64
MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19–20, 2015 Model Order Reduction of Parametrized Nonlinear Evolution Equations with Applications in Chromatography Peter Benner Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg, Germany Email: [email protected] Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 1/47

€¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

MAX PLANCK INSTITUTE

FOR DYNAMICS OF COMPLEX

TECHNICAL SYSTEMS

MAGDEBURG

Workshop on Model Order Reductionof Transport-dominated Phenomena

Berlin, May 19–20, 2015

Model Order Reduction of ParametrizedNonlinear Evolution Equations with

Applications in Chromatography

Peter Benner

Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburg, Germany

Email: [email protected]

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 1/47

Page 2: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Outline

1 MotivationGeneral set-up: nonlinear parametric systemsMotivating Examples

2 Model Order ReductionPetrov-Galerkin ProjectionEmpirical Interpolation Method

3 Error BoundPrimal-only Error BoundPrimal-dual Output Error Bound

4 Basis Construction and Adaptive Snapshot SelectionPOD-Greedy AlgorithmAdaptive Snapshot Selection

5 Numerical Results

6 Conclusions and Outlook

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 2/47

Page 3: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Collaborators

Lihong Feng Yongjin Zhang AndreasSeidel-Morgenstern

MPI MagdeburgComputational Methods in Systems and Control (CSC)

Physical and Chemical Foundations of Process Engineering (PCF)

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 3/47

Page 4: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

MotivationGeneral set-up: nonlinear parametric systems

Nonlinear Parametric Systems

E (t, µ)dx

dt= A(t, µ)x + f (x , µ),

or

E (tk , µ)xk+1 = A(tk , µ)xk + f (xk , µ),

x , xk ∈ Wn ⊂ Rn, E ,A ∈ Rn×n, n is large.

Often, the output y = g(x), or y = Cx , is of interest quantities-of-interest.

Multi-query context:Solve the ODE system for many varying values of µ ∈ Ω ⊂ Rd , e.g.,optimization, real-time control, inverse problems, . . .

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 4/47

Page 5: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

MotivationMotivating Example: Batch Chromatography

Column

ba

Solvent

Pump

a + b

b

a

b a

t

int

cyct

Q 1t 2t 3t 4t

Feed

t

Products

concentration

concentration

Principle of batch chromatography for binary separation.

∂cz

∂t+

1− εε

∂qz

∂t= −∂cz

∂x+

1

Pe

∂2cz

∂x2, 0 < x < 1,

∂qz

∂t=

L

Q/(εAc )κz (qEq

z − qz ), 0 ≤ x ≤ 1,z = a, b

A convection-dominated system, the Peclet number Pe is large.

Requires long-time integration process.

A nonlinear parametric coupled system, parameters µ := (Q, tin).

What are the optimal operating conditions? PDE constrained optimization.

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 5/47

Page 6: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

MotivationMotivating Example: Batch Chromatography

Column

ba

Solvent

Pump

a + b

b

a

b a

t

int

cyct

Q 1t 2t 3t 4t

Feed

t

Products

concentration

concentration

Principle of batch chromatography for binary separation.∂cz

∂t+

1− εε

∂qz

∂t= −∂cz

∂x+

1

Pe

∂2cz

∂x2, 0 < x < 1,

∂qz

∂t=

L

Q/(εAc )κz (qEq

z − qz ), 0 ≤ x ≤ 1,z = a, b

A convection-dominated system, the Peclet number Pe is large.

Requires long-time integration process.

A nonlinear parametric coupled system, parameters µ := (Q, tin).

What are the optimal operating conditions? PDE constrained optimization.

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 5/47

Page 7: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

MotivationMotivating Example: Batch Chromatography

Column

ba

Solvent

Pump

a + b

b

a

b a

t

int

cyct

Q 1t 2t 3t 4t

Feed

t

Products

concentration

concentration

Principle of batch chromatography for binary separation.∂cz

∂t+

1− εε

∂qz

∂t= −∂cz

∂x+

1

Pe

∂2cz

∂x2, 0 < x < 1,

∂qz

∂t=

L

Q/(εAc )κz (qEq

z − qz ), 0 ≤ x ≤ 1,z = a, b

A convection-dominated system, the Peclet number Pe is large.

Requires long-time integration process.

A nonlinear parametric coupled system, parameters µ := (Q, tin).

What are the optimal operating conditions? PDE constrained optimization.

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 5/47

Page 8: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

MotivationMotivating Example: Batch Chromatography

Column

ba

Solvent

Pump

a + b

b

a

b a

t

int

cyct

Q 1t 2t 3t 4t

Feed

t

Products

concentration

concentration

Principle of batch chromatography for binary separation.∂cz

∂t+

1− εε

∂qz

∂t= −∂cz

∂x+

1

Pe

∂2cz

∂x2, 0 < x < 1,

∂qz

∂t=

L

Q/(εAc )κz (qEq

z − qz ), 0 ≤ x ≤ 1,z = a, b

A convection-dominated system, the Peclet number Pe is large.

Requires long-time integration process.

A nonlinear parametric coupled system, parameters µ := (Q, tin).

What are the optimal operating conditions? PDE constrained optimization.

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 5/47

Page 9: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

MotivationMotivating Example: Batch Chromatography

Column

ba

Solvent

Pump

a + b

b

a

b a

t

int

cyct

Q 1t 2t 3t 4t

Feed

t

Products

concentration

concentration

Principle of batch chromatography for binary separation.∂cz

∂t+

1− εε

∂qz

∂t= −∂cz

∂x+

1

Pe

∂2cz

∂x2, 0 < x < 1,

∂qz

∂t=

L

Q/(εAc )κz (qEq

z − qz ), 0 ≤ x ≤ 1,z = a, b

A convection-dominated system, the Peclet number Pe is large.

