-matrix

    R =1X

    n1

    ,··· ,nl

    �en11

    · · · enll�⌦�en11

    · · · enll�⇤

    =1X

    n1

    en11

    ⌦ e⇤n11

    he⇤n11

    , en11

    i · · ·1X

    nl

    enll ⌦ e⇤nll

    he⇤nll , en1

    l i.

    provided e⇤n11

    · · · e⇤nll = he⇤n

    1

    1

    , en11

    i · · · he⇤nll , enll i

    �en11

    · · · enll�⇤

    .

    ) choose your basis wisely!! Problem: sl(2) and C3 generators do not factorize

    R = e�E2⌦F2e�E12⌦F21

    · exp✓

    EA

    ⌦ K + P ⌦ FA

    �P ⌦ K �⇠

    2~

    ◆log(1 + �2P ⌦ K )� ⇠

    4~ Li2(��2P ⌦ K )

    ·e�E32⌦F32e�E132⌦F132e�E1⌦F1q�2 e��E

    3

    ⌦F3

    q2 q1

    2

    H1

    ⌦H1

    � 12

    H3

    ⌦H3

    +C⌦HA

    +HA

    ⌦C+ ⇠C⌦C

    � = (q � q�1)18 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    So far

    cannot write Uq(psl(2|2)n C3) as a quantum double

    extended with sl(2) automorphisms and found Hopf algebra

    Uq,⇠(sl(2)n psl(2|2)n C3) is a Quantum DoubleUnusual features

    [EA

    ,FA

    ] = (HA

    + ⇠C )q2C + q�2C

    2� ⇠ q

    2C � q�2C4~

    sl(2) automorphism not deformed in the usual way

    appearance of plain ~ instead of q = e~

    appearance of free parameter ⇠

    R-matrix does not factorize and appearance of log and Li2

    Can we understand their origin better?

    19 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    So far

    cannot write Uq(psl(2|2)n C3) as a quantum doubleextended with sl(2) automorphisms and found Hopf algebra

    Uq,⇠(sl(2)n psl(2|2)n C3) is a Quantum DoubleUnusual features

    [EA

    ,FA

    ] = (HA

    + ⇠C )q2C + q�2C

    2� ⇠ q

    2C � q�2C4~

    sl(2) automorphism not deformed in the usual way

    appearance of plain ~ instead of q = e~

    appearance of free parameter ⇠

    R-matrix does not factorize and appearance of log and Li2

    Can we understand their origin better?

    19 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    So far

    cannot write Uq(psl(2|2)n C3) as a quantum doubleextended with sl(2) automorphisms and found Hopf algebra

    Uq,⇠(sl(2)n psl(2|2)n C3) is a Quantum Double

    Unusual features

    [EA

    ,FA

    ] = (HA

    + ⇠C )q2C + q�2C

    2� ⇠ q

    2C � q�2C4~

    sl(2) automorphism not deformed in the usual way

    appearance of plain ~ instead of q = e~

    appearance of free parameter ⇠

    R-matrix does not factorize and appearance of log and Li2

    Can we understand their origin better?

    19 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    So far

    cannot write Uq(psl(2|2)n C3) as a quantum doubleextended with sl(2) automorphisms and found Hopf algebra

    Uq,⇠(sl(2)n psl(2|2)n C3) is a Quantum DoubleUnusual features

    [EA

    ,FA

    ] = (HA

    + ⇠C )q2C + q�2C

    2� ⇠ q

    2C � q�2C4~

    sl(2) automorphism not deformed in the usual way

    appearance of plain ~ instead of q = e~

    appearance of free parameter ⇠

    R-matrix does not factorize and appearance of log and Li2

    Can we understand their origin better?

    19 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    So far

    cannot write Uq(psl(2|2)n C3) as a quantum doubleextended with sl(2) automorphisms and found Hopf algebra

    Uq,⇠(sl(2)n psl(2|2)n C3) is a Quantum DoubleUnusual features

    [EA

    ,FA

    ] = (HA

    + ⇠C )q2C + q�2C

    2� ⇠ q

    2C � q�2C4~

    sl(2) automorphism not deformed in the usual way

    appearance of plain ~ instead of q = e~

    appearance of free parameter ⇠

    R-matrix does not factorize and appearance of log and Li2

    Can we understand their origin better?

