Maths Ex 123!@#abc

Embed Size (px)

Citation preview

  • 7/25/2019 Maths Ex 123!@#abc

    1/24

    Solution to Mathematics Revision Exercise

    Q1

    Let x= 19.5 .

    x= 5.911 11(i)

    10x= 59.111 11..(ii)

    2.539(i)(ii) x

    90

    532x 1A

    Let y= 82.4 .

    y= 4.282 828(iii)

    100y= 428.282 828(iv)

    42499(iii)(iv) y

    99

    424y 1A

    Let z= 21.2 .

    z= 2.121 212. (v)

    100z= 212.121 212..(vi)

    21099(v)(vi) z

    99

    210z 1A

    21.282.419.5

    99210

    99424

    90532 1M

    318

    2952 1A

    2.

    i

    ii

    84

    )72()53(

    i

    ii

    84

    3510216

    1A

    i

    i

    84

    1141

    )84)(84(

    )84)(1141(

    ii

    ii

    6416

    )84)(1141(

    ii 1M+1A

    80

    8844328164

    ii

    80

    284252 i 1A

    i80

    284

    80

    252

    i20

    71

    20

    63 1A

    3.

    4(a+ bi)(2 + 5i)

    = 4(2a+ 5ai+ 2bi5b)

    = 8a+ 20ai+ 8bi20b

    = (8a20b) + (20a+ 8b)i 1M+1A

    The result of4(a+ bi)(2 + 5i)is a real number. 20a+ 8b= 0 1M+1A

    5

    2

    b

    a

    a: b= 5:2 1A

    4.

    (a) 2 is a solution ofx2+ bx+ c= 0.

    0)2()2( 2 cb 1M+1A

    0)2(2

    0)2()2( 2

    cib

    cibi

    0)2()2( ibc 1M

    02nda02 bc 2c 0b

    1A+1A

    (b) (b+ 2i)(3 + ci)

    = (0 + 2i)(3 + 2i) 1M

    = 2i(3 + 2i)

    = 6i+ (4)i2 1M

    = i64 1A

    5.

    (a) (1 + 2i)is a solution ofax2+ bx+4

    5c= 0.

    a(1 + 2i)2+ b(1 + 2i) +4

    5c = 0 1M

    a(1 + 4i4) + b+ 2bi+4

    5c = 0

    a + 4ai4a + b + 2bi+ 4

    5c = 0

    (3a+ b+4

    5c) + (4a+ 2b)i = 0 1M

  • 7/25/2019 Maths Ex 123!@#abc

    2/24

    04

    53 cba and4a+ 2b = 0 1A

    2a+ b = 0 1A

    (b) (1 + 2i)is a solution ofbx2+ cx(a+ 3) =0.

    b(1 + 2i)2+ c(1 + 2i)a3 = 0 1M

    b(1 + 4i4) + c+ 2cia3 = 0

    b+ 4bi4b+ c+ 2cia3 = 0

    (3b+ ca3) + (4b+ 2c)i = 0 1M

    3b+ ca3 = 0and4b+ 2c = 0 1A2b+ c = 0 1A

    (c)

    iv).........(..........02

    iii).........(..........033

    (ii)....................02

    .(i)....................0

    4

    53

    cb

    acb

    ba

    cba

    From (iv),2b+ c= 0b=

    2

    c....(v) 1M

    From (ii),2a+ b= 0

    a= 2

    b

    By (v),a=

    22

    1 c

    a=4

    c....(vi) 1M

    Substitute (v) and (vi) into (iii):

    033 acb

    03

    42

    3

    cc

    c 1M

    34

    9

    0342

    3

    c

    cc

    c

    3

    4c 1A

    3

    2

    3

    4

    2

    1

    b 1A

    3

    1

    3

    4

    4

    1

    a 1A

    6.

    37

    530424

    37

    )(530424

    136

    )6()54(

    )6(

    )6(

    )6(

    54

    6

    54

    2

    ii

    iii

    ii

    i

    i

    i

    i

    i

    i

    37

    2629 i 1M+1A

    i37

    26

    37

    29

    26

    1628

    125

    210630

    )5()5(

    )5()26(

    5

    26

    i

    ii

    ii

    ii

    i

    i

    13

    814 i 1M+1A

    i13

    8

    13

    14

    i

    i

    i

    i

    5

    26

    6

    54

    i

    ii

    13

    8

    37

    26

    13

    14

    37

    29

    13

    8

    13

    14

    37

    26

    37

    29

    i481

    42

    481

    895 1M+1A

  • 7/25/2019 Maths Ex 123!@#abc

    3/24

    Chapter 2

    1.

    (a) L1// y-axis

    .2isofequationThe 1 xL 1M+1A

    (b) L2//x-axis

    .6isofequationThe 2 yL 1M+1A

    (c)

    ).6,2(areandofonintersectiofpointtheofscoordinateThe 21 LL

    1M+1A

    (d) (a, 2a) lies on L1.

    Puttingx= ainto the equation of L1, we have

    a= 2 1M

    4).,(2arescoordinaterequiredThe 1A

    2.

    (a) Mid-point of PQ=

    2

    04,

    2

    30 =

    2,

    2

    3

    1A

    Slope of PQ=3

    4

    30

    04

    1A

    Slope of =4

    3

    3

    4

    1

    1M

    The equation of is

    2

    3

    4

    32 xy 1M

    i.e. 0786 yx 1A

    (b) Puttingx= 0 into 6x 8y+ 7 = 0, we have

    078)0(6 y 1M

    8

    7y

    .8

    7,0areofscoordinateThe

    R 1A

    (c) Area of PQR

    =21 (PR)(OQ) 1M

    =

    8

    74

    2

    1(3) 1M

    =16

    114 1A

    3.

    (a) OABCis a parallelogram.

    BC// y-axis

    The equation of BCisx= 2. 1M+1A

    (b) The equation of the straight line passing

    through the origin and C(2 , 4) is

    20

    )4(0

    0

    0

    x

    y

    i.e. xy 2 1M+1A

    (c) OABCis a parallelogram.

    OA= BC= 6 1M

    The coordinates ofAare (0 , 6). 1A

    (d) The coordinates of Bare (2 , 4 + 6) =

    (2 , 2). 1M+1A

    The equation ofABis

    20

    26

    2

    2

    x

    y 1M

    i.e. 062 yx 1A

    4.

    (a) Let mbe the slope of the perpendicular

    bisector ofAB.

    39

    51ofSlope

    AB

    3

    2 1M

    1

    3

    2

    m 1M

    2

    3m 1A

    i.,2

    15,

    2

    93areofpoint-midtheofscoordinateThe

    AB

    1M

    The equation of the perpendicular

    bisector is

    )6(2

    33 xy 1M

    )6(3)3(2 xy

  • 7/25/2019 Maths Ex 123!@#abc

    4/24

    18362 xy

    i.e. 3x2y12 = 0 1A

    (b) OC//AB

    ABOC ofslopeofSlope 1M

    3

    2

    The equation of OCis

    )0(3

    20 xy

    i.e. xy3

    2 1A

    (c)

    (ii)........................