Requires long-time integration process.

A nonlinear parametric coupled system, parameters µ := (Q, tin).

What are the optimal operating conditions? PDE constrained optimization.

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 5/47

Page 10: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

MotivationMotivating Example: Simulated Moving Bed (SMB) Chromatography

SMB chromatographic process with 4 zones and 8 columns.

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 6/47

Page 11: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

MotivationMotivating Example: SMB Chromatography

SMB chromatographic process with 4 zones and 8 columns.

Governing equations are similar, but:

• More parameters, µ := (m1, . . . ,m4,QF)

• Multi-switching system

• Cyclic steady state computation

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 7/47

Page 12: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

MotivationMotivating Example: SMB Chromatography

SMB chromatographic process with 4 zones and 8 columns.

Governing equations are similar, but:

• More parameters, µ := (m1, . . . ,m4,QF)

• Multi-switching system

• Cyclic steady state computation

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 7/47

Page 13: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Motivation4-column SMB plant at MPI Magdeburg

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 8/47

Page 14: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

MotivationSMB Chromatography — a practical application

Purified ArtemisininArtemisinin is the basic compound forproducing the malaria medicationArtesunate.

New SMB-based process developed atMPI Magdeburg (PCF roup) yields 99.5%purity (exceeding the limits set by WHOand FDA), based on new synthesis processinvented by Peter Seeberger (MPI Colloidsand Interfaces, Potsdam).

Process can be easily implemented inlow-cost plants in the countries where theplant Artemisia annua grows, mostly, inEast Asia.

Model plant built in Vietnam.

Much cheaper than current anti-Malariamedication, and much higher degree ofpurity!

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 9/47

Page 15: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

MotivationSMB Chromatography — a practical application

Purified Artemisinin

Seeberger andSeidel-Morgenstern wereawarded theHumanity in Science Prize 2015for this.

Artemisinin is the basic compound forproducing the malaria medicationArtesunate.

New SMB-based process developed atMPI Magdeburg (PCF roup) yields 99.5%purity (exceeding the limits set by WHOand FDA), based on new synthesis processinvented by Peter Seeberger (MPI Colloidsand Interfaces, Potsdam).

Process can be easily implemented inlow-cost plants in the countries where theplant Artemisia annua grows, mostly, inEast Asia.

Model plant built in Vietnam.

Much cheaper than current anti-Malariamedication, and much higher degree ofpurity!

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 9/47

Page 16: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

MOR for Nonlinear Parametric Systems

Original full order system (FOM)

E (t, µ)dx

dt= A(t, µ)x + f (x , µ),

orE (tk , µ)xk+1 = A(tk , µ)xk + f (xk , µ),

x , xk ∈ Wn ⊂ Rn, E ,A ∈ Rn×n, n is large.

Often the output y = g(x), or y = Cx is of interest.

Reduced-order model (ROM)

E (t, µ)dz

dt= A(t, µ)z + W T f (Vz , µ), x := Vz ,

orE (tk , µ)zk+1 = A(tk , µ)zk + W T f (Vzk , µ) xk := Vzk ,

E = W TEV , A = W TAV , W ,V ∈ Rn×N , z , zk ∈ RN , N n.

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 10/47

Page 17: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

MOR for Nonlinear Parametric Systems

Original full order system (FOM)

E (t, µ)dx

dt= A(t, µ)x + f (x , µ),

orE (tk , µ)xk+1 = A(tk , µ)xk + f (xk , µ),

x , xk ∈ Wn ⊂ Rn, E ,A ∈ Rn×n, n is large.

Often the output y = g(x), or y = Cx is of interest.

Reduced-order model (ROM)

E (t, µ)dz

dt= A(t, µ)z + W T f (Vz , µ), x := Vz ,

orE (tk , µ)zk+1 = A(tk , µ)zk + W T f (Vzk , µ) xk := Vzk ,

E = W TEV , A = W TAV , W ,V ∈ Rn×N , z , zk ∈ RN , N n.

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 10/47

Page 18: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Remarks

Let y(t, µ) be the approximate output of interest. Arising questions are:

1 How to deal with the nonlinearity and/or non-affinity, i.e., efficientlycompute W T f (Vz , µ) or W T f (Vzk , µ)? EIM.

2 How to estimate the error in the quantities-of-interest, i.e.,‖y − y‖ ≤ ? Output error bound.

3 How to efficiently construct the projection matrices V and W ? Adaptive snapshot selection.

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 11/47

Page 19: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Remarks

Let y(t, µ) be the approximate output of interest. Arising questions are:

1 How to deal with the nonlinearity and/or non-affinity, i.e., efficientlycompute W T f (Vz , µ) or W T f (Vzk , µ)? EIM.

2 How to estimate the error in the quantities-of-interest, i.e.,‖y − y‖ ≤ ? Output error bound.

3 How to efficiently construct the projection matrices V and W ? Adaptive snapshot selection.

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 11/47

Page 20: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Remarks

Let y(t, µ) be the approximate output of interest. Arising questions are:

1 How to deal with the nonlinearity and/or non-affinity, i.e., efficientlycompute W T f (Vz , µ) or W T f (Vzk , µ)? EIM.