    19 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    So far

    cannot write Uq(psl(2|2)n C3) as a quantum doubleextended with sl(2) automorphisms and found Hopf algebra

    Uq,⇠(sl(2)n psl(2|2)n C3) is a Quantum DoubleUnusual features

    [EA

    ,FA

    ] = (HA

    + ⇠C )q2C + q�2C

    2� ⇠ q

    2C � q�2C4~

    sl(2) automorphism not deformed in the usual way

    appearance of plain ~ instead of q = e~

    appearance of free parameter ⇠

    R-matrix does not factorize and appearance of log and Li2

    Can we understand their origin better?

    19 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    So far

    cannot write Uq(psl(2|2)n C3) as a quantum doubleextended with sl(2) automorphisms and found Hopf algebra

    Uq,⇠(sl(2)n psl(2|2)n C3) is a Quantum DoubleUnusual features

    [EA

    ,FA

    ] = (HA

    + ⇠C )q2C + q�2C

    2� ⇠ q

    2C � q�2C4~

    sl(2) automorphism not deformed in the usual way

    appearance of plain ~ instead of q = e~

    appearance of free parameter ⇠

    R-matrix does not factorize and appearance of log and Li2

    Can we understand their origin better?

    19 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    So far

    cannot write Uq(psl(2|2)n C3) as a quantum doubleextended with sl(2) automorphisms and found Hopf algebra

    Uq,⇠(sl(2)n psl(2|2)n C3) is a Quantum DoubleUnusual features

    [EA

    ,FA

    ] = (HA

    + ⇠C )q2C + q�2C

    2� ⇠ q

    2C � q�2C4~

    sl(2) automorphism not deformed in the usual way

    appearance of plain ~ instead of q = e~

    appearance of free parameter ⇠

    R-matrix does not factorize and appearance of log and Li2

    Can we understand their origin better?

    19 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    So far

    cannot write Uq(psl(2|2)n C3) as a quantum doubleextended with sl(2) automorphisms and found Hopf algebra

    Uq,⇠(sl(2)n psl(2|2)n C3) is a Quantum DoubleUnusual features

    [EA

    ,FA

    ] = (HA

    + ⇠C )q2C + q�2C

    2� ⇠ q

    2C � q�2C4~

    sl(2) automorphism not deformed in the usual way

    appearance of plain ~ instead of q = e~

    appearance of free parameter ⇠

    R-matrix does not factorize and appearance of log and Li2

    Can we understand their origin better?

    19 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    Contraction Limit

    20 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    Plan:Focus on Uq,⇠(sl(2)n C3)re-derive it as a limit ✏, ✏̃ ! 0 of Uq✏(sl(2))⌦ Uq✏̃(sl(2))

    Uq✏(sl(2))[H,E ] = 2E ,[H,F ] = �2F , [E ,F ] =

    q✏H � q�✏Hq✏ � q�✏

    �E = E ⌦ 1 + q�✏H ⌦ E ,�F = F ⌦ q✏H + 1⌦ F , �H = H ⌦ 1 + 1⌦ H.

    Define

    EA

    := E + Ẽ , P := ✏E ,

    FA

    := F + F̃ , K := ✏F ,

    HA

    := H + H̃, 2C := ✏H.

    stay sl(2), ”loose” q, commute , ”keep” q,

    21 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    Plan:Focus on Uq,⇠(sl(2)n C3)re-derive it as a limit ✏, ✏̃ ! 0 of Uq✏(sl(2))⌦ Uq✏̃(sl(2))

    Uq✏(sl(2))[H,E ] = 2E ,[H,F ] = �2F , [E ,F ] =

    q✏H � q�✏Hq✏ � q�✏

    �E = E ⌦ 1 + q�✏H ⌦ E ,�F = F ⌦ q✏H + 1⌦ F , �H = H ⌦ 1 + 1⌦ H.

