69
Mathematics in Ancient China Chapter 7

Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Mathematics in Ancient China

Chapter 7

Page 2: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Timeline

Li ZhiQin JiushaoYang HuiZhu Shijie

Liu HuiZu Chongzhi

Gnomon, Nine Chapters

CHINA Yuan / MingSongTangWarring StatesWarringStates

ZhouShang Han

1500 CE1000 CE1000 BCE1500 BCE2000 BCE2500 BCE3000 BCE 500 BCE 0 CE 500 CE

MycenaeanMinoan GREECEChristianRomanHellenisticClassicalArchaicDark

500 CE0 CE500 BCE3000 BCE 2500 BCE 2000 BCE 1500 BCE 1000 BCE

MESOPOTAM IA

EGYPTInt

Int

1000 BCE1500 BCE2000 BCE2500 BCE3000 BCE

New KingdomMiddle KingdomIntOld KingdomArchaic

AssyriaOld BabylonAkkadiaSumaria

Page 3: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Early Timeline

• Shang Dynasty:  Excavations near Huang River, dating to 1600 BC, showed “oracle bones” – tortoise shells with inscriptions used for divination. This is the source of what we know about early Chinese number systems.

Page 4: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Early Timeline

Page 5: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Han Dynasty ( 206 BC –220 AD)

• System of Education especially for civil servants, i.e. scribes.

• Two important books*:• Zhou Bi Suan Jing (Arithmetical Classic of the Gnomon and the Circular Paths of Heaven)

• Jiu Zhang Suan Shu (Nine Chapters on the Mathematical Art)

*unless of course we’re off by a millennium or so.

Page 6: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Nine Chapters

• This second book, Nine Chapters, became central to mathematical work in China for centuries.  It is by far the most important mathematical work of ancient China.  Later scholars wrote commentaries on it in the same way that commentaries were written on The Elements.  

Page 7: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Chapters in … uh, the Nine Chapters

1. Field measurements, areas, fractions2. Percentages and proportions3. Distributions and proportions; arithmetic and 

geometric progressions4. Land Measure; square and cube roots5. Volumes of shapes useful for builders.6. Fair distribution (taxes, grain, conscripts)7. Excess and deficit problems8. Matrix solutions to simultaneous equations9. Gou Gu: ; astronomy, 

surveying

Page 8: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Linear Equations

• There are three classes of grain, of which three bundles of the first class, two of the second, and one of the third, make 39 measures.  Two of the first, three of the second, and one of the third make 34 measures. And one of the first, two of the second and three of the third make 26 measures.  How many measures of grain are contained in one bundle of each class?

Page 9: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Linear Equations

• Solution:  “Arrange the 3, 2, and 1 bundles of the 3 classes and the 39 measures of their grains at the right.  Arrange other conditions at the middle and the left:”

1 2 32 3 23 1 126 34 39

Page 10: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Linear Equations

• “With the first class on the right multiply currently the middle column and directly leave out.” (That is, multiply the middle column by 3, and then subtract some multiple of the right column, to get 0).  

1 0 32 5 23 1 126 24 39

Page 11: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Linear Equations

• Do the same with the left column:

0 0 34 5 28 1 139 24 39

Page 12: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Linear Equations

• “Then with what remains of the second class in the middle column, directly leave out.”  In other words, repeat the procedure with the middle column and left column:

0 0 34 5 28 1 139 24 39

0 0 30 5 236 1 199 24 39

Page 13: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Linear Equations

• This was equivalent to a downward Gaussian reduction.  The author then described how to “back substitute” to get the correct answer.

Page 14: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Method of Double False Position

• Or, “Excess and Deficit.”• A tub of capacity 10 dou contains a certain quantity of husked rice.  Grains (unhuskedrice) are added to fill up the tub.  When the grains are husked, it is found that the tub contains 7 dou of husked rice altogether.  Find the original amount of husked rice.  Assume 1 dou of unhusked rice yields 6 sheng of husked rice, with 1 dou = 10 sheng.  

Page 15: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Our Method, Maybe

Let x be amount of husked rice, y be amount of unhusked rice.  Then  and 

.  So  , and substituting 

we have  .  Simplifying, we 

get  , and  , or 2 dou, 5 sheng.

Page 16: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Method of Double False Position

• If the original amount is 2 dou, a shortage of 2 sheng occurs. If the original amount if 3 dou, there is an excess of 2 sheng.  Cross multiply 2 dou by the surplus 2 sheng, and then 3 dou by the deficiency of 2 sheng, and add the two products to give 10 dou.  Divide this sum by the sum of the surplus and deficiency to obtain the answer 2 dou and 5 sheng.  

Page 17: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Double False Position

• ∙ ∙ Why does this work?

