12
11/13/2013 1 Math 103 –Rimmer 5.1 The Area Problem 5.3 The Definite Integral 5.1 The Area Problem Goal: To find the area under the graph of f(x) and above the x-axis between x = a and x = b How: Problem: Use rectangles to approximate the area curved sides Math 103 –Rimmer 5.1 The Area Problem 5.3 The Definite Integral ( ) [ ] 2 on the interval 1,5 f x x = using 4 rectangles and the endpoint of each interval to get the height of each rectangle right ( ) ( ) ( ) ( ) Area 2 1 3 1 4 1 5 1 f f f f ⋅+ ⋅+ ⋅+ Area 4 9 16 25 + + + 2 Area 54 units

Math 103 –Rimmer 5.1 The Area Problem 5.3 The Definite ...11/13/2013 2 Math 103 –Rimmer 5.1 The Area Problem f x x( ) = 2 on the interval 1,5[ ] 5.3 The Definite Integral using

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • 11/13/2013

    1

    Math 103 – Rimmer

    5.1 The Area Problem

    5.3 The Definite Integral5.1 The Area ProblemGoal: To find the area under the graph of f(x)

    and above the x-axis between x = a and x = b

    How:

    Problem:

    Use rectangles to approximate the area

    curved sides

    Math 103 – Rimmer

    5.1 The Area Problem

    5.3 The Definite Integral( ) [ ]2 on the interval 1,5f x x=

    using 4 rectangles

    and the endpoint

    of each interval to get

    the height of each rectangle

    right

    ( ) ( ) ( ) ( )Area 2 1 3 1 4 1 5 1f f f f≈ ⋅ + ⋅ + ⋅ + ⋅

    Area 4 9 16 25≈ + + +

    2Area 54 units≈

  • 11/13/2013

    2

    Math 103 – Rimmer

    5.1 The Area Problem

    5.3 The Definite Integral( ) [ ]2 on the interval 1,5f x x=

    using 4 rectangles

    and the endpoint

    of each interval to get

    the height of each rectangle

    left

    Area 1 4 9 16≈ + + +

    2Area 30 units≈

    ( ) ( ) ( ) ( )Area 1 1 2 1 3 1 4 1f f f f≈ ⋅ + ⋅ + ⋅ + ⋅

    Math 103 – Rimmer

    5.1 The Area Problem

    5.3 The Definite Integral( ) [ ]2 on the interval 1,5f x x=

    using 4 rectangles

    and the

    of each interval to get

    the height of each rectangle

    midpoint

    9 25 49 81Area

    4 4 4 4≈ + + +

    2164Area units4

    ( ) ( ) ( ) ( )3 5 7 92 2 2 2Area 1 1 1 1f f f f≈ ⋅ + ⋅ + ⋅ + ⋅

    2Area 41 units≈

  • 11/13/2013

    3

    Math 103 – Rimmer

    5.1 The Area Problem

    5.3 The Definite Integral( ) [ ]2 on the interval 1,5f x x=

    using 8 rectangles

    and the endpoint

    of each interval to get

    the height of each rectangle

    right

    Math 103 – Rimmer

    5.1 The Area Problem

    5.3 The Definite Integral( ) [ ]2 on the interval 1,5f x x=

    using 8 rectangles

    and the endpoint

    of each interval to get

    the height of each rectangle

    right

    1 9 25 49 81Area 4 9 16 25

    2 4 4 4 4

    ≈ + + + + + + +

    21 164Area 54 units2 4

    ≈ +

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 5 7 91 1 1 1 1 1 1 12 2 2 2 2 2 2 2 2 2 2 2Area 2 3 4 5f f f f f f f f≈ ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅

