94
HOT TOPICS IN MATERIALS 2017 Materials Day October 17 - 18 THE NITTANY LION INN and THE MILLENNIUM SCIENCE COMPLEX mri.psu.edu linkedin.com/in/PennStateMRI twitter.com/PennStateMRI

Materials DayIN MATERIALS HOT TOPICS science researchers, with expertise drawn from both the Huck Institutes of the Life Sciences and MRI, as well as the Penn State College of Medicine

Embed Size (px)

Citation preview

HOT TOPICSIN MATERIALS2

017Materials Day

October 17-18

THE NITTANY LION INN andTHE MILLENNIUM SCIENCE COMPLEX

mri.psu.edu linkedin.com/in/PennStateMRI twitter.com/PennStateMRI

1

WelcometoMaterialsDay2017WelcometoMaterialsDayatPennState,sponsoredbytheMaterialsResearchInstitute.MRIiscomposedof250-plusmaterials-relatedfacultyandtheirresearchgroupsatUniversityParkandCommonwealthcampuses.MRIoperatesfouropenuserfacilitiesformodelingandsynthesis,nano-andmicro-fabrication,materialscharacterization,and2Dcrystalsynthesis.Thelatter,theTwo-DimensionalCrystalConsortium-MaterialsInnovationPlatform(2DCC-MIP),isanewnationaluserfacilitysupportedbytheNationalScienceFoundation(DMR-1539916).Thegoalsofthe2DCC-MIParetodiscovernovel2Dmaterialsfornextgenerationelectronics,engageindustry,government,andacademiathroughanexternaluserprogram,andtrainthenextgenerationofscientistsintwo-dimensionalandlayeredmaterials.InadditiontoengagingdirectlywiththeMRI’sotherfacilities,the2DCC-MIPhasstate-ofthe-artinstrumentationandexpertisedistributedinthreeuserfacilities:ThinFilmsSynthesisandInSituCharacterization,BulkCrystalGrowth,andTheoryandSimulation.Visittheirwebsiteforacompleteoverview:mri.psu.edu/mip.Wearewitnessingtheconvergenceofthelifesciencesandthephysicalsciences,afrontierepitomizedbythetwointerdisciplinaryinstituteshousedwithintheMillenniumScienceComplex.OfparticularnoteonthisthemeistheinstallationoftheUniversity’sfirstcryogenictransmissionelectronmicroscope,inthebasementleveloftheMSC.Thisinstrumentisbeingsetuptoaccommodatebothlifesciencesandmaterialsscienceresearchers,withexpertisedrawnfromboththeHuckInstitutesoftheLifeSciencesandMRI,aswellasthePennStateCollegeofMedicine.AndintheMRINanofab,theworld’shighest-resolution3Dprinterisnowonline.Withsub-micrometerresolution,theNanoscribePhotonicprintercanprintfeaturesizesdownto200nm.HotTopicsThisyear’sprogramfeaturesinteractivebreakoutsessionsoneight“hottopics”inthematerialscommunity.Theformatofeachsessionisdesignedformaximumaudienceparticipation.Panelistswillprovideexpertisefromindustry,government,andacademicperspectives.Eachsessionchairwillconcludetheirbreakoutwithahigh-levelsummary.Enjoytheconversation,thekeynoteaddressandreception,andtheinteractivepostersession.

HOT TOPICSIN MATERIALS2

017Materials Day

October 17-18

2

TableofContentsAgenda………………………………………………………………………………………………………………………………..2-3CampusMapandPosterSessionFloorPlans…………………………………………………………….…………4-5Keynote……………………………………………………………………………………………………………………….…………6ReceptionTabletops………………………………………………………………………………………………….……………7BreakoutSessions………………………………………………………………………………………………………………8-15AbouttheIndustryTours……………………………………………………………………………………………….……..16PosterListbyResearchCategory……………………………………………………………………………….…….17-24PosterListwithAuthorsandAbstracts……………………………………………………………………….…........25

Agenda

Tuesday,October17AllagendaitemsforTuesdaywillbeintheNittanyLionInn10:00a.m. Registration11:00a.m.–2:00p.m. PosterSession

PosterswillbepresentedbymanyoftheMaterialsResearchInstitutefacultygroupsandprovideaninteractiveopportunitytogetasnapshotofthebreadthofresearchinmaterialsatPennState.