• We want to solve In general, we’ll examine a method for solving  .

Page 18: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Double False Position

• So suppose we want to solve  .  We’ll do it by making two guesses  and  , with the respective errors 

, and .  

Then subtracting these equations gives .  Next, multiplying 

equation 1 by  and equation 2 by  we get: 

Page 19: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Double False Position

, and .  

Subtracting these equations gives:.  Finally, dividing this 

equation by  gives us:

.  Finally, if  is a surplus and  is 

a deficit, we can say  . 

Page 20: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Gou Gu in Zhou Bi

Page 21: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Liu Hui’s Proof of Gou Gu

Page 22: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Song Dynasty (900 – 1279)

• Two Books by Zhu Shijie had topics such as:– Pascal’s triangle (350 years before Pascal)– Solution of simultaneous equations using matrix methods

– “Celestial element method” of solving equations of higher degree.  (Horner’s method)

• European algebra wouldn’t catch up to this level until the 1700’s.  

Page 23: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Numeration

• Numerals on the Oracle Stones:

Page 24: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Numeration

Page 25: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Numeration

Hindu ‐Arabic

0 1 2 3 4 5 6 7 8 9 10 100 1000

Chinese  〇 一二三四 五六七八九十 百 千

Financial 零 壹贰叁肆 伍陆柒捌玖拾 佰 仟

Page 26: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Counting Rod System

Page 27: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Counting Rods 

• Counting rods allowed for a number of very quick calculations, including the basic four arithmetic operations, and extraction of roots.

• Some examples:

Page 28: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Multiplication with Counting Rods𝍥 𝍰

𝍬 𝍦

𝍥 𝍰

𝍡 𝍬

𝍬 𝍦

1. Set up the two factors, in this case 68 and 47, such that the ones digit of the bottom is aligned with the tens digit of the top.  Leave room in middle for calculations.

2. Multiply tens digit of top by tens digit of bottom, place in middle with ones over the bottom’s tens digit.

Page 29: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Multiplication with Counting Rods𝍥 𝍰

𝍡 𝍬 𝍬 𝍡

𝍬 𝍦

𝍰

𝍡 𝍰 𝍡

𝍬 𝍦

3. Multiply one’s digit on top by tens digit on bottom, and add to middle. 

4. Since you’ve used the tens digit on top, erase it.   

Page 30: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Multiplication with Counting Rods𝍰

𝍡 𝍰 𝍡

𝍣 𝍯

𝍰

𝍡 𝍰𝍫 𝍡𝍡

𝍣 𝍯

5. Move bottom digits to the right one space. 

6. Multiply tens digit on bottom by ones digit of top; place ones digit of answer above tens on bottom, and

7. Combine. 𝍰

𝍢 𝍩 𝍣

𝍣 𝍯

Page 31: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Multiplication with Counting Rods𝍰

𝍢 𝍩 𝍣

𝍯

𝍰

𝍢 𝍩 𝍣𝍤 𝍮

𝍯

8. Erase the tens digit on bottom because you’re done with it.

9. Finally, multiply the two units digits, and add them to the middle.

10. Combine, and erase the units digits on top and bottom.

𝍢 𝍩 𝍨 𝍮

Page 32: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Division with Counting Rods

1. Place the dividend, 407, in the middle row and the divisor, 9, in the bottom row. Leave space for the top row.

2. 7 doesn’t go into 4, so shift the 7 to the right

𝍬 𝍯

𝍱

𝍬 𝍯

𝍨

Page 33: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Division with Counting Rods

3. Nine goes forty 4  times with a remainder of 4; write the quotient in the top row, the remainder  in the middle.

4. Shift the 9 to the right one digit.  

𝍣

𝍣 𝍯

𝍨

𝍣

𝍣 𝍯

𝍱

Page 34: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Division with Counting Rods

5. Nine goes into 47 five times, with a remainder of 2.  Put 5 on top, remainder in the middle.  

6. The answer is, 45, remainder 2.

𝍣 𝍭

𝍪

𝍱

𝍣 𝍭

𝍪

Page 35: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Fractions

• From Nine Chapters:• “If the denominator and numerator can be halved, halve them.  If not, lay down the denominator and numerator, subtract the smaller number from the greater.  Repeat the process to obtain the greatest common divisor (teng). Simplify the original fraction by dividing both numbers by the teng.

Page 36: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Fractions

• Addition and subtraction were done as we do them but without necessarily finding leastcommon denominators – the common denominator is just the product of the two denominators.  The fraction is simplified after adding or subtracting.

Page 37: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Fractions

• Multiplication was done as we do it.• Division was done by first getting common denominators, then inverting and multiplying so that the common denominators cancel.  Then the fraction was simplified.

Page 38: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Negative numbers?