    295Area units2

    2Area 47.5 units≈

  • 11/13/2013

    4

    Math 103 – Rimmer

    5.1 The Area Problem

    5.3 The Definite Integral

    Math 103 – Rimmer

    5.1 The Area Problem

    5.3 The Definite Integral

  • 11/13/2013

    5

    Math 103 – Rimmer

    5.1 The Area Problem

    5.3 The Definite Integral

    Math 103 – Rimmer

    5.1 The Area Problem

    5.3 The Definite Integral

  • 11/13/2013

    6

    Math 103 – Rimmer

    5.1 The Area Problem

    5.3 The Definite Integral

    as the number

    of rectangles

    increases, accuracy

    increases

    Math 103 – Rimmer

    5.1 The Area Problem

    5.3 The Definite Integral

  • 11/13/2013

    7

    Math 103 – Rimmer

    5.1 The Area Problem

    5.3 The Definite Integral5.3 The Definite Integral

    Math 103 – Rimmer

    5.1 The Area Problem

    5.3 The Definite Integral

    ( )b

    a

    f x dx∫

    Definite Integral

  • 11/13/2013

    8

    Math 103 – Rimmer

    5.1 The Area Problem

    5.3 The Definite Integral

    * and i i i

    x x x a i x= = + ∆

    ( )*1

    limn

    in

    i

    f x x→∞

    =

    ∆∑

    b ax

    n

    −∆ =

    a a x+ ∆ 2a x+ ∆ 3a x+ ∆

    a i x+ ∆

    0x 1x 2x 3x ix

    using right endpoints we can simnplify the Riemann sum

    ( ) ( ) ( ) ( )1 2lim i nn

    x f x f x f x f x→∞

    ∆ + + + + + � �

    ( )*1

    limn

    in

    i

    f x x→∞

    =

    ∆∑ ( )1

    limn

    b a

    nn

    i

    b af a i

    n

    →∞=

    −= + ⋅∑

    5.2 Riemann Sum

    Math 103 – Rimmer

    5.1 The Area Problem

    5.3 The Definite Integral

    Appendix E : Sigma Notation page A37

  • 11/13/2013

    9

    Math 103 – Rimmer

    5.1 The Area Problem

    5.3 The Definite Integral( ) [ ]2 on the interval 1,5f x x=

    Find the exact area using the Riemann sum ( ) ( )1

    lim

    b n

    b a

    nn

    ia

    b af x dx f a i

    n

    →∞=

    −= + ⋅∑∫

    ( )5

    2 4

    11

    4lim 1

    n

    nn

    i

    x dx f in→∞ =

    = + ⋅∑∫ ( )2

    4

    1

    4lim 1

    n

    nn

    i

    in→∞ =

    = + ⋅∑ ( )2

    2

    8 16

    1

    4lim 1

    n

    i in nn

    in→∞ == + +∑

    2

    2

    8 16

    1 1 1

    4lim 1

    n n n

    i in nn

    i i in→∞ = = =

    = + +

    ∑ ∑ ∑

    11

    2

    21

    4 8li 1

    16m

    n

    i

    n

    n

    n

    i ini

    ni

    n ==→ =∞

    = + +

    ∑∑ ∑

    ( ) ( )( )2

    4 8 1 16li

    2

    21 1

    6m

    n n n nn

    n nn n n

    →∞

    + = + ⋅ + ⋅

    +

    + ( ) ( )( )2 3

    1 1 2 132 64lim 4

    2 6n

    n n n n n

    n n→∞

    + + + = + ⋅ + ⋅

    32lim 4n→∞

    = +

    16

    2n

    n⋅

    ( )1

    2

    n + 64+

    32

    3n 2

    n⋅

    ( ) ( )22 3 1

    1 2 1

    6

    n n

    n n+ +

    + +3

    ( )22

    32 2 3 116 16lim 4

    3n

    n nn

    n n→∞

    + ++ = + +

    2 2

    644 16

    3

    16 3 2l

    2 3

    3im

    n n n n→∞

    = + + + +

    +

    0 0 0

    644 16

    3= + +

    60 64

    3

    +=

    124

    3=

    1= 41

    3Too much work. We find an easier way in section 5.3

    Math 103 – Rimmer

    5.1 The Area Problem

    5.3 The Definite Integral

  • 11/13/2013

    10

    Math 103 – Rimmer

    5.1 The Area Problem

    5.3 The Definite Integral

    Math 103 – Rimmer

    5.1 The Area Problem

    5.3 The Definite Integral

    Not all functions are integrable

    the definite integral measures net area

    Area under the x-axis is considered negative

  • 11/13/2013

    11

    Math 103 – Rimmer

    5.1 The Area Problem

    5.3 The Definite Integral

    ( )1. 0a

    a

    f x dx =∫

    Properties :

    ( ) ( )2. a b

    b a

    f x dx f x dx= −∫ ∫

    ( ) ( ) ( ) ( )3. b b b

    a a a

    f x g x dx f x dx g x dx± = ± ∫ ∫ ∫

    ( ) ( )4. b b

    a a

    cf x dx c f x dx=∫ ∫

    ( )5. b

    a

    cdx c b a= −∫

    ( ) ( ) ( )6. If , then b c b

    a a c

    a c b f x dx f x dx f x dx< < = +∫ ∫ ∫

    Math 103 – Rimmer

    5.1 The Area Problem

    5.3 The Definite Integral

    2

    2 33

    −3 −4

    −1

    ( )2

    0

    . i f x dx =∫ 4

    ( )5

    0

    . ii f x dx =∫ ( ) ( )2 5

    0 2

    f x dx f x dx+∫ ∫ 4 6= + = 10

    ( )7

    5

    . iii f x dx =∫ −3

    ( )9

    0

    . iv f x dx =∫ ( ) ( )5 9

    0 5

    f x dx f x dx+∫ ∫ ( )10 8= + − = 2

  • 11/13/2013

    12

    Math 103 – Rimmer

    5.1 The Area Problem

    5.3 The Definite IntegralEvaluate the integral by interpreting it in terms of areas.

    ( )5

    2

    0

    1 25 x dx+ −∫21 25y x= + −

    only the right upper

    quarter circle

    ( )22

    1 25x y+ − =

    21 54

    rπ= +

    =25π

    + 54

    12

    0

    6x dx−∫ 6y x= −

    shifted 6

    units to the right

    y x= ( )( )1

    6 62

    ( )( )1

    6 62

    18 18

    = 36

    ( )center 0,1 , radius 5=

    5