11:00a.m.-2:00p.m. LiveSMSpollingtovoteforyourfavoriteposter

12:30p.m.–1:30p.m. Lunch

2:30p.m.–4:30p.m. BreakoutSessions

“FunctionalMaterialsbyDesign”-IsmailaDaboVirtualexperimentsfromatomstosystems[Boardroom2]

“HumanitarianMaterials”-EstherObonyoMaterialsatahumanscale[PennStateRoom]

“AdvancedandSustainableManufacturing”-DouglasWolfeNewwaysofmaking[AlumniLounge]

“2DMaterials”-JoshuaRobinsonBuildingmaterialsonelayeratatime[Boardroom1]

5:00p.m.–7:45p.m. KeynoteReception“AerospaceMaterialsforExtremeEnvironments”AliSayir,AirForceResearchProgramManagerIntroducingtheKeynote:CliveRandall,MRIdirector,withtheStateoftheMaterialsResearchInstitute.Topvotedpostersandtabletopsdisplaysonsite.

3

Agenda(continued)

Wednesday,October18AllagendaitemsforWednesdaywillbeintheMillenniumScienceComplex8:00a.m. Registration Coffeeandpastrieswillbeprovided[3rdFloorCommons] 9:00a.m.–11:00a.m. BreakoutSessions

“AdvancedFibersandSmartTextiles”-MelikDemirelRecreatinganindustrybyaddingvalueandsustainability[N-203A/B]

"RedesigningCatalystsattheNanoscale”-MichaelJanikReactionmechanisminnanoscalesystems[N-201]

"MaterialsforHealth”-JianYangTheroadfrombiomaterialsciencetomedicaldevicesandpatientcare[N-050]

"ElectronicandPhotonicsontheHorizon”-ChrisGiebinkWhatarewebuildinginthelabtodaythatwillmattertomorrow?[N-308A/B]

11:30a.m.–1:00p.m. BreakoutSessionsChairs’Report-Outs Lunchwillbeprovided[3rdFloorCommons]1:00p.m.–3:00p.m. IndustryTours: MillenniumScienceComplex, CIMP-3D,or StiedleBuilding(newlyrenovatedandreopenedJuly2016)

The Millennium

ScienceCom

plex (MSC)

MSC

The Nittany Lion Inn (N

LI)

NLI

EastPark D

eck

CIMP 3D

located at Innovation Park off of Park Avenue

Nittany

Lion InnPark D

eck

Online interactive cam

pus maps:

maps.psu.edu

Steidle Building TourThe H

etzel UnionBuilding (H

UB)

HU

B

Eisenhower

Park Deck

6

KeynoteSpeaker Tuesday,October17|5:00p.m.–7:45p.m. Approximatekeynotetime:6:15p.m.

AliSayir AirForceOfficeofScientificResearchandNASALiaison

AerospaceMaterialsforExtremeEnvironments

BioDr.SayiriscurrentlytheProgramManagerofAerospaceMaterialsforExtremeEnvironmentsatAFOSR.Dr.SayirreceivedhisPh.D.in1990inMaterialsScienceandEngineeringfromCaseWesternReserveUniversityandheldaDiplomIngenieurDegreefromtheTechnicalUniversityofClausthal,Germany.Dr.SayirjoinedNASALewisResearchCenter(nowGlenn)in1990asaNationalResearchCouncilawardee.UponjoiningNASAGlenn,hebeganacareerofeutecticsolidificationandbasicresearchinpolyphasemicrostructures.Hehasmadecontributionsinthedevelopmentanduseofadvancedhighstrength,singlecrystalfibersforhightemperatureapplications,piezo-ceramicswithhighertemperaturecapabilityforactuationdevices,andthermoelectricmaterialsandspacepowerapplications.

