21
Matt Jones Precision Tests of Fundamental Physics using Strontium Clocks

Matt Jones

  • Upload
    etana

  • View
    66

  • Download
    0

Embed Size (px)

DESCRIPTION

Precision Tests of Fundamental Physics using Strontium Clocks. Matt Jones. Outline. Atomic clocks The strontium lattice clock Testing fundamental physics Entanglement and clocks. Atomic clocks. The second. - PowerPoint PPT Presentation

Citation preview

Page 1: Matt Jones

Matt Jones

Precision Tests of Fundamental Physics using Strontium Clocks

Page 2: Matt Jones

Outline

1. Atomic clocks2. The strontium lattice clock3. Testing fundamental physics4. Entanglement and clocks

Page 3: Matt Jones

Atomic clocks

• The second“The second is the duration of 9 192 631 770 periods of the radiation corresponding to the transition between two hyperfine levels of the ground state of the caesium 133 atoms (at 0K).”

• The metre:“The metre is the length of the path travelled by light in vacuum during a time interval of 1/299 792 458 of a second.”

Current accuracy: 1 × 10-15

Page 4: Matt Jones

Cs primary standard

Oscillator Counter

Feedback

Source: NIST

Page 5: Matt Jones

Ramsey interferometry

ψ = 12

0 + 1( )

ψ = 12

0 + ei(ω−ω0 )t 1( )

ψ =α 0 + β 1

ψ =0

split recombine

t

F=4

F=39.2 GHz

Page 6: Matt Jones

Ramsey interferometry

R. Wynands and S. Weyers, Metrologia 42 (2005) S64-S79

PTB

Page 7: Matt Jones

Doing better

•Higher Q

•No collisions€

Q = δωω

Trapped atoms

Optical transitions

Page 8: Matt Jones

Strontium lattice clock

1S0

1P1

461 nm = 32 MHz

3P 2

1

0

698 nm = 1 mHz

M. Takamoto et al., Nature 435, 321 (2005)

Page 9: Matt Jones

Magic lattices

•No Doppler shift

•Long interrogation times

•Reduced collisions

Page 10: Matt Jones

Optical clockwork

Oscillators:

Lasers need <1 Hz linewidth!

Ye group JILA

Counters:

Femtosecond frequency comb

(Nobel Prize 2005)

MPQ

/Bath University

Page 11: Matt Jones

Optical atomic clocks

Courtesy of H. Margolis, NPL

Current state-of-the-art:

Single ions: 1 × 10-17

Lattice clocks: 1 × 10-16

C. W. Chou et al., quant-ph/0911.4572 (2010)

M. D. Swallow et al., quant-ph/1007.0059 (2010)G. K. Campbell et al., Metrologia 45, 539 (2008)

Page 12: Matt Jones

Testing fundamental physics

•Relativity

10-16 is a difference in height of just 1m

•Time variation of fundamental constants

•Non-Newtonian short range forces

Page 13: Matt Jones

Time variation of fundamental constants

Page 14: Matt Jones

Motivation

•Cosmology

Some models predict that α and µ were different in the early universe

•Unified field theories

Constants couple to gravity

Implies a violation of Local Position Invariance

Page 15: Matt Jones

Principle

Measure how ωSr/ωCs varies with time

δωSrωSR

= KrelSr δαα

δωCsωCs

= KrelCs + 2( )

δαα

+δμμ

Page 16: Matt Jones

Results

δα /α = (−3.1± 3.0)×10−16 / yr

δμ /μ = (1.5 ±1.7)×10−15 / yr

Page 17: Matt Jones

Short-range forces

Do theories with compactified dimensions modify gravity at short range?

Page 18: Matt Jones

Lattice clocks at Durham

EPSRC proposal:

“Entanglement-enhanced enhanced optical frequency metrology using Rydberg states”

Collaborators:National Physical LaboratoriesUniversity of Nottingham

Panel sits tomorrow!!

Page 19: Matt Jones

Lattice clocks at Durham

Normalclock

Entangled clock€

ψN = 12

0 + 1( ) ⎛ ⎝ ⎜ ⎞

⎠ ⎟N

ψN = 12

01,02 ,K 0N + 11,12,K1N( )€

σ ∝1/ N

σ ∝1/N

Page 20: Matt Jones

Summary

•Atomic clocks provide the most accurate measurements

•Optical atomic clocks have lead to a new frontier

•This can be used for precision tests of our fundamental theories

Page 21: Matt Jones

References

Fountain clocksR. Wynands and S. Weyers, Metrologia 42 (2005) S64-S79

Fundamental physics tests S. Blatt et al., Phys. Rev. Lett. 100, 140801 (2008) P. Wolf et al., Phys. Rev. A 75, 063608 (2007)F. Sorrentino et al., Phys. Rev. A 79, 013409 (2009)

Optical clocksM. Takamoto et al., Nature 435, 321 (2009)C. W. Chou et al., quant-ph/0911.4572 (2010)M. D. Swallow et al., quant-ph/1007.0059 (2010)G. K. Campbell et al., Metrologia 45, 539 (2008)