    3

    2

    (i).............01223

    xy

    yx

    1M

    Substituting (ii) into (i), we have

    13

    36

    3613

    03649

    012)3

    2(23

    x

    x

    xx

    xx

    Substituting1336x into (ii), we have

    13

    24

    13

    36

    3

    2

    y

    .13

    24,

    13

    36areofscoordinateThe

    C

    1M+1A

    5.

    (a) Ais the mid-point of RQ.

    Coordinates ofA=

    1),2(2

    35,

    2

    04

    1A

    (b) (i) Slope of RQ= 24

    8

    04

    35

    1A

    (ii) Slope of PA=2

    1

    2

    1

    1M+1A

    (iii) The equation of PAis

    )2(2

    11 xy 1M

    i.e. 042 yx 1A

    Puttingx= 0 into the equation of PA, we

    have

    x2y+ 4 = 0

    (0)2y+ 4 = 0y= 2

    The coordinates of Pare (0 , 2). 1A

    (c) (i) The equation of QSis

    0

    1

    x

    y =

    04

    15

    1M

    0

    1

    x

    y = 1

    i.e. 01 yx 1A

    (ii) Bis the point of intersection of QSand

    PA.

    ii).........(..........042

    (i)....................01

    yx

    yx 1M

    (i) (ii):

    3y5 = 0

    y=3

    5

    Putting y=3

    5 into (i), we have

    3

    2

    013

    5

    x

    x

    .3

    5,

    3

    2areofscoordinateThe

    B

    1M+1A

    6.

    (a) Slope ofPQ= 320

    06

    1A

    (b) (i) Slope ofRS=3

    1

    3

    1

    1M+1A

    (ii) The equation ofRSis

    )4(310 xy 1M

    x+ 4 = 3y

    i.e. 043 yx 1A

  • 7/25/2019 Maths Ex 123!@#abc

    5/24

    (c) (i) Puttingx= 0 into the equation of RS, we

    have

    0430 y 1M

    3

    4y

    .

    3

    4,0areofscoordinateThe

    T 1A

    (ii) (1)

    Slope ofRQ=2

    3

    40

    06

    1A

    Slope ofPA=3

    2

    2

    3

    1

    1M

    The equation of PAis

    )2(3

    20 xy 1M

    i.e. 0432 yx 1A

    Puttingx= 0, y=3

    4 into 2x+ 3y

    4, we have:

    L.H.S. = 2(0) +

    3

    43 4 = 0 =

    R.H.S.

    Tlies onPA. 1A (2) The three altitudes of the

    triangle are PA, RSand QO.

    The three altitudes of PQR

    pass through the same point T. 1A

    7.

    (a) Slope of L= 3

    AC

    is perpendicular toL,

    slope ofAC slope of L=1

    slope ofAC 3 = 1 1M

    slope ofAC= 3

    1

    Blies onAC,

    the equation ofACis

    y2 =3

    1(x3) 1M

    3y6 = x+ 3i.e. x+ 3y9 = 0 1A

    (b)

    ii)...(..............................093

    )i.....(........................................3

    yx

    xy

    Substituting (i) into (ii), we have

    x+ 3(3x)9 = 0 1M

    10x= 9

    x= 10

    9

    Substitutingx=10

    9 into (i), we have

    y= 3

    10

    9 =

    10

    27

    .10

    27,

    10

    9areofscoordinateThe

    A 1A

    Substituting y= 0 into the equation ofAC, we

    have

    x+ 3(0) 9 = 0 1M

    x= 9

    The coordinates of Care (9 , 0). 1A

    (c) OC= 9

    Distance fromAto OC=10

    27

    Distance fromBto OC= 2

    Area of AOB= area of AOCarea of BOC

    = 292

    1

    10

    279

    2

    1 1M+1A

    =20

    63 1A

    Alternative method:

    AO=

    22

    10

    27

    10

    9

    = 10

    9

    AB=

    22

    10

    272

    10

    93

    =

    10

    7

  • 7/25/2019 Maths Ex 123!@#abc

    6/24

    Area of AOB

    =10

    7

    10

    9

    2

    1 1M+1A

    =20

    63 1A

    8.

    (a) Slope of CD=1

    1 =1

    ABis perpendicular to CD,

    slope ofAB slope of CD= 1

    slope ofAB (1) =1 1M

    slope ofAB= 1

    The equation ofABis

    y5 =x2 1M

    i.e. xy+ 3 = 0 1A

    (b)

    )ii.........(..............................037

    )i..(........................................03

    yx

    yx

    (i)(ii): 6y+ 6 = 0 1M

    6y=6

    y=1

    Substituting y=1 into (i), we have

    x(1) + 3 = 0

    x=4

    The coordinates ofBare (4 , 1). 1A

    (c) When y= 0,

    x7(0) 3 = 0

    x= 3

    The coordinates ofEare (3 , 0). 1A

    Let (c, d) be the coordinates of C. AE= EC

    3 =2

    2 c 1M

    6 = 2 + c

    c= 4

    0 =2

    5 d

    d= 5

    The coordinates ofCare (4 , 5). 1A

    The equation of BCis

    )4(

    )1(

    x

    y =

    )4(4

    )1(5

    1M

    4

    1

    x

    y=

    2

    1

    2y+ 2 =x4

    i.e. x+ 2y+ 6 = 0 1A

    9.

    (a) Coordinates of C= (3 , 12) 1AThe equation ofACis

    12

    3

    x

    y=

    123

    312

    1M

    12

    3

    x

    y=

    5

    3

    5y15 = 3x+ 36

    i.e. 3x+ 5y51 = 0 1A

    (b) Substituting B(2 , 9) into the equation ofAC,

    we have

    L.H.S. = 3(2) + 5(9) 51 = 0 1M

    L.H.S. = R.H.S.

    Blies onAC.

    i.e. A, Band Care collinear. 1A

    Alternative method:

    Slope ofAB=12239

    =

    53 1M

    Slope ofAC=5

    3

    Slope ofAB= slope ofAC

    A, Band Care collinear. 1A

    (c) ODis perpendicular toAC,

    slope of OD slope ofAC=1

    slope ofOD

    53

    =1 1M

    slope ofOD=3

    5

    The equation of ODis y=3

    5x.

    )ii..(..................................................3

    5

    )i.........(..............................05153

    xy

    yx

    Substituting (ii) into (i), we have

    3x+ 5

    x

    3

    551 = 0 1M

    34x= 153

  • 7/25/2019 Maths Ex 123!@#abc

    7/24

    x=2

    9

    Substitutingx=2

    9 into (ii), we have

    y=

    2

    9

    3

    5 =

    2

    15

    .2

    15,29areofscoordinateThe

    D 1A

    10.

