Matrices Dr.s.s.chauhan (1)

  • Upload
    qadir

  • View
    219

  • Download
    0

Embed Size (px)

Citation preview

  • 8/10/2019 Matrices Dr.s.s.chauhan (1)

    1/22

    MATRICESCompiled by Dr. S.S. Chauhan

  • 8/10/2019 Matrices Dr.s.s.chauhan (1)

    2/22

    An m x n matrix is an array of mxn objectsin m rows and n columns and is representedin the form

    Definition

    ][

    321

    3333231

    2232221

    1131211

    nmmnmmm

    n

    n

    n

    ij

    aaaa

    aaaa

    aaaa

    aaaa

    a A

  • 8/10/2019 Matrices Dr.s.s.chauhan (1)

    3/22

    3

    Squarematrix:

    If m = n , then the matrix is a square

    matrixElements a ij for i=j called diagonalelements and

    is called the trace of A.

    Types of Matrices

    ...11 221

    n

    ii nn

    i

    a a a a

  • 8/10/2019 Matrices Dr.s.s.chauhan (1)

    4/22

    Partitioned matrices:

    2221

    1211

    34333231

    24232221

    14131211

    A A

    A A

    aaaa

    aaaaaaaa

    A

    submatrix

    3

    2

    1

    34333231

    24232221

    14131211

    r

    r r

    aaaa

    aaaaaaaa

    A

    432134333231

    24232221

    14131211

    cccc

    aaaa

    aaaaaaaa

    A

  • 8/10/2019 Matrices Dr.s.s.chauhan (1)

    5/22

    Then (1) A + B = B + A

    (2) A + ( B + C ) = ( A + B ) + C

    (3) ( cd ) A = c ( dA )

    (4) 1 A = A

    (5) c ( A + B ) = c A + c B

    (6) ( c + d ) A = cA + dA

    scalar :, ,,, If d c M C B A nm

    Properties of matrix addition and scalar multiplication:

  • 8/10/2019 Matrices Dr.s.s.chauhan (1)

    6/22

  • 8/10/2019 Matrices Dr.s.s.chauhan (1)

    7/22

    calar c M A nm s: , If

    A A nm 0(1)Then

    nm A A 0)((2)

    nmnm or AccA 000)3(

    Notes:

    (1) 0 m n : the additive identity for the set of all m n matrices

    (2) A : the additive inverse of A

    Properties of zero matrices:

  • 8/10/2019 Matrices Dr.s.s.chauhan (1)

    8/22

    A A T T )( )1(T T T B A B A )( )2(

    )()( )3( T T AccA

    )( )4( T T T A B AB

    Properties of transposes:

  • 8/10/2019 Matrices Dr.s.s.chauhan (1)

    9/22

    1nEliminatioJordan-Gauss || A I I A Ex 2: (Find the inverse of the matrix)

    31

    41 A

    Sol:

    I AX

    10

    01

    31

    41

    2221

    1211

    x x

    x x

    10

    01

    33

    44

    22122111

    22122111

    x x x x

    x x x x

    Find the inverse of a matrix by Gauss-Jordan Elimination:

  • 8/10/2019 Matrices Dr.s.s.chauhan (1)

    10/22

    110

    301

    031

    141)1()4(

    21)1(

    12 , r r

    110401

    131041)2(

    )4(21

    )1(12 , r r

    1,3 2111 x x

    1,4 2212 x x

    )( 11

    43 1-2221

    12111 AA I AX x x

    x x A X

    Thus

    (2) 1304

    (1) 0314

    2212

    2212

    2111

    2111

    x x x x

    x x x x

  • 8/10/2019 Matrices Dr.s.s.chauhan (1)

    11/22

  • 8/10/2019 Matrices Dr.s.s.chauhan (1)

    12/22

    Rank of a Matrix

    A number r is said to be rank of amatrix A, if there existsa non zero minor of order r and all

    minors oforder r+1 vanish.

    Or equivalentlyThe maximum number of linearlyindependent rows.