Dr.Sayirhasservedonnationalandinternationalcommittees,andhasover50invitedpresentationsfortheAmericanCeramicSociety,AmericanPhysicalSociety,EuropeanCeramicSociety,ElectrochemicalSocietyandMaterialsResearchSociety.HeorganizedfiveInternationalWorkshopsandco-organized11symposiumswithAmericanCeramicSocietyandpublishedover120peer-reviewedjournalpublications.HehasbeenaFellowoftheAmericanCeramicSocietysince2010.HereceivedtheMedalforPublicServiceAward(2003),R&D100AwardforLaserFiberGrowth(1993),NASAInventionsBoardAwards(2009,2008,2007),andreceivednumerousrecognitionsfromIndustryandgovernmentlaboratories.

AsPointofContactforMaterialsandStructuresofNASAHypersonicprogram,hecoordinatedmaterialsandstructuresprojectsbetweenNASAcenters,DepartmentofDefense,IndustryandAcademia.Since2008hehasheldaResearchAssociateProfessorfacultyappointmentatCaseWesternReserveUniversityintheDepartmentofMaterialsScienceofEngineeringandsince2005hasheldanadjunctfacultyappointmentintheDepartmentofMechanicalEngineeringattheUniversityofAkron.

AbstractTransformativebreakthroughsmostofthetimedonotoriginatefromtheinvestigationsofmaterialsintheequilibriumstatebutincontraryatthemarginsofstability,inaregimeatthelimitoroutsideofthetextbookknowledgewithinthediscipline.Inthiscontext,thispresentationwillembracematerialsandprocessingscienceapproachesthatarefarfromthethermodynamicequilibriumdomain;i.e.,directionallysolidifiedeutecticstructures,highlydopedpiezoelectricandthermoelectricmaterials,andotheroxidematerialswithcagestructuresforelectronemission.Theintentistoelucidatethecomplexinterplaybetweenphasetransitionsforelectronic/magneticphaseseparationanduntangletheinterdependencebetweenstructuralandelectroniceffects.IwillalsodiscusswhatIconsidertobepromisingresearchconcentrationareaswithinceramicsresearchfortheaerospacematerialsforextremeenvironmentsportfolioofAirForceOfficeofScientificRe3search(AFOSR),includingthefocuseddevelopmentofaceramicsprocessingsciencelaboratoryforceramicmatrixcomposites,thedevelopmentofmaterialsforuseinthehypersonicregime.

7

ReceptionTabletops

1AerokineticSystemsLLC

MarkLeiby

[email protected]

2AgilentTechnologies

RickBerringer

[email protected]

3AnasysInstruments

JayAnderson

[email protected]

4BrukerNanosurfaces

EricRufe

[email protected]

5BrukerOptics

DanaKelley

[email protected]

6Cameca

MattPietrucha

[email protected]

7CarlZeissMicroscopy

JohnTreadgold

[email protected]

8DentonVacuum

HeidiSiwik

[email protected]

9KeysightTechnologies

GilMin

[email protected]

10KrüssGmbH

ArtKasson

[email protected]

11MurataManufacturing

SethBerbano

[email protected]

12neaspecGmbH

TobiasGokus

[email protected]

13PhysicalElectronics

RichPrice

[email protected]

14PPG

[email protected]

15RJLee

KeithWagner

[email protected]

16ThermoFisherScientificBulkElementalAnalysis

[email protected]

17ThermoFisherScientificMolecularSpectroscopy

[email protected]

18ThermoFisherScientificElectronMicroscopy

JimSmithJim.Smith@thermofisher

.onmicrosoft.com19

PennStateLearningFactory/PennTAP

[email protected]

20PennStateBehrend/SchoolofEngineering

[email protected]

21InventPennState/

Launchbox

[email protected]

8

BreakoutSession:

FunctionalMaterialsbyDesignVirtualExperimentsfromAtomstoSystems Tuesday,October17|2:30p.m.–4:30p.m.

AbstractProgressinsyntheticchemistryandlayer-by-layerassemblyhasopenedupthepossibilitytodesignmaterialsthatrespondinaprescribedwaytoexternalconstraints,makingitfeasibletoachievedesiredfunctionalitiesbyprecisecontroloftheirstructureandcomposition.Thesefunctionalmaterialshaveprofoundlytransformedthetechnologicallandscape,pushingbackthefrontiersofdeviceperformanceandminiaturizationwithapplicationsin,e.g.,energystorageandconversionandoptoelectronicnanotechnologies.Consideringthecentralroleplayedbyfunctionalmaterialsintechnologicalinnovations,thereisacriticalneedacrossacademia,industry,andnationallaboratoriestodevelopthefundamentalknowledge,technicalexpertise,andinfrastructuralcapabilitiesforsupportingthediscovery,development,anddeploymentofthesematerials.Thisbreakoutsessionwillbringtogetherresearchersfromacademiaandindustrytoexplainhowrecentadvancesincomputationalmodelingarebeingleveragedtosolvetheinversedesignproblemofidentifyingnovelmaterialswithtargetedfunctionalresponses.Theremainingchallengesfacingthecomputationaldesignoffunctionalmaterialswillalsobediscussed.