    (a) Slope of L1=7

    3 , y-intercept of L1=

    7

    p . 1M

    Slope ofL2=

    q

    4 =

    q

    4, y-intercept ofL2=

    q

    11 = q

    11

    . 1M

    L1and L2have infinitely many points of

    intersection,

    slope of L1= slope of L2and y-intercept of

    L1= y-intercept of L2.

    7

    3 =

    q

    4 1M

    3q= 28

    q=328 1A

    and7

    p =

    q

    11 1M

    7

    p =

    3

    28

    11

    p=4

    33 1A

    (b) L1and L2have no points of intersection,

    slope of L1= slope of L2and y-intercept of

    L1y-intercept ofL2.

    .3

    28and

    4

    33 qp 1A+1A

    (c) L1and L2have one point of intersection,

    slope of L1slope of L2.

    .3

    28andnumberrealanyis qp 1A+1A

    11.

    (a) Slope of L=1

    1 =1

    PTand Lhave no points of intersection,

    slope of PT= slope of L

    0

    5

    k

    p =1 1M

    p= 5 k 1A

    (b) AP= PB

    22 )2()]7([ pk =

    22 )10()3( pk 1M

    (k+ 7)2+ (5 k2)2= (k3)2+ (5

    k10)2

    (k+ 7)2

    + (k+ 3)2

    = (k3)2

    + (k5)2

    k2+ 14k+ 49 + k26k+ 9 = k26k+ 9 +

    k2+ 10k+ 25 1M

    4k= 24

    k= 6 1A

    p= 5 (6) = 11

    The coordinates ofPare (6 , 11). 1A

    -- ans end --

  • 7/25/2019 Maths Ex 123!@#abc

    8/24

    Chapter 3

    1.

    Since andare the roots of the equationx2px

    + q= 0,

    +=p 1A

    = q 1A

    ))(( 2233 1M

    ]3)2)[(( 22

    ]3))[(( 2 1M

    )3( 2 qpp 1M

    pqp 33 1A

    2.

    Since the graph of y= ax2+ (a1)x+ (a+ 2)

    touches thex-axis at only one point, the

    discriminant = 0. 1A

    i.e. (a1)24a(a+ 2) = 0 1M

    a22a+ 14a28a = 0

    3a2+ 10a1 = 0 1M

    a =

    (3)2

    )1)(3(41010 2 1M

    =

    6

    )12(10010

    =6

    11210 1M

    = 3.43 or

    0.097 2,cor. to 3 sig. fig.1A+1A

    3.

    (a) 9(x2) = 2xx2

    9x18 = 2xx2

    9x18 2x+x2 = 0

    x2+ 7x18 = 0 1M

    (x2)(x+ 9) = 0 1M

    x2 = 0 or x+ 9 =

    0

    x = 2 or x =

    9 1A+1A

    (b) 07347 2 xx

    0)37)(7( xx 1M+1A

    07x or

    037 x

    x= 7

    or x=7

    3

    1A+1A

    4.(a) 9x2kx+ 1 =x

    9x2kxx+ 1 = 0

    9x2(k+ 1)x+ 1 = 0 1M

    Since the equation has two equal real roots,

    the discriminant = 0. 1A

    i.e. [(k+ 1)]24(9)(1) = 0 1M

    (k+ 1)236 = 0

    (k+ 1)2

    = 36k+ 1 = 6

    k= 5 or 7

    1A+1A

    (b) When k=7, the equation is 9x2+ 6x+ 1 = 0.

    1M

    )(3

    1

    )9(2

    6repeatedx 1A+1A

    5.

    Since andare the two roots of the equationx2

    + 3x4 = 0, we have

    + = 3 1A

    = 4 1A

    22 2222

    2)( 2 1M

    89

    )4(2)3( 2

    17 1A

  • 7/25/2019 Maths Ex 123!@#abc

    9/24

    25

    )4(217

    2)(

    2)(

    22

    222

    )(5

    ))((22 1M

    )5)(3( 15 1A

    Sum of roots = 17 + (15)

    = 2 1A

    Product of roots = 17(15)

    = 255 1A

    The required equation isx22x255 = 0. 1A

    6.

    (a) Since ,are the roots of the equation,

    3

    1

    3

    )1( kk

    1A

    43

    12

    1A

    922

    9(b)

    22

    22

    92)( 2 1M

    9)4(23

    12

    k 1M

    912

    9)1(

    989

    )1(

    2

    2

    2

    kk

    k

    k

    0822 kk 1M

    0)2)(4( kk 24 kork 1A+1A

    (c) Substituting k= 4 into the equation, we have

    01233 2 xx

    042 xx 1M

    )1(2

    )4)(1(411 2 x 1M

    2171

    2

    171

    2

    117

    xorx 1A+1A

    7.

    (a) Let be the smaller root, and 2be the other

    root. 1A

    1

    )4(2

    k 1M

    34

    43

    k

    k

    .3

    4isrootstheofOne

    k 1A

    9

    52

    3

    22(b) 2 k 1M

    9

    52

    3

    22 22 k

    9

    52

    3

    2

    3

    42 2

    2

    k

    k 1M

    04282

    263168

    263)4(

    9

    52

    3

    2)4(

    9

    2

    2

    22

    22

    22

    kk

    kkk

    kk

    kk

    02142 kk 1M0)3)(7( kk

    37 kork 1A+1A

    (c) (i) Substituting k= 3 into the equation, we

    have

    09

    22 xx 1M

    a+ b= 1

    ab=9

    2

    abbaba 2)( 222

    9

    1

    9

    81

    4)(42

    2

    22

    abbaabbaba

    ab=3

    1 ( a b)

    ))((22 bababa 1M

    311

    3

    1 1A

  • 7/25/2019 Maths Ex 123!@#abc

    10/24

    (ii) From (a), we know the smaller root is

    3

    4 k(*)

    substituting k= 3 into (*), we have

    3

    1

    3

    34

    1M

    3

    2

    ,3

    1

    ab 1A+1A

    8.

    (a) Whenx= 0, y= 10,

    10 = a(0)2+ b(0) + c

    c= 10

    Whenx= 2, y= 0,

    0 = a(2)2+ b(2) 100 = 4a+ 2b10...........(i)

    Whenx= 5, y= 0,

    0 = a(5)2+ b(5) 10

    0 = 25a+ 5b10

    0 = 5a+ b2...(ii)

    )25(210240(ii)2(i) baba 1M

    66

    660421010240

    a

    ababa

    1a 1A

    2)1(50 b

    7b 1A

    (b) (i) Consider ax2+ bx+ c= 2.