• Red and black rods, or rods laid diagonally over others.

• “For subtractions – with the same signs, take away one from the other; with different signs, add one to the other; positive taken from nothing makes negative, negative from nothing makes positive.”

• “For addition – with different signs subtract one from the other; with the same signs add one to the other; positive and nothing makes positive; negative and nothing makes negative.”

Page 39: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Approximations of π

• Liu Hui, 260 AD:  3.1416 (by inscribing hexagon in circle, using the Pythagorean Theorem to approximate successively polygons of sides 12, 24, ….,96).

• Zu Chongzhi, 480 AD: between  3.1415926 and 3.1415927 (by similar method, but moving past 96 to oh, say 24,576).

Page 40: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Solving Polynomials

• Precious Mirror of the Four Elements by ShuShi‐jie, 1303 CE.

• Method known as Fan Fa, today known as Horner’s Method,  and using what you may know as synthetic division.  

Page 41: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Fan Fa:  

• Starting with a guess of 1, we do synthetic division to get remainder 12.  Then ignoring the remainder, we do another synthetic division on the quotient, and repeat until we get down to a constant.  

1 1 ‐7 ‐3 211 ‐6 ‐9

1 ‐6 ‐9 12

1 1 ‐6 ‐91 ‐5

1 ‐5 ‐14

1 1 ‐51

1 ‐4

1 1

1

Page 42: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Fan Fa:  

• The remainders on the first and second lines are divided and multiplied by ‐1 to obtain the next “adjustment” to the guess for a root.  

• Also, 

1 1 ‐7 ‐3 211 ‐6 ‐9

1 ‐6 ‐9 12

1 1 ‐6 ‐91 ‐5

1 ‐5 ‐14

1 1 ‐51

1 ‐4

1 1

1 GUESS: 0.857143

Page 43: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Fan Fa:  

• The remainders give you the polynomial for the next round of synthetic division.  

1 1 ‐7 ‐3 211 ‐6 ‐9

1 ‐6 ‐9 12

1 1 ‐6 ‐91 ‐5

1 ‐5 ‐14

1 1 ‐51

1 ‐4

1 1

1

Page 44: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Fan Fa:  

• Our “suggested” next guess was 0.857143.  We try 0.8, but the negative sign on the next guess ( ‐0.06753) tells us our 0.8 was too large.  We go back to 0.7.   

0.8 1 ‐4 ‐14 120.8 ‐2.56 ‐13.248

1 ‐3.2 ‐16.56 ‐1.248

0.8 1 ‐3.2 ‐16.560.8 ‐1.92

1 ‐2.4 ‐18.48

0.8 1 ‐2.40.8

1 ‐1.6

0.8 1

1 GUESS: ‐0.06753

Page 45: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Fan Fa:  

• This time, we get a positive next guess of 0.03217.  So we take 0.03 as our guess for the next digit, and go again.  

• And, again, we take the end digits from each “result” line to populate our next top line.  

0.7 1 ‐4 ‐14 120.7 ‐2.31 ‐11.417

1 ‐3.3 ‐16.31 0.583

0.7 1 ‐3.3 ‐16.310.7 ‐1.82

1 ‐2.6 ‐18.13

0.7 1 ‐2.60.7

1 ‐1.9

0.7 1

1 GUESS: 0.032157

Page 46: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Fan Fa:  

• Running the algorithm again, we get a next guess of .002.

• So far then, our approximate root is 1.73 and is heading for about 1.732…

0.03 1 ‐1.9 ‐18.13 0.5830.03 ‐0.0561 ‐0.54558

1 ‐1.87 ‐18.1861 0.037417

0.03 1 ‐1.87 ‐18.18610.03 ‐0.0552

1 ‐1.84 ‐18.2413

0.03 1 ‐1.840.03

1 ‐1.81

0.03 1

1 GUESS: 0.002051

Page 47: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Fan Fa:  

• Our next guess is positive and very small, so the error in our current approximation is small.  Best guess:

• 1.732 (+0.00005 ish?)

• 2050808

0.002 1 ‐1.81 ‐18.2413 0.0374170.002 ‐0.00362 ‐0.03649

1 ‐1.808 ‐18.2449 0.000927

0.002 1 ‐1.808 ‐18.24490.002 ‐0.00361

1 ‐1.806 ‐18.2485

0.002 1 ‐1.8060.002

1 ‐1.804

0.002 1

1 GUESS: 5.08E‐05

Page 48: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Fan Fa:  

• Aw, heck.  Just for fun, let’s go one more: 

• As  you can see, we’re getting very close to our calculator‐provided approximation.   