2 How to estimate the error in the quantities-of-interest, i.e.,‖y − y‖ ≤ ? Output error bound.

3 How to efficiently construct the projection matrices V and W ? Adaptive snapshot selection.

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 11/47

Page 21: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Empirical Interpolation Method (EIM)

Idea: construct a basis of interpolation functions (vectors), and use anaffine expression to approximate W T f (Vz , µ), i.e.,

W T f (Vz , µ) ≈ W TU︸ ︷︷ ︸Precomputed

β(z , µ).

Different methods have been proposed to construct the basis U ∈ Rn×M

and the corresponding coefficients β(z , µ):

Empirical interpolation method (EIM)[Barrault/Maday/Nguyen/Patera ’04]

Missing point estimation (MPE)[Astrid/Weiland/Willcox/Backx ’08, Faßbender/Vendl ’11]

Discrete empirical interpolation method (DEIM)[Chaturantabut/Sorensen ’10]

Empirical operator interpolation [Drohmann/Haasdonk/Ohlberger ’12]

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 12/47

Page 22: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

MOR for Nonlinear Parametric Systems

Original full order system (FOM)

E (t, µ)dx

dt= A(t, µ)x + f (x , µ),

orE (tk , µ)xk+1 = A(tk , µ)xk + f (xk , µ).

Reduced-order model (ROM)

E (t, µ)dz

dt= A(t, µ)z + W T f (Vz , µ), x := Vz ,

orE (tk , µ)zk+1 = A(tk , µ)zk + W T f (Vzk , µ) xk := Vzk ,

E = W TEV , A = W TAV , W ,V ∈ Rn×N , z , zk ∈ RN , N n.

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 13/47

Page 23: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

MOR for Nonlinear Parametric Systems

Original full order system (FOM)

E (t, µ)dx

dt= A(t, µ)x + f (x , µ),

orE (tk , µ)xk+1 = A(tk , µ)xk + f (xk , µ).

Use Empirical Interpolation to efficiently compute W T f (Vz , µ)

E (t, µ)dz

dt= A(t, µ)z + W TUβ(z , µ),

orE (tk , µ)zk+1 = A(tk , µ)zk + W TUβk (z , µ).

The fast computation can be achieved by the strategy of offline-onlinedecomposition, i.e., E , A and W TU can be precomputed once V ,W ,Uare obtained.

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 13/47

Page 24: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Error Bound

Consider the evolution scheme,

E (tk , µ)xk+1 = A(tk , µ)xk + f (xk , µ),yk+1 = Cxk+1.

The reduced-order model (ROM):

E (tk , µ)zk+1 = A(tk , µ)zk + W T f (Vzk , µ),yk+1 = CVzk+1.

Here, E (tk , µ) = W TE (tk , µ)V , A(tk , µ) = W TA(tk , µ)V , xk := Vzk

approximates xk , k = 0, . . . ,Tn.

Define the residual:

rk+1(µ) := A(tk , µ)xk + f (xk , µ)− E (tk , µ)xk+1.

We have the following error estimations.

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 14/47

Page 25: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Primal-only Error BoundField Variable Error Bound

Theorem (Error Bound 1)[Drohmann/Haasdonk/Ohlberger ’12, Zhang/Feng/Li/Benner ’14]

Let ek (µ) := xk − xk and ekO(µ) := yk − yk be the error for the solution

and the output at time step tk , respectively. Under certain assumptions,we have:

‖e1(µ)‖ ≤ η1N,M (µ) := R

(0)F,µ,

‖ek (µ)‖ ≤ ηkN,M (µ) := R

(k−1)F,µ +

k−2∑i=0

k−1∏j=i+1

G(j)F,µ

R(i)F,µ, k = 2, . . . ,Tn.

where

R(i)F,µ =

∥∥E (t i , µ)−1r i+1(µ)∥∥ , i = 0, . . . , k − 1,

G(j)F,µ =

∥∥E (t j , µ)−1A(t j , µ)∥∥+ Lf

∥∥E (t j , µ)−1∥∥ , j = i + 1, . . . , k − 1.

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 15/47

Page 26: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Primal-only Error Bound (Cont.)Output Error Bound

Theorem (Output Error Bound 1) [Zhang/Feng/Li/Benner ’14]

Under the assumptions of Prop. 1, we have:

‖ek+1O (µ)‖ ≤ G

(k)O,µη

kN,M (µ) + ||C ||||E (tk , µ)−1rk+1(µ)||,

whereG

(k)O,µ = ||CE (tk , µ)−1A(tk , µ)||+ Lf ||CE (tk , µ)−1||.

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 16/47

Page 27: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Primal-dual Output Error Bound

”Dual” system and the reduced ”dual” system

E (tk , µ)T xk+1du = −CT , W T

duE (tk , µ)TVduzk+1du = −W T

duCT .

Here, xkdu := Vduz

kdu approximates xk

du, k = 1, . . . ,Tn.

Residual of the reduced dual system:

rk+1du (µ) := −CT − E (tk , µ)T xk+1

du .

Recall residual of the ROM:

rk+1(µ) := A(tk , µ)xk + f (xk , µ)− E (tk , µ)xk+1.

Define an auxiliary vector,

rk+1(µ) := A(tk , µ)xk + f (xk , µ)− E (tk , µ)xk+1

= E (tk , µ)xk+1 − E (tk , µ)xk+1.

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 17/47

Page 28: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Primal-dual Output Error Bound

”Dual” system and the reduced ”dual” system

E (tk , µ)T xk+1du = −CT , W T

duE (tk , µ)TVduzk+1du = −W T

duCT .