    Substitute the values of a, band cfrom

    (a) into the equation.

    i.e. x2+ 7x10 = 2

    x2+ 7x12 = 0

    x27x+ 12 = 0

    7 1A

    12 1A

    42

    2)(onsiderC

    22

    222

    4)( 2 1M

    1

    )12(4)7( 2

    )(1 1A

    )2)((

    ))(((ii)

    22

    2233

    ]))[(( 2 1M

    )127)(1( 2

    37 1A

    0127

    2107(iii)

    2

    2

    xx

    xx

    01272 xx 1M

    )1(2

    )12)(1(4)7()7(

    2 x

    1M

    2

    17

    34or 1A+1A

    9.

    (a) Since andare the roots of the equation,

    42

    8

    1A

    23 1A

    22(i))(b 2222

    2)( 2 1M

    2

    32)4( 2 1M

    316

    = 19 1A

    42

    2)(onsiderC(ii)

    22

    222

    4)( 2 1M

    2

    34)4( 2 1M

    616

    = 22

    )(22 1A

  • 7/25/2019 Maths Ex 123!@#abc

    11/24

    ))(((iii) 22 1M

    )22)(4( 1M

    224 1A

    (c) From (b), we know that 1922 ,

    22422 .

    Sum of roots = )22419( 1M

    Product of roots = 2276 1M

    The quadratic equation with roots22

    and 22 is

    02276)22419(2 xx 1A

    10.

    (a) Consider the discriminant = 524(1)(2) 1M

    = 25 + 8

    = 33 0 1A

    Since 0,

    the equation has two distinct real roots. 1A

    Therefore andare distinct real

    numbers. 1A

    (b) (i) 5 1A2 1A

    1339)13)(13(

    1)(39 1M

    1)5(3)2(9

    1M

    11518 32 1A

    (ii) ))(( 2233

    )32)(( 22

    ]3))[(( 2 1M

    )]2(3)5[(5 2 1M

    )625(5

    =155 1A

    025(c) 2 xx

    )1(2

    )2)(1(455 2 x 1M

    2

    533

    2

    533

    2

    335

    xorx

    2

    533

    2

    533

    1A+1A

    Special Topic : Applications of Quadratic Equation

    1.

    Let the length of BDbexcm.

    BC= BD+ 4 =x+ 4

    62

    )4( xx 1M+1A

    x2+ 4x= 12

    x2+ 4x12 = 0 1M

    (x+ 6)(x2) = 0 1M

    x+ 6 =0 or x2 = 0 1M

    x=6 (rejected) or x= 2

    Area of squareABDE= 22cm2= 4 cm2

    Area of trapeziumACDE= (4 + 6) cm

    2

    2

    cm10 1M+1A

    2.

    (a) By using Pythagoras' theorem,

    height of the top end above the ground

    m610 22 1M

    = 8 m 1A

    (b) Since the length of the ladder is unchanged,

    by using Pythagoras' theorem,

    (8x)2+ (6 +x)2= 102 1M+1A

    x216x+ 64 +x2+ 12x+ 36 = 100

    2x24x= 0 1A

    x(x2) = 0 1M

    x=0 or x2 = 0 1M

    x=0 (rejected) or x= 2 1A

  • 7/25/2019 Maths Ex 123!@#abc

    12/24

    3.

    (a) (i) Sides of hexagon = cm)232( x 1A

    (ii) By using Pythagoras' theorem,

    x2+x2= (32 2x)2 1M

    2x2= 4x2128x+ 1 024

    2x2128x+ 1 024 = 0

    )2(2

    )0241)(2(4128128 2 x 1M

    = 37.9 , cor. to 3 sig.

    fig. or 54.6 (rejected) 9.372 6 1A

    (b) (i) Width of rectangle = 2xcm

    = 2 9.372 6 cm

    = 18.745 2 cm 1A

    Area of rectangle = 32 18.745 2

    cm2 1M2cm600 , cor. to 3

    sig. fig. 599.85 1A

    (ii) Area of right-angled triangle =2

    2x

    cm2

    22

    cm2

    6372.9

    sig. fig.cor. to 5,cm923.43 2 1A

    Area of hexagon = (599.85 4

    43.923) 2cm 1M

    sig. fig.cor. to 3,cm424 2 1A

    4.

    (a) BM= (x+ 2) cm

    BC= 2(x+ 2) cm =AB 1M

    cm)2(3

    cm)2()]2(2[

    2

    22

    22

    x

    xx

    BMABAM

    cm)2(3 x 1A

    Area of ABC= 2cm2

    )2(32)2( xx

    1M22 cm)2(3 x 1A

    22(b) BDBGGD 1M

    cm3

    cm)2(

    2

    22

    x

    xx

    cm3x 1A

    (c) Area of DEFG= x322 cm22cm34 x 1A

    xx 342)2(3 2 1M

    xxx

    xx

    844

    8)2(

    2

    2

    0442 xx 1M

    0)2(

    2

    x x= 2 (repeated) 1A

    5.

    (a) InABCandADE,

    CBA= EDA= 90

    BAC= DAE

    ABC~ADE

    given

    vert. opp.s

    AAA

    (b) LetAD=xcm.

    AC= (13 x) cm 1A

    AB=AE= )12(2

    1cm = 6 cm 1A

    From (a),ABC~ADE.

    AD

    AB =

    AE

    AC 1M

    x

    6 =

    6

    13 x

    36 = 13xx2

    x213x+ 36 = 0

    (x4)(x9) = 0 1M

    x = 4 or x= 9

    AD

  • 7/25/2019 Maths Ex 123!@#abc

    13/24

    6.

    (a) Volume = 3 900 cm3

    2

    )12)(28( x(3x2) = 3 900 1M

    2

    )23)(4(2 xx= 325

    (x+ 4)(3x2) = 3253x2+ 10x8 = 325

    3x2+ 10x333 = 0 1M

    (x9)(3x+ 37) = 0 1M

    x= 9 orx=3

    37

    (rejected) 1A

    (b) Whenx= 9,

    DC= 2(9) cm = 18 cmCH= [3(9) 2] cm = 25 cm

    DX=2

    818 cm = 5 cm 1A

    InADX,AD = 22 DXAX

    = 22 512 cm 1M

    = 13 cm

    The required total surface area

    =

    )2(2

    )12)(188()25)(1318138(

    cm2 1M

    = 1 612 cm2 1A

    7.