  • 8/10/2019 Matrices Dr.s.s.chauhan (1)

    13/22

    I A 0

    (1)

    0)( )2(factors

    k A AA Ak

    k

    integers:, )3( sr A A A sr sr

    rs sr A A )(

    k n

    k

    k

    k

    n d

    d

    d

    D

    d

    d

    d

    D

    00

    00

    00

    00

    00

    00

    )4(2

    1

    2

    1

    Power of a square matrix:

  • 8/10/2019 Matrices Dr.s.s.chauhan (1)

    14/22

    Thm 1: (Systems of equations with unique solutions)

    If A is an invertible matrix, then the system of linear equations Ax = b has a unique solution given by

    b A x 1

    Pf:

    ( A is nonsingular)

    b A x

    b A Ix

    b A Ax Ab Ax

    1

    1

    11

    This solution is unique.

    .equationof solutions twowereandIf 21 b Ax x x

    21then Axb Ax 21 x x (Left cancellation property)

  • 8/10/2019 Matrices Dr.s.s.chauhan (1)

    15/22

    2.4 Elementary MatricesRow elementary matrix:

    An n n matrix is called an elementary matrix if it can be obtained

    from the identity matrix I n by a single elementary operation.

    Three row elementary matrices:

    )()1( I r R ijij )0( )()2( )()( k I r R k i

    k i

    )()3( )()( I r R k ijk

    ij

    Interchange two rows.Multiply a row by a nonzeroconstant.Add a multiple of a row toanother row.

    Note:Only do a single elementary row operation.

  • 8/10/2019 Matrices Dr.s.s.chauhan (1)

    16/22

    Notes:

    A R Ar ijij )( )1(

    A R Ar k ik

    i)()( )( )2(

    A R Ar k ijk

    ij)()( )( )3(

    EA Ar

    E I r

    )(

    )(

    Thm 2.12: (Representing elementary row operations)Let E be the elementary matrix obtained by performing anelementary row operation on I m . If that same elementary rowoperation is performed on an m n matrix A, then the resultingmatrix is given by the product EA .

  • 8/10/2019 Matrices Dr.s.s.chauhan (1)

    17/22

    If A is an n n matrix, then the following statements are equivalent.

    (1) A is invertible.

    (2) A x = b has a unique solution for every n 1 column matrix b.

    (3) A x = 0 has only the trivial solution.

    (4) A is row-equivalent to I n .

    (5) A can be written as the product of elementary matrices.

    Thm 2.15: (Equivalent conditions)

  • 8/10/2019 Matrices Dr.s.s.chauhan (1)

    18/22

    LU A L is a lower triangular matrix

    U is an upper triangular matrix

    If the n n matrix A can be written as the product of a lowertriangular matrix L and an upper triangular matrix U , thenA=LU is an LU-factorization of A

    Note:

    If a square matrix A can be row reduced to an upper triangularmatrix U using only the row operation of adding a multiple ofone row to another row below it, then it is easy to find an LU -factorization of A .

    LU A

    U E E E A

    U A E E E

    k

    k

    112

    11

    12

    LU -factorization:

  • 8/10/2019 Matrices Dr.s.s.chauhan (1)

    19/22

    Eigen Values and Eigen Vectors

    Definition. A nonzero vector x is an eigenvector of asquare matrix A if there exists a scalar such that Ax = x . Then is an eigenvalue of A.

    Note : The zero vector can not be an eigenvector eventhough A0 = 0 . But = 0 can be an eigenvalue.

  • 8/10/2019 Matrices Dr.s.s.chauhan (1)

    20/22

    Properties of eigenvalues and eigenvectors Property 1: The sum of the eigenvalues ofa matrix equals the trace of the matrix.

    Property 2: A matrix is singular if and onlyif it has a zero eigenvalue.

    Property 3: The eigenvalues of an upper(or lower) triangular matrix are theelements on the main diagonal.

    Property 4: If is an eigenvalue of A andA is invertible, then 1/ is an eigenvalueof matrix A -1 .

  • 8/10/2019 Matrices Dr.s.s.chauhan (1)

    21/22

    Property 5: If is an eigenvalue of A then k isan eigenvalue of kA where k is any arbitrary

    scalar.Property 6: If is an eigenvalue of A then k isan eigenvalue of Ak for any positive integer k .

    Property 7: If is an eigenvalue of A then isan eigenvalue of AT.

    Property 8: The product of the eigenvalues(counting multiplicity) of a matrix equals the

    determinant of the matrix.

  • 8/10/2019 Matrices Dr.s.s.chauhan (1)

    22/22