    Define

    EA

    := E + Ẽ , P := ✏E ,

    FA

    := F + F̃ , K := ✏F ,

    HA

    := H + H̃, 2C := ✏H.

    stay sl(2), ”loose” q, commute , ”keep” q,

    21 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    Plan:Focus on Uq,⇠(sl(2)n C3)re-derive it as a limit ✏, ✏̃ ! 0 of Uq✏(sl(2))⌦ Uq✏̃(sl(2))

    Uq✏(sl(2))[H,E ] = 2E ,[H,F ] = �2F , [E ,F ] =

    q✏H � q�✏Hq✏ � q�✏

    �E = E ⌦ 1 + q�✏H ⌦ E ,�F = F ⌦ q✏H + 1⌦ F , �H = H ⌦ 1 + 1⌦ H.

    Define

    EA

    := E + Ẽ , P := ✏E ,

    FA

    := F + F̃ , K := ✏F ,

    HA

    := H + H̃, 2C := ✏H.

    stay sl(2), ”loose” q, commute , ”keep” q,

    21 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    Plan:Focus on Uq,⇠(sl(2)n C3)re-derive it as a limit ✏, ✏̃ ! 0 of Uq✏(sl(2))⌦ Uq✏̃(sl(2))

    Uq✏(sl(2))[H,E ] = 2E ,[H,F ] = �2F , [E ,F ] =

    q✏H � q�✏Hq✏ � q�✏

    �E = E ⌦ 1 + q�✏H ⌦ E ,�F = F ⌦ q✏H + 1⌦ F , �H = H ⌦ 1 + 1⌦ H.

    Define

    EA

    := E + Ẽ , P := ✏E ,

    FA

    := F + F̃ , K := ✏F ,

    HA

    := H + H̃, 2C := ✏H.

    stay sl(2), ”loose” q, commute , ”keep” q,21 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    Limit

    Take simultaneous limit ✏, ✏̃ ! 0

    ✏̃(✏) = �✏+ 12

    ⇠✏2 +O(✏3).

    Check for divergences

    �EA

    =1

    �q�2C � q�2C

    �⌦ P +O(✏0),

    ) � = �1No constraint on ⇠

    Recover Uq,⇠(sl(2)n C3)

    22 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    Limit

    Take simultaneous limit ✏, ✏̃ ! 0

    ✏̃(✏) = �✏+ 12

    ⇠✏2 +O(✏3).

    Check for divergences

    �EA

    =1

    �q�2C � q�2C

    �⌦ P +O(✏0),

    ) � = �1

    No constraint on ⇠

    Recover Uq,⇠(sl(2)n C3)

    22 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    Limit

    Take simultaneous limit ✏, ✏̃ ! 0

    ✏̃(✏) = �✏+ 12

    ⇠✏2 +O(✏3).

    Check for divergences

    �EA

    =1

    �q�2C � q�2C

    �⌦ P +O(✏0),

    ) � = �1No constraint on ⇠

    Recover Uq,⇠(sl(2)n C3)

    22 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    Limit

    Take simultaneous limit ✏, ✏̃ ! 0

    ✏̃(✏) = �✏+ 12

    ⇠✏2 +O(✏3).

    Check for divergences

    �EA

    =1

    �q�2C � q�2C

    �⌦ P +O(✏0),

    ) � = �1No constraint on ⇠

    Recover Uq,⇠(sl(2)n C3)

    22 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    R-matrix

    R = e(q✏�q�✏)E⌦F

    q�2✏ q1

    2

    ✏H⌦H e(q✏̃�q�✏̃) ˜E⌦ ˜F

    q�2✏̃q1

    2

    ✏̃ ˜H⌦ ˜H

    = expq�2✏

    �1✏P ⌦ K

    �expq�2✏̃

    ✏̃

    ✏2(P + ✏E

    A

    )⌦ (K + ✏FA

    )

    · q 2✏C⌦Cq✏̃

    2✏2(2C�✏H

    A

    )⌦(2C�✏HA

    )

    q-Dilogarithm: Li2

    [X ; q] := log expq[X ]

    Li2

    X (✏)

    ✏; q✏

    �= � 1~✏ Li2

    ��~X (✏)

    �+O(✏).