    (a) 4x2+ 404x1 035 = 0

    (2x5)(2x+ 207) = 0 1M

    x= 2

    5 orx= 2

    207

    1A+1A

    Alternative method:

    4x2+ 404x1 035 = 0

    x=

    )4(2

    )0351)(4(4404404 2 1M

    =8

    424404

    =8

    424404 or

    8

    424404

    =2

    5 or

    2

    207 1A+1A

    (b) Letx% be the annual interest rate of the first

    year.40 000(1 +x%)[1 + (x+ 1)%] 40 000(1 +x%)

    = 1 435 1M+1M+1A

    40 000(1 +x%)[1 + (x+ 1)% 1] = 1 435

    40 000

    100

    1

    1001

    xx = 1 435 1M

    4(100 +x)(1 +x) = 1 435

    4(100 + 101x+x2) = 1 435

    400 + 404x+ 4x2 = 1 435

    4x2+ 404x1 035 = 0

    From (a),

    x=2

    5 orx=

    2

    207 (rejected)

    The annual interest rate of the first year

    is 2.5%. 1A

  • 7/25/2019 Maths Ex 123!@#abc

    14/24

    Chapter 4

    1.

    (a) 2f(1) = 6

    2[a(1)2+ c] = 6 1M

    a+ c= 3.(i)

    f(2) = 6

    a(2)2+ c= 6 1M

    4a+ c= 6.(ii)

    (ii)(i): 3a= 3

    a= 1 1A

    Substituting a= 1 into (i),

    1 + c = 3

    c= 2 1A

    (b) f(a+ c) =f(3) = (3)2+ 2= 11

    f(a) =f(1) = (1)2+ 2

    = 3

    f(c) =f(2) = (2)2+ 2

    = 6

    )()(

    )(

    cfaf

    caf

    =

    63

    11

    1M

    =911 1A

    2.

    (a) If f(x) =g(x),

    then x2x= 4x6 1M

    x25x+ 6 = 0 1M

    (x2)(x3) = 0

    x= 2 or x=

    3 1A+1A

    (b) If H(x) = 12,

    then f(x)xg(x) = 12 1M

    (x2x) x(4x6) =12

    x2x4x2+ 6x = 12

    3x2+ 5x+ 12 = 0

    3x25x12 = 0

    (x3)(3x+ 4) = 0 1M

    x = 3 or x=4

    3

    1A+1A

    3.

    (a) x 1 (given)

    The domain of E(x) is all real numbers

    greater than or equal to zero and smaller

    than 1. 1A

    1 > E(x) 0

    Jenny may not be able to escape

    successfully. 1A

    20

    19

    20

    11)20((b) E 1A

    (c) (i) The difference:

    30

    2

    2

    11)2()2(

    SE 1M

    15

    1

    2

    1

    30

    13 1A

    (ii) The difference:

    30

    10

    10

    11)10()10(

    SE 1M

    3

    1

    10

    9

    30

    17 1A

    (d) S(x) = E(x)

    30

    x =

    x

    11 1M

    x2 = 30x30

    x

    2

    30x+ 30 = 0x = 28.964 or x= 1.036, cor.

    to 3 d.p.

    When there are 28.964 or 1.036 minutes

    left, the two functions will give the same

    chance that Jenny can escape

    successfully. 1A+1A

  • 7/25/2019 Maths Ex 123!@#abc

    15/24

    4.

    (a) C(x) = $(450 000 + 2 000x) 1A

    (b) (i)

    10

    2

    %)81(

    10)]9003(0002000450[509003)9003(5003

    $)9003(

    P

    1M

    10%)81(

    10)8000955($

    77.41360323$ ,cor. to 2

    d.p. 1A

    (ii)

    10

    2

    %)81(

    10)]0006(0002000450[50

    0006)0006(5003

    $)0006(

    P

    1M

    10%)81(

    10)0003087($

    12.50068236$ ,cor. to 2

    d.p. 1A

    (c) (i) )9003(P

    10

    102

    %)121(

    10)04.01)](9003(0002000450[50

    9003)0093(5003

    $

    1M

    10%)121(

    10)65.7841331($

    13.4836503$ , cor. to 2 d.p. 1A

    (ii) )0006(P

    10

    102

    %)121(

    10)04.01)](0006(0002000450[50

    0006)0006(5003

    $

    1M

    10%)121(

    53.58650918$

    48.5919595$ ,cor. to 2 d.p. 1A

    (d) (i) )9003(P

    10

    102

    %)121(

    3(0002000450[)04.01(50

    9003)9003(5003

    $

    1M

    10%)121(

    27.28843075$

    05.53428624$ ,cor. to 2 d.p. 1A

    (ii) )0006(P

    10

    102

    %)121(

    (0002000450[)04.01(50

    0006)0006(5003

    $

    1M

    10%)121(

    5.127903115$

    09.70531737$ , cor. to 2 d.p. 1A

    5.(a) )25000050$()( xxC 1A

    (b) Profit function:

    )25000050(100

    0001$

    )]()($[)(

    2

    xx

    x

    xCxIxP

    00050

    100750$

    2x

    x 1A

    Domains:

    Sincexis the number of cattle,x 0 .

    The domain of the cost function C(x) is

    all real numbers greater than or equal

    1A

    The domain of the income function I(x)

    all real numbers greater than or equal to

    1A The domain of the profit function P(x)

    all real numbers greater than or equal

  • 7/25/2019 Maths Ex 123!@#abc

    16/24

    1A

    (c) (i) C(500) = $[50 000 + 250(500)]

    = $175 000

    500

    000175$costaverage 1M

    350$ 1A

    (ii)

    100

    )500()500(0001$)500(

    2

    I

    500497$ 1A

    (iii) average profit 500

    )500(P

    500

    00050100

    )500()500(750

    $

    2

    1M

    500

    500322$

    645$ 1A

    (d) C(x) = $[50 000(1 0.5) + 250(1 0.4)x] 1M

    = )15000025$( x 1A

    (e) The profit in future ten years

    1012)15000025(100

    0001$2

    x

    xx

    120)550(15000025100

    )550()550(0001$

    2

    1A

    )00000010$(00073752$

    120)500107975546$(

    The farm can break even. 1A

    (f) C(x) =

    1012

    0000001015000025$ x 1M

    =

    x150

    3

    000325$ 1A

    Chapter 5

    1.

    (a) Putting (2, 0) into the equationy= ax2+ 2x+

    c, we get

    0 = a(2)2+ 2(2) + c

    0 = 4a

    4 + c (i) 1A

    Putting (4, 0) into the equationy= ax2+ 2x+

    c, we get

    0 = a(4)2+ 2(4) + c

    0 = 16a+ 8 + c ..(ii) 1A

    (ii) (i), we get

    0 = 12a+ 12

    a =1 1A

    Putting a =

    1 into (i), we get0 = 4(1)4 + c

    0 =8 + c

    c = 8 1A

    (b) y =x2+ 2x+ 8

    =(x22x) + 8

    =(x22x+ 11) + 8

    =

    (x2

    2x+ 1) + 1 + 8=(x1)2+ 9 1M+1A

    The maximum value ofyis 9. 1M+1A

    2.