Here, xkdu := Vduz

kdu approximates xk

du, k = 1, . . . ,Tn.

Residual of the reduced dual system:

rk+1du (µ) := −CT − E (tk , µ)T xk+1

du .

Recall residual of the ROM:

rk+1(µ) := A(tk , µ)xk + f (xk , µ)− E (tk , µ)xk+1.

Define an auxiliary vector,

rk+1(µ) := A(tk , µ)xk + f (xk , µ)− E (tk , µ)xk+1

= E (tk , µ)xk+1 − E (tk , µ)xk+1.

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 17/47

Page 29: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Primal-dual Output Error Bound

”Dual” system and the reduced ”dual” system

E (tk , µ)T xk+1du = −CT , W T

duE (tk , µ)TVduzk+1du = −W T

duCT .

Here, xkdu := Vduz

kdu approximates xk

du, k = 1, . . . ,Tn.

Residual of the reduced dual system:

rk+1du (µ) := −CT − E (tk , µ)T xk+1

du .

Recall residual of the ROM:

rk+1(µ) := A(tk , µ)xk + f (xk , µ)− E (tk , µ)xk+1.

Define an auxiliary vector,

rk+1(µ) := A(tk , µ)xk + f (xk , µ)− E (tk , µ)xk+1

= E (tk , µ)xk+1 − E (tk , µ)xk+1.

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 17/47

Page 30: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Primal-dual Output Error Bound (Cont.)

Theorem (Output Error Bound 2) [Zhang/Feng/Li/Benner ’15]

Assume that E (tk , µ) is invertible, then the output errorek

O(µ) := yk − yk satisfies

‖ekO(µ)‖ ≤ ∆k (µ), k = 1, . . . ,Tn,

where∆k (µ) := Φk (µ)||rk (µ)||,Φk (µ) = ‖E (tk−1, µ)−T‖‖rk

du(µ)‖+ ‖xkdu(µ)‖.

Define

ρk (µ) :=‖rk (µ)‖‖rk (µ)‖

.

It can be shown that ρk (µ) is bounded, i.e.,

ρk (µ) ≤ ρk (µ) ≤ ρk (µ).

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 18/47

Page 31: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Primal-dual Output Error Bound (Cont.)

Theorem (Output Error Bound 2) [Zhang/Feng/Li/Benner ’15]

Assume that E (tk , µ) is invertible, then the output errorek

O(µ) := yk − yk satisfies

‖ekO(µ)‖ ≤ ∆k (µ), k = 1, . . . ,Tn,

where∆k (µ) := Φk (µ)||rk (µ)||,Φk (µ) = ‖E (tk−1, µ)−T‖‖rk

du(µ)‖+ ‖xkdu(µ)‖.

Define

ρk (µ) :=‖rk (µ)‖‖rk (µ)‖

.

It can be shown that ρk (µ) is bounded, i.e.,

ρk (µ) ≤ ρk (µ) ≤ ρk (µ).

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 18/47

Page 32: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Primal-dual Output Error Bound (Cont.)Efficient Output Error Estimation: Case 1

Corollary 1 [Zhang/Feng/Li/Benner ’15]

Under the assumptions of Theorem 1, for all µ ∈ P, assume that

1 ‖rk (µ)‖: ∃α ∈ R+, s.t.,

α ≤ ‖rk+1(µ)‖/‖rk (µ)‖ ∀ k = 1, . . . ,Tn − 1;

2 f (·, µ) is Lipschitz continuous, i.e., ∃ Lf ∈ R+, s.t.,

‖f (x1, µ)− f (x2, µ)‖ ≤ Lf ‖x1 − x2‖, ∀ x1, x2 ∈ Wn;

3 Lf < α/‖E (tk , µ)−1‖.Then

ρk (µ) ≤ ρk (µ) ≤ ρk (µ),

where ρk (µ) = αα+Lf ‖(E(tk−2,µ)−1‖ , ρk (µ) = α

α−Lf ‖(E(tk−2,µ)−1‖ .

Remark: Assumption #3 is reasonable when ‖E (tk , µ)−1‖ . 1.

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 19/47

Page 33: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Primal-dual Output Error Bound (Cont.)Efficient Output Error Estimation: Case 2

Corollary 2 [Zhang/Feng/Li/Benner ’15]

Under the assumptions of Theorem 1, for all µ ∈ P, assume that

1 ‖rk (µ)‖: ∃α, α ∈ R+, s.t.,

α ≤ ‖rk (µ)‖/‖rk+1(µ)‖ ≤ α, ∀ k = 1, . . . ,Tn − 1;

2 f (·, µ) is bi-Lipschitz continuous, i.e., ∃ Lf , Lf ∈ R+, s.t.,

Lf ‖x1 − x2‖ ≤ ‖f (x1, µ)− f (x2, µ)‖ ≤ Lf ‖x1 − x2‖, x1, x2 ∈ Wn;

3 Lf > α−1/‖(E (tk , µ)−1‖.Then

ρk (µ) ≤ ρk (µ) ≤ ρk (µ),

where ρk (µ) = 1αLf ‖(E(tk−2,µ)−1‖+1

, ρk (µ) = 1α Lf ‖(E(tk−2,µ)−1‖−1

.

Remark: Assumption #3 is reasonable when ‖E (tk , µ)−1‖ is large.