Panelists

Moderator:IsmailaDabo–assistantprofessorofmaterialsscienceandengineering,ThePennsylvaniaStateUniversity

v Dr.BorisKozinsky–PrincipalScientist,RobertBoschResearchandTechnologyCenterv Dr.MichaelMakowski–TechnicalPlatformManager,PPGIndustriesv Dr.AdamaTandia–ResearchAssociate,CorningInc.v Prof.JohnKeith–assistantprofessorofchemicalandpetroleumengineering,Universityof

Pittsburghv Prof.MichaelJanik–associateprofessorofchemicalengineering,ThePennsylvaniaState

Universityv Prof.AdrivanDuin–professorofmechanicalandnuclearengineering,ThePennsylvaniaState

University

9

BreakoutSession:

HumanitarianMaterialsMaterialsattheHumanScale Tuesday,October17|2:30p.m.–4:30p.m.

Abstract

Theinnovativedesignandsynthesisoftransformationalbuildingmaterialscansignificantlyadvanceeffortsdirectedatcatalyzingeconomicdevelopmentattheregionalscalethroughnarrowingtheglobalinfrastructuregap.Buildingmaterialsaccountforone-thirdofthetotalcostofconstruction.Thissessionwillfocusonidentifyingspecificwaysthroughwhichthetransformationaluseofhumanitarianmaterialswouldresultintransformativeimpactforthesocietythroughreducingconstructioncosts.Itwillalsoenhancetheoptimaluseofscarcematerialsinbuildingsystems,whichovertimefunctioninaneco-efficientmanner.Thereisabroadscopeforaddressingtheseneedsthroughnoveluseofbuildingmaterials.Theserangefromtheincrementalimprovementstotraditionalmaterialsandexistingcharacteristics,tothesynthesisofnewmaterialcombinationswithadditionalmultifunctionalcharacteristics,toradicalinnovationinmaterialswithentirelynewfunctionalities.Clearly,thisvastopportunityforinnovationhasattractedalotofattentionfromresearchersacrosstheglobe.Thisnotwithstanding,theexistingmarket-readymaterialscannotbedeployedeasilyinalow-incomecontextatthescalethatwouldresultintransformationalimpactforeconomicdevelopment,environmentalsustainable,andsocialprosperity.Leapingsuccessfullyoverwhathasbecomethe“valleyofdeath”formanyofthenon-conventionalbuildingmaterialsrequiresalivinglabapproach,whichallowsthekeydecisionmakerstoincorporateinputandfeedbackfromallthestakeholdersalongthevaluechaininatimelymanner.ThepaneldiscussionsinthissessionleverageanewinitiativedirectedatrevitalizingNewKensington,PA,intoavibrantcommunitythatsupportseconomicgrowthandsustainabledevelopmentthroughentrepreneurismandinnovation.AconsortiumledbyThePennsylvaniaStateUniversity(NewKensingtonandUniversityPark)andArconicTechnologyCenterischampioningtheinitiative.Theoutcomesofthisinitiativecanbeadaptedfordeploymentinotherlow-incomecommunitiessuchasotherRustBeltareasandacrosstheglobeinemergingeconomiessuchasSub-SaharanAfrica.

PanelistsModerator:EstherObonyo–associateprofessorofarchitecturalengineeringandengineeringdesign,ThePennsylvaniaStateUniversity

v ChancellorKevinSnider–ThePennsylvaniaStateUniversity,NewKensingtonv Mr.StephenB.Leonard–SeniorInnovationLead,ArconicTechnologyCenterv Ms.SarahSnider–VolunteerChair,NewKensingtonCorridorofInnovationv Prof.CliveRandall–Director,MaterialsResearchInstitute,professorofmaterialsscienceand

engineering

10

BreakoutSession:

AdvancedandSustainableMaterialsNewWaysofMaking(AdditiveManufacturing) Tuesday,October17|2:30p.m.–4:30p.m.