0.00005 1 ‐1.804 ‐18.2485 0.0009270.00005 ‐9E‐05 ‐0.00091

1 ‐1.80395 ‐18.2486 1.47E‐05

0.00005 1 ‐1.80395 ‐18.24860.00005 ‐9E‐05

1 ‐1.8039 ‐18.2487

0.00005 1 ‐1.80390.00005

1 ‐1.80385

0.00005 1

1 GUESS: 8.08E‐07

Page 49: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Fan Fa and Horner

• This general method was rediscovered by William Horner (1786 – 1837) and published in a paper in 1830.

• Except it was pretty much identical to a method published in 1820 by Theopholis Holdred, a London watchmaker. 

• Of course, Paolo Ruffini (1765 – 1822), who we will discuss later in another context, already won a prize for outlining this method in Italy.

• And, of course, there’s Shu Shi‐jie, more than four centuries earlier.  

Page 50: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Magic Squares

Page 51: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Lo Shu

• The semi‐mythical Emperor Yu, (circa 2197 BC) walking along the banks of the Luo River, looked down to see the Divine Turtle. On the back of his shell was a strange design.  

Page 52: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Lo Shu

• When the design on the back was translated into numbers, it gave the 3x3 magic square.

• Saying “the” 3x3 magic square is appropriate because it is unique up to rotations and reflections.

Page 53: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

He Tu

• According to legend, the He Tu is said to have appeared to Emperor Yu on the back of (or from the hoof‐prints of) a Dragon‐Horse springing out of the Huang (Yellow) River.

Page 54: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

He Tu

• When it was translated into numbers, it gave a cross‐shaped array.

• To understand its meaning is to understand the structure of the universe, apparently.

• Or, at least to understand that, disregarding the central 5, the odds and evens both add to 20.

72

8 3 5 4 916

Page 55: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Magic Squares

• Yang Hui, “Continuation of Ancient Mathematical Methods for Elucidating the Strange Properties of Numbers”, 1275.

Page 56: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Order 3

• Arrange 1‐9 in three rows slanting downward to the right.

14 2

7 5 38 6

9

Page 57: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Order 3

• Arrange 1‐9 in three rows slanting downward to the right.

• Exchange the head (1) and the shoe (9).

94 2

7 5 38 6

1

Page 58: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Order 3

• Arrange 1‐9 in three rows slanting downward to the right.

• Exchange the head (1) and the shoe (9).

• Exchange the 7 and 3.

94 2

3 5 78 6

1

Page 59: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Order 3

• Arrange 1‐9 in three rows slanting downward to the right.

• Exchange the head (1) and the shoe (9).

• Exchange the 7 and 3.• Lower 9, and raise 1.

4 9 23 5 7

8 1 6

Page 60: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Order 3

• Arrange 1‐9 in three rows slanting downward to the right.

• Exchange the head (1) and the shoe (9).

• Exchange the 7 and 3.• Lower 9, and raise 1.• Skootch* in the 3 and 7*technical term

4 9 23 5 78 1 6

Page 61: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Order 3 – The Lo Shu

Page 62: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Order 4

• Write 1 – 16 in four rows.  

1 2 3 45 6 7 89 10 11 1213 14 15 16

Page 63: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Order 4

• Write 1 – 16 in four rows.  

• Exchange corners of outer square

16 2 3 135 6 7 89 10 11 124 14 15 1

Page 64: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Order 4

• Write 1 – 16 in four rows.  

• Exchange corners of outer square

• Exchange the corners of inner square.

16 2 3 135 11 10 89 7 6 124 14 15 1

Page 65: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Order 4

• Write 1 – 16 in four rows.  

• Exchange corners of outer square

• Exchange the corners of inner square.

16 2 3 135 11 10 89 7 6 124 14 15 1

Page 66: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Order 4

• Write 1 – 16 in four rows.  

• Exchange corners of outer square

• Exchange the corners of inner square.

• Voila! Sum is 34.

16 2 3 135 11 10 89 7 6 124 14 15 1

Page 67: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Order 4

• Other magic squares of order 4 are possible for different initial arrangements of the numbers 1 – 16.  

13 9 5 114 10 6 215 11 7 316 12 8 4

4 9 5 1614 7 11 215 6 10 31 12 8 13

Page 68: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

Order 5, 6, 7, ….

• Yang Hui constructed magic squares of orders up through 10, although some were incomplete.  

Page 69: Mathematics in Ancient China - Brigham Young …williams/Classes/300W2012/PDFs/...1, we do synthetic division to get remainder 12. Then ignoring the remainder, we do another synthetic

A Little About Magic Squares

• Normalmagic squares of order n are n x n arrays containing each number from 1 through  They exist for all  .

• The sum of each row, column, and diagonal is the magic number M which for normal magic squares depends only on n.  

• .  For the first few n’s this is 15, 34, 65. 111, 175 . . . 

• For n odd, the number in the central cell is