    (a) f(x) = 2x2+ 16x28

    = 2(x2+ 8x) 28

    = 2(x2+ 8x+ 4242) 28

    = 2(x+ 4)232 28

    = 2(x+ 4)260 1M+1A

    The minimum value of the function is

    60. 1A

    The value of the function is negative for

    somex. 1A

    (b) f(x) = 3x26x+ 10

    = 3(x22x) + 10

    = 3(x2 2x+ 1212) + 10

    = 3(x1)23 + 10

    = 3(x1)2+ 7 1M+1A

    The minimum value of the function is

  • 7/25/2019 Maths Ex 123!@#abc

    17/24

    7. 1A

    The value of the function is positive for

    all real values ofx. 1A

    3.

    (a) Whenx= 0,y= 4(0) a(0)2= 0. 1A

    Yes, the graph passes through the

    origin. 1A

    (b) (i) [y= 4xax2is a quadratic function.

    Since the coefficient ofx2< 0, the

    parabola opens downward. Its axis of

    symmetry isx= 2, and the graph passes

    through the origin.]

    The required graph is:

    1A+1A+1A

    (ii) Let (h, k) be the coordinates of the

    vertex.

    The axis of symmetry isx= 2.

    h= 2

    If the maximum value ofyis 2, then k=

    2.

    The coordinates of the vertex are (2 ,

    2). 1A

    (c) Substituting (2 , 2) intoy= 4xax2,

    2 = 4(2) a(2)2 1M

    = 8 4a

    4a = 6

    a =2

    3 1A

    Special Topic 2 : Applications of Graphs of

    Quadratic Functions

    1.

    (a) f(x) = 2x2+ 16x+ 140

    = 2(x28x) + 140

    = 2(x28x+ 4242) + 140

    = 2(x40)2+ 32 + 140

    = 2(x4)2+ 172 1A

    The maximum height that the athlete can

    achieve is 172 cm. 1M+1A

    (b) Refer to the figure below. If the athlete plans

    to achieve the maximum height, the jumping

    point should be a point on thex-axis, and thebar should be placed at the axis of symmetry

    of the function.

    Whenf(x) = 0, 172)4(20 2 x

    1M

    0)864)(864(

    86)4(

    172)4(2

    2

    2

    xx

    x

    x

    864486 xorx 1A

    ts t a r thewhereplacetheandbarebetween thDistance

    cm)]864(864[2

    1 1M

    cm86 1A

  • 7/25/2019 Maths Ex 123!@#abc

    18/24

    2.

    (a) Substituting t= 0 into h(t),

    h(0) = 20(0) 10(0)2+ 30 1M

    = 30

    The height of the building is 30 m. 1A

    (b) h(t) = 20t10t2+ 30

    = 10(t22t) + 30

    = 10(t22t+ 1212) + 30

    = 10(t1)2+ 10 + 30

    = 10(t1)2+ 40 1A

    The maximum height of the water bomb

    above the ground is 40 m. 1M+1A

    (c) When h(t) = 0,

    20t10t2+ 30 = 0 1M

    t22t3 = 0

    (t3)(t+ 1) = 0

    t= 3 or t= 1 (rejected)

    The time for the water bomb to reach the

    ground is 3 seconds. 1M+1A

    3.

    (a) Substitutingx= 6 into h(x),

    h(6) = 29

    2(6)2+ 16(6) + k = 29 1M

    k = 29 96 + 72

    = 5 1A

    (b) From (a), h(x) = 2x2+ 16x+ 5

    = 2(x28x) + 5

    = 2(x28x+ 4242) + 5

    = 2(x4)2+ 32 + 5

    = 2(x4)2+ 37 1M+1A

    The distance between the fire engine and

    the building is 4 m

    so that the height of water column is

    maximum. 1M+1A

    (c) From (b), the maximum height of the water

    column is 37 m.

    The fireman cannot fight the fire. 1M+1A

    4.

    (a) Substitutingx= 12 intoy=x2+ 40x,

    y= (12)2+ 40(12) 1M

    = 336

    The distance of Babove the ground is 336

    cm. 1A

    (b) y = x2+ 40x

    = (x240x+ 202202)

    = (x20)2+ 400 1A

    The coordinates of the vertex of y=x2+

    40xare (20 , 400). 1A

    The height that Bincreases is (400 336)

    cm = 64 cm. 1M+1A

    (c) Acannot throw the water bomb to B. 1A

    IfAchanges his/her throwing position, as the

    throwing locus is unchanged,

    the water bomb cannot pass through the

    rocky column Q. If the throwing position

    is unchanged, the water bomb will hit the

    ground atx = 40,but not at the position of B. 1A+1A

    5.

    (a) Substituting y= 0 into y= 2x2+ 6x , 1M

    i.e. 2x2+ 6x8 = 0

    x2+ 3x4 = 0

    (x1)(x+ 4) = 0

    x = 1 or x = 4

    The coordinates of pointsAand Bare

    (4 , 0) and (1 , 0) respectively. 1A+1A

    82

    3

    2

    332

    8)3(2

    862

    22

    2

    2

    2

    xx

    xx

    xxy

    2

    25

    2

    3

    2

    2

    x 1A

    .2

    25,

    2

    3reapointofscoordinateThe

    C

  • 7/25/2019 Maths Ex 123!@#abc

    19/24

    1A

    (b) Substitutingx= 2a, y= 12ainto y= 2x2+ 6x

    8,

    12a= 2(2a)2+ 6(2a) 8 1M

    12a= 24a2+ 12a8

    8a2= 8

    a2= 1

    a= 1 or a= 1 (rejected) 1A

    The coordinates of Dare (2 , 12). 1A

    (c) Length ofAB= 1 (4) = 5

    ConsiderADB.

    Area of ADB= 30)512(2

    1 1A

    Consider

    ACB.

    Area of ACB=4

    1255

    2

    25

    2

    1

    1A

    4

    245

    4

    12530alquarilatertheofArea ABCD 1A

    6.

    (a) (i) By Pythagorastheorem,

    PQ2 =AQ2+AP2 1M

    = 222 cm])2()2([ xx

    = 4x2cm2

    PQ= cm2x 1A

    (ii) By Pythagorastheorem,

    QC2= BC2+ BQ2 1M

    = 222 cm])210(10[ x

    = 22 cm)2220200( xx

    Let the mid-point of Pand Qbe M, i.e.

    PM= MQ=xcm. 1A

    By Pythagorastheorem,

    QC2= MC2+ MQ2

    22 MQQCMC 1M

    cm)210(

    cm220200

    cm2220200

    2

    22

    x

    xx

    xxx

    cm.)210(isheightrequiredThe x

    1A

    (b) Area of QCP = MCPQ 2

    1 1M

    = 2cm)210(22

    1xx

    = 2cm)210( xx 1A

    (c) Area of quadrilateral PQCD

    = area of trapeziumADCQarea of APQ

    = 22 cm)2(2

    1)102(

    2

    10

    xx 1M

    = 22 cm)5025( xx

    = 22

    cm2

    2550

    2

    25

    x

    = 22

    cm2

    125

    2

    25

    x 1A

    .cm2

    125isralquadrilateofareamaximumThe 2PQCD

    1M+1A

    7.