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 20/47

Page 34: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Primal-dual Output Error Bound (Cont.)Efficient Output Error Estimation

Recall that ‖ekO(µ)‖ ≤ ∆k (µ) = Φk (µ)||rk (µ)||, ρk (µ) = ‖r k (µ)‖

‖r k (µ)‖ , we have:

Output Error Bound

‖ekO(µ)‖ ≤ ∆k (µ) := Φk (µ)ρk (µ)‖rk (µ)‖.

Estimating the Ratio ρk(µ)

ρk (µ) ≈ ρ? :=1

Tn

Tn∑k=1

ρk (µ?).

A computable output error estimation:

‖ekO‖ . ∆k

est(µ) := ρ?Φk (µ)‖rk (µ)‖.

Here, µ? is chosen to be the parameter, so that

µ? = argmaxµ∈P

ψ(µ), ψ(µ) =1

Tn

Tn∑k=1

∆kest(µ).

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 21/47

Page 35: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Primal-dual Output Error Bound (Cont.)Efficient Output Error Estimation

Recall that ‖ekO(µ)‖ ≤ ∆k (µ) = Φk (µ)||rk (µ)||, ρk (µ) = ‖r k (µ)‖

‖r k (µ)‖ , we have:

Output Error Bound

‖ekO(µ)‖ ≤ ∆k (µ) := Φk (µ)ρk (µ)‖rk (µ)‖.

Estimating the Ratio ρk(µ)

ρk (µ) ≈ ρ? :=1

Tn

Tn∑k=1

ρk (µ?).

A computable output error estimation:

‖ekO‖ . ∆k

est(µ) := ρ?Φk (µ)‖rk (µ)‖.

Here, µ? is chosen to be the parameter, so that

µ? = argmaxµ∈P

ψ(µ), ψ(µ) =1

Tn

Tn∑k=1

∆kest(µ).

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 21/47

Page 36: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

POD-Greedy Algorithm

How to compute V ?

Algorithm POD-Greedy [Haasdonk/Ohlberger ’08]

Input: Ptrain, µ0, εRB(< 1).Output: Reduced Basis (RB): V = [v1, . . . , vN ].

1: Initialization: N = 0, V = [ ], µ? = µ0, ψ(µ?) = 1.2: while ψ(µ?) > εRB do3: Compute the trajectory X := [x1(µ?), . . . , xTn (µ?)].4: POD process:

If N 6= 0, compute xk (µ?) := xk (µ?)−ProjW [xk (µ?)], k = 1, . . . ,Tn.Do SVD for X : X = QΣFT , vN+1 := Q(:, 1).Enrich V : V = [V , vN+1], W := colspanV .

5: N = N + 1.6: Find µ? := arg max

µ∈Ptrain

ψ(µ).

7: end while

Remark: When Tn is large, adaptive snapshot selection can be applied.

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 22/47

Page 37: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Adaptive Snapshot Selection (ASS)

The idea of ASS is to discard the redundant linear information in thetrajectory earlier, before the POD process.

x

θ

SA

• SA: selected snapshots subspace,

• x : to be tested,

• φ(SA, x): an indicator to measurethe linear dependency of SA and x , e.g.,

φ(SA, x) = ∠(SA, x).

• x is taken as a new snapshot only whenx is “sufficiently” linearly independentfrom SA, i.e., φ(SA, x) > εASS.

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 23/47

Page 38: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Adaptive Snapshot Selection (cont.)

Algorithm Adaptive Snapshot Selection [Zhang/Feng/Li/Benner ’14]

Input: xkTn

k=1, εASS.Output: Selected snapshot matrix SA = [xk1 , . . . , xk` ].

1: Initialization: j = 1, kj = 1, SA = [xkj ].2: for k = 2, . . . ,Tn do3: if φ

(SA, x

k)> εASS then

4: j = j + 1.5: kj = k .6: SA = [SA, x

kj ].7: end if8: end for

Remark: a relaxed condition φ(SA, xk ) = ∠(xkj , xk ) can be employed for

an efficient implementation.

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 24/47

Page 39: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Adaptive Snapshot Selection (cont.)

Algorithm Adaptive Snapshot Selection [Zhang/Feng/Li/Benner ’14]

Input: xkTn

k=1, εASS.Output: Selected snapshot matrix SA = [xk1 , . . . , xk` ].

1: Initialization: j = 1, kj = 1, SA = [xkj ].2: for k = 2, . . . ,Tn do3: if φ

(SA, x

k)> εASS then

4: j = j + 1.5: kj = k .6: SA = [SA, x

kj ].7: end if8: end for

Remark: a relaxed condition φ(SA, xk ) = ∠(xkj , xk ) can be employed for

an efficient implementation.

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 24/47

Page 40: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

ASS-POD-Greedy Algorithm

How to compute V ?

Algorithm POD-Greedy [Haasdonk/Ohlberger ’08]

Input: Ptrain, µ0, εRB(< 1).Output: Reduced Basis (RB): V = [v1, . . . , vN ].

1: Initialization: N = 0, V = [ ], µ? = µ0, ψ(µ?) = 1.2: while ψ(µ?) > εRB do3: Compute the trajectory X := [x1(µ?), . . . , xTn (µ?)].4: POD process:

If N 6= 0, compute xk (µ?) := xk (µ?)−ProjW [xk (µ?)], k = 1, . . . ,Tn.Do SVD for X : X = QΣFT , vN+1 := Q(:, 1).Enrich V : V = [V , vN+1], W := colspanV .

5: N = N + 1.6: Find µ? := arg max

µ∈Ptrain

ψ(µ).