    ) R-matrix of Uq,⇠(sl(2)n C3) reproduced

    23 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    R-matrix

    R = e(q✏�q�✏)E⌦F

    q�2✏ q1

    2

    ✏H⌦H e(q✏̃�q�✏̃) ˜E⌦ ˜F

    q�2✏̃q1

    2

    ✏̃ ˜H⌦ ˜H

    = expq�2✏

    �1✏P ⌦ K

    �expq�2✏̃

    ✏̃

    ✏2(P + ✏E

    A

    )⌦ (K + ✏FA

    )

    · q 2✏C⌦Cq✏̃

    2✏2(2C�✏H

    A

    )⌦(2C�✏HA

    )

    q-Dilogarithm: Li2

    [X ; q] := log expq[X ]

    Li2

    X (✏)

    ✏; q✏

    �= � 1~✏ Li2

    ��~X (✏)

    �+O(✏).

    ) R-matrix of Uq,⇠(sl(2)n C3) reproduced

    23 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    R-matrix

    R = e(q✏�q�✏)E⌦F

    q�2✏ q1

    2

    ✏H⌦H e(q✏̃�q�✏̃) ˜E⌦ ˜F

    q�2✏̃q1

    2

    ✏̃ ˜H⌦ ˜H

    = expq�2✏

    �1✏P ⌦ K

    �expq�2✏̃

    ✏̃

    ✏2(P + ✏E

    A

    )⌦ (K + ✏FA

    )

    · q 2✏C⌦Cq✏̃

    2✏2(2C�✏H

    A

    )⌦(2C�✏HA

    )

    q-Dilogarithm: Li2

    [X ; q] := log expq[X ]

    Li2

    X (✏)

    ✏; q✏

    �= � 1~✏ Li2

    ��~X (✏)

    �+O(✏).

    ) R-matrix of Uq,⇠(sl(2)n C3) reproduced

    23 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    R-matrix

    R = e(q✏�q�✏)E⌦F

    q�2✏ q1

    2

    ✏H⌦H e(q✏̃�q�✏̃) ˜E⌦ ˜F

    q�2✏̃q1

    2

    ✏̃ ˜H⌦ ˜H

    = expq�2✏

    �1✏P ⌦ K

    �expq�2✏̃

    ✏̃

    ✏2(P + ✏E

    A

    )⌦ (K + ✏FA

    )

    · q 2✏C⌦Cq✏̃

    2✏2(2C�✏H

    A

    )⌦(2C�✏HA

    )

    q-Dilogarithm: Li2

    [X ; q] := log expq[X ]

    Li2

    X (✏)

    ✏; q✏

    �= � 1~✏ Li2

    ��~X (✏)

    �+O(✏).

    ) R-matrix of Uq,⇠(sl(2)n C3) reproduced

    23 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    Last words

    ”undeformed” sl(2) and plain ~ from q✏ = e✏~

    free parameter ⇠ stems from ✏̃(✏) = �✏+ 12

    ⇠✏2

    dilogarithm in R-matrix from log expq

    Uq,⇠(sl(2)n C3) with ⇠ = 0 known as 3D -PoincaréTo include psl(2|2) start with Uq(d(2, 1; ✏))⌦ Uq✏̃(sl(2))Also possible Uq(d(2, 1; ✏))⌦ Uq(d(2, 1; ✏̃))! Uq,⇠(sl(2)n (psl(2|2)� psl(2|2))n C3)

    24 / 24

  • psl(2|2) n C3 Quantum Double Quantum Double for sl(2|2) Contraction Limit

    Last words

    ”undeformed” sl(2) and plain ~ from q✏ = e✏~

    free parameter ⇠ stems from ✏̃(✏) = �✏+ 12

    ⇠✏2

    dilogarithm in R-matrix from log expq

    Uq,⇠(sl(2)n C3) with ⇠ = 0 known as 3D -PoincaréTo include psl(2|2) start with Uq(d(2, 1; ✏))⌦ Uq✏̃(sl(2))Also possible Uq(d(2, 1; ✏))⌦ Uq(d(2, 1; ✏̃))! Uq,⇠(sl(2)n (psl(2|2)� psl(2|2))n C3)

    24 / 24

    Centrally extended sl(2|2)Quantum DoubleQuantum Double for sl(2|2)Contraction Limit