Abstract

Additive manufacturing (AM) technologies have opened a design space that offer the potential torevolutionizehowsomecomponentsaremanufacturedinthatnewandnovelcomponentsandsystemscan now be fabricated which previously could not due to the complexity of the manufacturingoperations. Thesemanufacturing innovations arepushingperformance capabilities tonewheights inbothindustrialanddefensesectors.Therearenumerousbenefitsassociatedwithadditivemanufacturingforpolymers,metals,ceramics,andcomposites(PMC,MMC,CMC)rangingfromcommercialproductstoprototypesbuttherearestillsomechallenges.Thisbreakoutsessionwilldiscussthevarioussuccesseswithregardstocommercialandgovernmentimplementationandinterestaswellasfuturechallengesandresearch opportunities in powder design characteristics/specifications, printing components with thecorrectgeometryanddimensions,partqualification,economicadvantages,componentsize,resolution,etc.thatwillfurtherdevelopthistechnology.ThePennsylvaniaStateUniversityishometotheCenterforInnovative Materials Processing through Direct Digital Deposition (CIMP-3D) which is a world-classresourceforadvancinganddeployingadditivemanufacturing(AM)technologyforcriticalapplications.WithabroadmissiontoadvanceanddeployAMtechnologyofmetallicandadvancedmaterialsystemsto industry, technical assistance to industry through selection, demonstration, validation training,educationanddisseminationofinformation.

Panelists

Moderator:DouglasE.Wolfe–AppliedResearchLaboratory,associateprofessorofmaterialsscienceandengineering,ThePennsylvaniaStateUniversity

v Dr.RichardMartukanitz–Co-DirectorCIMP-3D,AppliedResearchLaboratory,ThePennsylvaniaStateUniversity

v Prof.AllisonBeese–assistantprofessorofmaterialsscienceandengineering,ThePennsylvaniaStateUniversity

v Dr.WilliamFrazier–ChiefScientist,AirVehicleEngineering,NavalAirSystemsCommand(NAVAIR)

v Dr.DavidFurrer,SeniorFellowandDirectorofManufacturingTechnologies,PrattandWhitneyCorporation

v Dr.JamesSears,PrincipalEngineer,CarpenterTechnologiesCorporation

11

BreakoutSession:

2DMaterialsBuildingMaterialsOneLayerataTime Tuesday,October17|2:30p.m.–4:30p.m.

Abstract

Two-dimensionalmaterialshavebeentoutedasnext-generationmaterialsforelectronics,photonics,coatings,andcompositesformorethanadecadenow.Keytothesuccessof2Dmaterialswillbeourabilitytoconductleadinginternationalandmultidisciplinaryresearchon2Dlayeredmaterialsaimingatfindingnewphenomenaandapplicationsthatcouldbetransformedintohigh-impactproducts.ThePennsylvaniaStateUniversityhasthreemajorcentersfocusedon2Dmaterialsthatofferaunique,verticallyintegratedopportunitytospanfundamentalsciencetoapplication,withextremelyvaluablecomponentsincludingstate-of-the-artinfrastructureandresearchenvironment.Duringthisbreakoutsession,wewilldiscussthespectrumofopportunities2Dmaterialsmayoffer,andhowtheseopportunitiesmayberealizedintotomorrow’stechnology.

Panelists

Moderator:JoshRobinson–associateprofessorofmaterialsscienceandengineering,ThePennsylvaniaStateUniversity

v Dr.RobertLee–SurfacesResearchThinFilmsandSurfacesScience&TechnologyManager,CorningInc.

v Dr.NicholasGlavin–MaterialsScientist,AirForceResearchLabv Mr.RichardClark–SeniorTechnicalSpecialist,MorganAdvancedMaterialsv Prof.NitinSamarth–professorofphysics,ThePennsylvaniaStateUniversity

12

BreakoutSession:

AdvancedFibersandSmartTextilesRecreatinganIndustrybyAddingValueandSustainability Wednesday,October18|9:00a.m.–11:00a.m.