7: end while

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 25/47

Page 41: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

ASS-POD-Greedy Algorithm

POD-Greedy + ASS

Algorithm ASS-POD-Greedy [Zhang/Feng/Li/Benner ’14]

Input: Ptrain, εRB(< 1)Output: Reduced Basis (RB): V = [v1, . . . , vN ]

1: Initialization: N = 0, V = [ ], µ? = µ0, ψ(µ?) = 1.2: while ψ(µ?) > εRB do3: Compute the trajectory X := [x1(µ?), . . . , xTn (µ?)],

apply ASS to get: XASS := [xk1 (µ?), . . . , xk`(µ?)] (` Tn).4: POD process:

If N 6= 0, compute xkj (µ?) := xkj (µ?)− ProjW [xkj (µ?)], j = 1, . . . , `.Do SVD for XASS: XASS = QΣFT , vN+1 := Q(:, 1).Enrich V : V = [V , vN+1], W := colspanV .

5: N = N + 16: Find µ? := arg maxµ∈Ptrain ψ(µ).

7: end while

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 25/47

Page 42: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Numerical Results

Numerical Examples:

1 Linear convection-diffusion equation

2 Burgers’ equation

3 Batch chromatography

4 Continuous SMB chromatography

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 26/47

Page 43: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Example 1: Linear Convection-diffusion EquationPrimal-dual Error Bound/Estimation: Proposed vs. Existing

ut = q1uxx + q2ux − q2, x ∈ (0, 1), t ∈ (0, 1],

y =1

|Ω0|

∫Ω0

u(t, x) dx , Ω0 = [0.495, 0.505],

µ := (q1, q2), P = [0.1, 1]× [0.5, 5], n = 800, Tn = 100.

0 5 10 15 2010

−8

10−6

10−4

10−2

100

Size of RB: N

ma

x µ ∈

Ptr

ain

err

or

ErrorBound−1

ErrorBound−2

True error for ROM−1

True error for ROM−2ε

ROM=10

−6

Error bound decay during RB extension.ErrorBound-1: [Grepl/Patera’05], ErrorBound-2: proposed.

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 27/47

Page 44: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Example 1: Linear Convection-diffusion EquationBehavior of ρ?

0 5 10 15 200.5

1

1.5

2

2.5

3

Size of RB: N

Ra

tio

Behavior of the average ratio ρ? = 1Tn

Tn∑k=1

ρk (µ?) during the RB construction

process for the linear convection-diffusion equation.

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 28/47

Page 45: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Example 1: Linear Convection-diffusion EquationBehavior of the Ratio ‖rn+1‖/‖rn‖

0 20 40 60 80 1000

0.5

1

1.5

2

2.5

3

Time index: tn

Ra

tio

N=1

N=8

N=17

Behavior of the ratio ‖rn+1‖‖rn‖ in the time trajectory corresponding to different RB

dimensions for the linear convection-diffusion equation.

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 29/47

Page 46: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Example 2: Burgers’ EquationError Bound/Estimation: Primal Only vs. Primal-dual

ut + (u2

2)x = νuxx + 1, x ∈ (0, 1), t ∈ (0, 2],

y = u(t, 1; ν),

ν ∈ P = [0.05, 1], n = 500, Tn = 1000.

1 3 5 7 9 11 13

10−6

10−4

10−2

100

Size of RB: N

max

µ ∈

Ptr

ain

err

or

ErrorBound−1

ErrorBound−2

True errorε

ROM=10

−5

Error bound decay during RB extension.ErrorBound-1: primal only, ErrorBound-2: primal-dual.

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 30/47

Page 47: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Example 2: Burgers’ EquationBehavior of ρ?

1 3 5 7 9 11 132

4

6

8

10

12

14

Size of RB: N

Ra

tio

Behavior of the average ratio ρ? = 1Tn

Tn∑k=1

ρk (µ?) during the RB construction

process for the Burgers’ equation.

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 31/47

Page 48: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Example 2: Burgers’ EquationBehavior of the Ratio ‖rn+1‖/‖rn‖

0 200 400 600 800 10000

0.5

1

1.5

Time index: tn

Ra

tio

N=2

N=6

N=12

Behavior of the ratio ‖rn+1‖‖rn‖ in the time trajectory corresponding to different RB

dimensions for the Burgers’ equation.

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 32/47

Page 49: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Example 3: Batch Chromatography

Column

ba

Solvent

Pump

a + b

b

a

b a

t

int

cyct

Q 1t 2t 3t 4t

Feed

t

Products

concentration

concentration

Principle of batch chromatography for binary separation.

FOM ROM

Ack+1

z = Bckz + dk

z − τhkz

qk+1z = qk

z + ∆thkz

ckz , q

kz ∈ Rn, τ =

1− εε

∆t

Acza

k+1cz

= Bczakcz

+ dk0 dcz − τ Hczβ

kz

ak+1qz

= akqz

+ ∆tHqzβkz

akcz, ak

qz∈ RN , βk

z ∈ RM

n N,MThe parameter µ = (Q, tin).

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 33/47

Page 50: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Example 3: Batch Chromatography

Column

ba

Solvent

Pump

a + b

b

a

b a

t

int

cyct

Q 1t 2t 3t 4t

Feed

t

Products

concentration

concentration

Principle of batch chromatography for binary separation.

FOM ROM

Ack+1

z = Bckz + dk

z − τhkz

qk+1z = qk

z + ∆thkz

ckz , q

kz ∈ Rn, τ =

1− εε

∆t

Acza

k+1cz

= Bczakcz

+ dk0 dcz − τ Hczβ

kz

ak+1qz

= akqz

+ ∆tHqzβkz

akcz, ak

qz∈ RN , βk

z ∈ RM

n N,MThe parameter µ = (Q, tin).