    (a) (i) y= h2 x2+ 16x

    2

    1

    2

    1

    2

    2

    2

    16

    2

    16

    2

    162

    2

    162

    hhh

    h

    h

    h

    xx

    xx

    2

    22

    1 2

    16

    2

    162

    hh

    hx 1A

    2

    16cm

    2

    162travelsballthat thedistanceHorizontal

    1 hh

    1M+1A

    (ii) By (a)(i),

    cm2

    256cm

    2

    16balltheofheightmaximum

    22

    2

    hh

    1M+1A

    (b) (i) Substituting h= 4 intoh

    2

    16,

    by the result of (a),

    horizontal distance that the ball travels inthe 4th bounce

    cm1cm2

    164

    1M+1A

  • 7/25/2019 Maths Ex 123!@#abc

    20/24

    (ii) Substituting h= 4 into22

    256h

    ,

    cm4cm2

    256bounce4thin theballtheofheightmaximum

    24

    1M+1A

    (c) Total horizontal distance that the bouncing

    ball travels = 21 2

    16

    2

    16 1A

    Substituting a= 16, r=2

    1 into

    r

    ar

    1,

    2

    11

    2

    16

    distancetotal

    1M

    = 16

    The total distance that the bouncing ball

    travels is 16 cm. 1A

    Chapter 6

    1.

    Whenf(x) is divided byx2, the remainder is 8.

    i.e. 8)2( f . 1A

    Whenf(x) is divided byx+ 1, the remainder is 10.

    i.e. 10)1( f . 1A

    Whenf(x) is divided byx25x+ 4, the remainder is

    0 and the quotient is bax .

    ))(45()( 2 baxxxxf 1A

    Puttingx= 2, we get

    )2(28

    )2(]4)2(5)2[()2( 2

    ba

    baf

    (i).......................42 ba 1APuttingx= 1, we get

    )(1010

    ))(451(10

    )1(]4)1(5)1[()1( 2

    ba

    ba

    baf

    (ii).......................1 ba 1A

    Solving (i) and (ii), we get

    a= 1, b= 2. 1A+1A

    2.

    (a) Let kxkxkxxf 3)3()12(2)( 23 .

    f(1) = 2(1)3+ (2k1)(1)2(3 + k)(1)

    3k 1M

    =2 + 2k1 + 3 + k3k

    = 0 1A

    For any integer k,x+ 1 is a factor of the

    polynomial. 1A

    (b)

    kkx

    kkxxkxk

    xkxk

    xx

    kxkxkxx

    kxkx

    33

    33)32()32(

    )3()32(

    22

    3)3()12(21

    3)32(2

    2

    2

    23

    23

    2

    1

    M

    1

    M

    kxkxkx 3)3()12(2 23

    ]3)32(2)[1( 2 kxkxx 1M

    )32)()(1( xkxx 1M+1A

    3.

    (a) f(2) = 0 1A

    a(2)3+ 4(2)27(2) + b = 0

    8a+ 16 14 + b = 0

    8a+ b = 2.(i)

    f(1) = 12 1A

    a(1)3+ 4(1)27(1) + b = 12

    a+ 4 7 + b = 12a+ b = 9(ii)

    (i) (ii):

    7a= 7

    a= 1 1A

    Substituting a= 1 into (ii),

    1 + b = 9

    b = 10 1A

    (b) f(x) =x3+ 4x27x10

  • 7/25/2019 Maths Ex 123!@#abc

    21/24

    56

    105

    105

    126

    76

    2

    10742

    2

    2

    2

    23

    23

    xx

    x

    x

    xx

    xx

    xx

    xxxx

    f(x) = (x2)(x2+ 6x+ 5) 1M+1A

    = )1)(5)(2( xxx 1A

    (c) f(x) = 0

    (x2)(x+ 5)(x+ 1) = 0

    x2 = 0 or x+ 5 = 0 or x+ 1 = 0

    x=

    2 or x=

    5

    or x=

    1 1A+1A+1A

    4.

    (a) Dividend = quotient divisor + remainder

    5)3()()( xxgxf 1M

    5)3)(27( 2 xxx

    5621327 223 xxxxx 1M

    11910 23 xxx

    11910)( 23 xxxxf 1A

    (b)

    14

    124

    24

    3

    273

    4

    2

    2

    x

    x

    xx

    xxx

    x

    1M

    Quotient = 4x , remainder = 14 1A+1A

    (c) By (b), g(x) = (x+ 3)(x+ 4)14 1A

    By (a),

    5)()3()( xgxxf 1M

    5)3(141)3()3)(3(

    5)3(14)4)(3)(3(

    514)4)(3()3(

    xxxx

    xxxx

    xxx

    5)3(14)3()3()( 23 xxxxf

    1M+1A

    5.

    (a) Remainder =

    kg

    1 1A

    11

    611

    2

    kkk

    k

    261

    2 kk

    1A

    (b) From (a), we have:

    Remainder = 261

    2 kk

    =2

    9

    k

    1 6k+ 2k2 = 9

    2k26k+ 1 9 = 0

    2k26k8 = 0

    2(k4)(k+ 1) = 0 1Mk4 = 0 or k+ 1 = 0

    k = 4 or k=

    1 1A+1A

    6.

    3

    1510

    393

    123

    3

    120013

    2

    2

    23

    232

    x

    x

    xx

    xx

    xxx

    xxxxx

    1M

    Quotient =x3, remainder = 10x15 1A+1A

    7.

    433

    72

    844

    164

    633

    03

    633

    107032

    2

    2

    2

    23

    23

    234

    2342

    xx

    x

    xx

    xx

    xxx

    xxx

    xxx

    xxxxxx

    1M

    1M

    Quotient = 3x2+ 3x+ 4, remainder =2x

    7 1A+1A

  • 7/25/2019 Maths Ex 123!@#abc

    22/24

    8.

    (a) The remainder is 6whenf(x) is divided

    byx1,

    f(1) = 6

    i.e. (11)(13)(1+ a) + b(1) + c= 6 1M

    b+ c=

    6..................................(i)

    The remainder is 4whenf(x) is divided

    byx3,

    f(3) = 4

    i.e. (31)(33)(3+ a) + b(3) + c= 4 1M

    3b+ c=

    4.................................(ii)

    (ii) (i): 2b= 2 1M

    b=

    1 1ASubstituting b=1 into (i), we have

    1 + c = 6

    c = 7 1A

    (b) f(x) = (x1)(x3)(x + a)x+ 7

    = (x24x+ 3)(x + a)x+ 7 1M

    Whenf(x) is divided byx24x+ 3, the

    remainder is

    x+ 7. f(x) is not divisible byx24x+ 3. 1A

    9.