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 33/47

Page 51: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Example 3: Batch ChromatographyPerformance of the ASS for Basis Generation

Illustration of the generation of CRBs (Wa, Wb) at the same error tolerance(εCRB = 1.0× 10−7) with different thresholds for ASS.

εASS Dim. CRB (Wa Wb) Runtime [h]no ASS – 146 152 62.5 (-)ASS 1.0× 10−4 147 152 6.05 (−90.3%)ASS 1.0× 10−3 147 152 3.62(−94.2%)ASS 1.0× 10−2 144 150 2.70 (−95.7%)

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 34/47

Page 52: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Example 3: Batch ChromatographyPerformance of the ASS for Basis Generation

Comparison of the runtime for RB generation using the POD-Greedy algorithmwith and without ASS.

Algorithms Runtime [h]POD-Greedy 17.9ASS-POD-Greedy 7.6 (−57.5%)

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 35/47

Page 53: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Example 3: Batch ChromatographyError Bound/Estimation: Primal Only vs. Primal-dual

6 11 16 21 26 31 36 41 46

10−5

10−3

10−1

101

103

Size of RB: N

max

µ ∈

Ptr

ain

error

ErrorBound−1

ErrorBound−2

True errorεROM

=1× 10−4

6

Ru

nti

me

6.8 h 7.6 h

ErrorBound-1 ErrorBound-2

Runtime for the RB construction.Error bound decay during RB extension.Size of RB: N

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 36/47

Page 54: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Example 3: Batch ChromatographyBehavior of ρ?

5 15 25 35 450

5

10

15

20

25

30

35

40

45

Size of RB: N

Ra

tio

Behavior of the average ratio ρ? = 1Tn

Tn∑k=1

ρk (µ?) during the RB construction

process for the batch chromatographic model.

Size of RB: N

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 37/47

Page 55: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Example 3: Batch ChromatographyROM-based Optimization

FOM-based Opt.:

minµ∈P−Pr(cz (µ), qz (µ);µ), s.t.

Rec(cz (µ), qz (µ);µ) ≥ Recmin,

cz (µ), qz (µ): solutions to FOM.

ROM-based Opt.:

minµ∈P−Pr(cz (µ), qz (µ);µ), s.t.

Rec(cz (µ), qz (µ);µ) ≥ Recmin,

cz (µ), qz (µ): solutions to ROM.

Approx.

Optimization based on the ROM (N = 45) and the FOM (n = 1500).

Model Obj. (Pr) Opt. solution (µ) #Iterations Runtime [h]/SpFFOM-Opt. 0.020264 (0.0796, 1.0545) 202 33.88 / -ROM-Opt. 0.020266 (0.0796, 1.0545) 202 0.58 / 58

? The optimizer: NLOPT GN DIRECT L in NLopt package.

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 38/47

Page 56: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Example 4: SMB Chromatography

SMB chromatographic process with 4 zones and 8 columns.

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 39/47

Page 57: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Example 4: SMB ChromatographyModel Descriptions

A more complex system:

1 More parameters: µ := (m1, . . . ,m4,QF ).

2 A multi-switching system: x0T +1 = Psx

Tn

T , T is the time period.

3 Cyclic steady state (CSS) computation, the system is simulatedmany time periods till the CSS is reached.

4 A parametric coupled system.

FOM:

Az (µ)ck+1

z = Bz (µ)ckz + rk

z + tsκzqkz

qk+1z = (1− tsκz ∆t)qk

z + tsκzHz ∆tckz

ROM:

Az (µ)ak+1

cz= Bz (µ)ak

cz+ rz + tsκz Dza

kqz

ak+1qz

= (1− tsκz ∆t)akqz

+ tsκzHz ∆tDTz ak

cz

Az (µ) = V TczAz (µ)Vcz , Bz (µ) = V T

czBz (µ)Vcz , rz = V T

czrkz , Dz = V T

czVqz .

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 40/47

Page 58: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Example 4: SMB ChromatographyError Behavior during the RB Construction Process

1 21 41 61 81

10−4

10−3

10−2

10−1

100

Size of RB: N

max µ

∈ P

train

err

or

Error bound

True errorε

ROM= 10

−3

Error bound decay during RB extension.

Size of RB: N

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 41/47

Page 59: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Example 4: SMB ChromatographyBehavior of ρ?

0 20 40 60 800

10

20

30

40

50

60

70

80

Size of RB: N

Ratio

Behavior of the average ratio ρ? = 1Tn

Tn∑k=1

ρk (µ?) during the RB construction

process for the SMB model.

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 42/47

Page 60: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Example 4: SMB ChromatographyROM Validation

Runtime comparison of the detailed and reduced simulations over a validationset Pval with 200 random sample parameters. εRB = 1× 10−3, εASS = 1× 10−5.

Simulations Maximal error Average runtime [s]/SpFFOM (n = 800) – 338.71(-)ROM (N = 83) 1.1× 10−4 46.7 / 7

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 43/47

Page 61: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Example 4: SMB ChromatographyROM-based Optimization

FOM-based Opt.:

minµ∈P−QF(µ), s.t.,

Pua,E(cz (µ), qz (µ);µ) ≥ Pua,min,

Pub,R(cz (µ), qz (µ);µ) ≥ Pub,min,

Q1 ≤ Qmax,

cz (µ), qz (µ): solutions to FOM.

ROM-based Opt.:

minµ∈P−QF(µ), s.t.,

Pua,E(cz (µ), qz (µ);µ) ≥ Pua,min,

Pub,R(cz (µ), qz (µ);µ) ≥ Pub,min,

Q1 ≤ Qmax,

cz (µ), qz (µ): solutions to ROM.

Approx.

P = [4.2, 4.7]× [2.5, 3.0]× [3.5, 4.0]× [2.2, 2.7]× [0.05, 0.1],

Pua,E :=

∫ 1

0cE

a,CSS(t) dt∫ 1

0cE

a,CSS(t) dt +∫ 1

0cE

b,CSS(t)dt, Pub,R :=

∫ 1

0cR

b,CSS(t)dt∫ 1

0cR

a,CSS(t) dt +∫ 1

0cR

b,CSS(t) dt.

Constraints: Pua,min = 99.0%, Pub,min = 99.0%, Qmax = 0.50.

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 44/47

Page 62: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Example 4: SMB ChromatographyROM-based optimization

Comparison of the optimization based on the ROM (N = 83) and FOM(n = 800), εopt = 1× 10−4.

Initial-guess FOM-Opt. ROM-Opt.Objective QF 0.07 0.0745 0.0745

Opt. solution

m1 4.50 4.3269 4.3271m2 2.90 2.8599 2.8603m3 3.50 3.6036 3.6039m4 2.30 2.3468 2.3685QF 0.07 0.0745 0.0745

ConstraintsPua,E 98.89% 99.00% 99.00%Pub,R 99.49% 99.00% 99.00%Q1 0.4161 0.4997 0.4998

# Iterations 71 79Runtime [h] / SpF 5.13 / - 0.82 / 6

? The optimizer: NLOPT LN COBYLA in NLopt package.

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 45/47

Page 63: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

Conclusions and Outlook

Conclusions:

An efficient output error estimation for MOR of nonlinearparametrized evolution equations is proposed.

Adaptive Snapshot Selection (ASS) is proposed, so that the offlinetime is largely reduced.

Application to convection dominated problems, e.g. batchchromatography and linear SMB chromatography, is presented.

Outlook:

More reliable and efficient estimation of ρk (µ).

Reduced basis methods for SMB chromatography with uncertaintyquantification (UQ).

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 46/47

Page 64: €¦ · MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Workshop on Model Order Reduction of Transport-dominated Phenomena Berlin, May 19{20, 2015 Model

Motivation Model Order Reduction Error Bound Adaptive Snapshot Selection Numerical Examples Conclusions

ReferencesM. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera, An ‘empirical interpolation’ method: application to

efficient reduced-basis discretization of partial differential equations, C. R. Acad. Sci. Paris, Ser. I, 339:667–672, 2004.

P. Benner, L. Feng, S. Li, and Y. Zhang, Reduced-order modeling and rom-based optimization of batch

chromatography, In A. Abdulle et al. (eds.), Numerical Mathematics and Advanced Applications — ENUMATH 2013,LNCSE 103, pp. 427–435, Springer, 2015.

S. Chaturantabut and D. C. Sorensen, Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci.

Comput., 32:2737–2764, 2010.

M. Drohmann, B. Haasdonk, and M. Ohlberger, Reduced basis approximation for nonlinear parametrized evolution

equations based on empirical operator interpolation, SIAM J. Sci. Comput., 34:937–969, 2012.

L. Feng, A.C. Antoulas, and P. Benner, A posteriori error bounds for model order reduction of (non-)parametric linear

systems, in preparation.

M. Grepl and A. T. Patera, A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial

differential equations, M2AN, 39:157–181, 2005.

B. Haasdonk and M. Ohlberger, Reduced basis method for finite volume approximations of parametrized linear

evolution equations, M2AN, 42:277–302, 2008.

S. Li, L. Feng, P. Benner, and A. Seidel-Morgenstern, Efficient optimization of simulated moving bed processes

using reduced order models, In I.D. Lockhart Bogle and M. Fairweather (eds.), Proc. 22nd European Symposium on CAPE,Part-B, pp. 1232–1236, Elsevier B.V., 2012.

S. Li, L. Feng, P. Benner, and A. Seidel-Morgenstern, Using surrogate models for efficient optimization of

simulated moving bed chromatography, Comp. & Chem. Engrg., 67:121–132, 2014.

S. Li, Y. Yue, L. Feng, A. Seidel-Morgenstern, and P. Benner, Model reduction for linear simulated moving bed

chromatography systems using Krylov-subspace methods, AIChE Journal, 60(11):3773-3783, 2014.

A. T. Patera and G. Rozza, Reduced basis approximation and a posteriori error estimation for parametrized partial

differential equations, Version 1.0, MIT 2006.

Y. Zhang, L. Feng, S. Li, and P. Benner, Accelerating PDE constrained optimization by the reduced basis method:

application to batch chromatography, Int. J. Numer. Meth. Engng., 2015 (to appear).

Y. Zhang, L. Feng, S. Li, and P. Benner, An efficient output error estimation for model order reduction of

parametrized evolution equations, submitted.

Y. Yue, S. Li, L. Feng, A. Seidel-Morgenstern, and P. Benner, Using model order reduction to accelerate

optimization of multi-stage linear dynamical systems, In A. Araujo (ed.), Engineering Optimization IV, pp. 453–458, CRCPress, 2014

Max Planck Institute Magdeburg P. Benner, MOR for Parameterized Evolution Equations 47/47