    (a) Letf(x) =x3+ (1 a)x2+ 5ax6a2.

    f(a) = a3+ (1 a)a2+ 5a(a)6a2 1M

    = a3+ a2a3+ 5a26a2

    = 0

    For any constant a,xais a factor ofx3+

    (1a)x2+ 5ax6a2. 1A

    (b) Let a= 100.

    From (a), we know that

    x100 is a factor of the polynomialx3+ (1

    100)x2+ 5(100)x6(100)2, 1A

    i.e. a factor ofx399x2+ 500x60 000.

    Using long division, we have

    x3

    99x2+ 500x

    60 000 = (x

    100)(x2+x+

    600) 1M+1A

    10.

    (a) x+ 2 is a factor off(x),

    f(2) = 0

    i.e. (2)3+ 3(2)2(p2+ 2)(2) + 8p= 0 1M

    8 + 12 + 2p2+ 4 + 8p= 0

    2p2+ 8p+ 8 = 0

    p2+ 4p+ 4 = 0

    (p+ 2)2= 0 1M

    p =2

    (repeated) 1A

    (b) From (a),

    f(x) =x3+ 3x2[(2)2+ 2]x+ 8(2)

    =x3+ 3x26x16

    The required remainder=f(4)

    =(4)3+ 3(4)26(4) 16 1M

    = 64 + 48 24 16

    = 72 1A

    (c) Using long division, we have

    f(x) = (x+ 2)(x2+x8) 1M+1A

    f(x) = 0(x+ 2)(x2+x8) = 0

    x= 2 1A

    or x= )1(2

    )8)(1(4)1(1 2 1M

    x= 2

    331

    x

    =2

    331 orx =

    2

    331 1A+1A

    11.

    (a) The remainder is awhenf(x) is divided

    by 2x+ 3,

    2

    3f =

    a

    i.e. 4

    3

    23

    + 4b

    2

    23

    23 + 2a

    10 =

    a 1M

  • 7/25/2019 Maths Ex 123!@#abc

    23/24

    2

    27 + 9b+

    2

    3 + 2a10 =

    a

    a+ 9b22 =

    0............................(i)

    f(x) is divisible byx+ b,

    f(b) = 0

    i.e. 4(b)3+ 4b(b)2(b)+ 2a10 = 0 1M

    4b3+ 4b3+ b+ 2a10 = 0

    2a+b10 =

    0....................................(ii)

    From (i), a= 22

    9b......................................................................(iii)

    Substituting (iii) into (ii), we have

    2(229b) +b10 = 0 1M

    4418b+b10 = 0

    17b=34

    b= 2 1A

    Substituting b=2 into (iii), we have

    a= 229(2)

    = 4 1A

    (b) From (a),

    f(x) = 4x3+ 4(2)x2x + 2(4) 10

    = 4x3+ 8x2x2

    f(x) is divisible byx+ 2.

    Using long division, we have

    f(x) = (x+ 2)(4x21) 1M+1A

    = (x+ 2)(2x+ 1)(2x1) 1A

    12.

    (a) 2x2

    3x5 = (2x5)(x+ 1) f(x) is divisible by 2x23x5,

    f(x) is divisible by 2x5 andx+ 1. 1M

    2

    5f = 0

    102

    5

    2

    5

    2

    523

    nm = 0 1M

    2

    25

    4

    25

    8

    125 nm = 0

    5m2n+ 4 =

    0..............................(i)

    f(1) = 0

    m(1)3n(1)2+ (1)+ 10 = 0 1M

    mn1 + 10 = 0

    n= 9

    m.................(ii)

    Substituting (ii) into (i), we have

    5m2(9 m) + 4 = 0 1M

    5m18 + 2m+ 4 = 0

    7m= 14

    m= 2 1A

    Substituting m= 2 into (ii), we have

    n= 9 2

    = 7 1A

    (b) From (a),f(x) = 2x37x2+x + 10.

    The required remainder=f(5)

    = 2(5)37(5)2+ 5+ 10 1M

    = 250 175 + 5 + 10

    = 90 1A

    13.

    (a) h(x) = 2f(x) g(x)

    = 2(x+ 2)P(x)

    (x+ 2)Q(x), whereP(x)and Q(x) are polynomials. 1M

    = (x+ 2)[2P(x)Q(x)]

    h(x) is divisible byx+ 2. 1A

    (b) f(x) is divisible byx+ 2,

    f(2) = 0

    i.e. (2)3+ b(2)2(2)a= 0 1M

    8 + 4b+ 2a= 0

    a

    4b+ 6 =

    0........................(i)

    g(x) is divisible byx+ 2,

    g(2) = 0

    i.e. a(2)3+ 9(2)2+ 7(2)3b= 0 1M

    8a+ 36 143b= 0

    8a+ 3b22 =

    0.................(ii)

    (i) 8: 8a32b+ 48 =0...................................(iii)

    (ii)(iii): 35b70 = 0 1M

    35b= 70

  • 7/25/2019 Maths Ex 123!@#abc

    24/24

    b = 2 1A

    Substituting b=2 into (i), we have

    a4(2) + 6 = 0

    a= 2 1A

    h(x) = 2(x3+ 2x2x2)(2x3+ 9x2+ 7x6)

    = 5x29x+ 2 1A

    (c) h(x) = 0

    5x29x+ 2 = 0

    5x2+ 9x2 = 0

    (5x1)(x+ 2) = 0 1M

    x=5

    1 orx=2 1A+1A

    14.(a) 4x3 is a factor off(x),

    4

    3f = 0

    i.e. 4

    3

    4

    3

    + m

    2

    4

    3

    n

    4

    3 + 6 = 0 1M

    16

    27 +

    16

    9m

    4

    3n + 6 = 0

    9m12n+ 123 = 0

    3m

    4n+ 41 = 0

    4

    413

    mn 1A

    (b) n< 14

    4

    413 m < 14

    3m+ 41 < 56 1M

    3m< 15

    m< 5 1A

    (c) (i) From (b), mis a positive integer less than

    5.

    The possible values of mare 1, 2, 3

    and 4.

    When m= 1, n=4

    41)1(3

    = 11.

    Whenm= 2, n=

    4

    41)2(3 = 11.75.

    Whenm= 3, n=

    4

    41)3(3 = 12.5.

    Whenm= 4, n=

    4

    41)4(3 = 13.25.

    1M

    m= 1, n= 11 1A+1A

    (ii) From (c)(i),

    f(x) = 4x3+x211x + 6

    Using long division, we have

    f(x) = (4x3)(x2+x2) 1M+1A

    = (4x3)(x+ 2)(x1) 1A