Abstract

Recentadvancesinthenanotechnologyoffibersandtextiles,combinedwithparallelimprovementsinbiotechnologyandsyntheticbiology,havedemonstratedthatmorecomplexmaterialswithpropertiesengineeredpreciselytooptimizeperformancecanbeachieved.Thesetechnologieswilltransitiontoindustrialapplicationsintextilethroughguidanceofthefundamentalmaterialsscienceandsuccessfuldevelopmentofsynthesis,integration,andevaluationofnovelfibers.Thethemesthatformthecorediscussionofthisbreakoutsessioninclude:(i)Developrevolutionarytechniquesforsynthesisofprogrammablefibers,(ii)Developsmartfibersusingself-assemblyoflayeredmaterialsandpolymers,(iii)Developnovelchemicalandmoleculardopingmethodstotailorsmartfibersforopticalandelectronicapplications,and(iv)Developnovelcharacterizationtechniquesacrossmultiplelengthscalestocorrelatetheprocess/propertyrelationshipofthefibersandtextiles.Thisbreakoutsessionbringstogetheragroupofleadingacademic,industrial,andgovernmentscientiststodiscussfutureopportunitiesindesigningadvancedandsmartfibersforaddedvalueandsustainabletextilesapplications.

Panelists

Moderator:MelikDemirel–professorofengineeringscienceandmechanics,ThePennsylvaniaStateUniversity

v Dr.NataliePomerantz–ResearchChemicalEngineer,USArmyNatickSoldierCenterv Dr.AndyLiu–FashionInstituteofTechnologyv Dr.BarbaraTrippeer–FashionInstituteofTechnologyv Ms.StephanieRogers–Director,AdvancedProductDevelopment,ApexMillsCorp.v Prof.FeleciaDavis–assistantprofessorofarchitecture,ThePennsylvaniaStateUniversity

13

BreakoutSession:

RedesigningCatalystsattheNanoscaleReactionMechanisminNanoscaleSystems Wednesday,October18|9:00a.m.–11:00a.m.

Abstract

Catalysiscontributestogreaterthan35%oftheglobalGDPorapproximately3.5trilliondollarsinprimaryareassuchasenergy(fuel)production,chemicals(materials)production,andfoodstuffs.Althoughtheimpact of catalysis on our everyday lives and the global economy is immense, thematerials we callcatalystsarefarfromperfect.Perfectioninacatalyticmaterialisapursuitatmanylengthscales,butthenanoscalerepresentstheultimatelevelatwhichtheinteractionbetweencatalystsandfeedstocksthataresubsequentlyconvertedintofuelsandchemicalsoccurs.However,thenanoscalefeaturesofcatalystcan’tbecontrolledortunedasneededleadingtoinefficienciesincurrentcatalyticmaterials.Tobeabletoreducecatalyticinefficiencies(i.e.,slowproductionrates,selectivitytoundesiredproducts),controlofthenanoscalecatalystarchitectureisimperative.Controlatthisscaleenablescatalystdesign.Advancesinexperimentalandcomputationalmethodsandtheirsynergyhaveenabledcatalystdesigntobecomereality.Thisbreakoutsessionbringstogetheragroupofleadingacademic,industrial,andgovernmentscientists to discuss future opportunities in catalyst design and the sectors most likely impacted byimprovedcatalyticmaterials.

Panelists

Moderator:MichaelJ.Janik–associateprofessorofchemicalengineering,ThePennsylvaniaStateUniversity

v Dr.MichaelReynolds– RegionalDisciplineLead-ProductionChemistry,ShellExplorationandProductionCompany

v Dr.VictorSussman–CoreR&DInorganicMaterials&HeterogeneousCatalysis,DowChemicalv Prof.RobRioux–professorofchemicalengineering,ThePennsylvaniaStateUniversityv Prof.TomMallouk–professorofchemistry,materialsscience,andphysicsThePennsylvania

StateUniversity

14

BreakoutSession:

MaterialsforHealthTheRoadfromBiomaterialSciencetoMedicalDevicesandPatientCare Wednesday,October18|9:00a.m.–11:00a.m.

Abstract

Undoubtedly,advancesinbiomaterialscienceresearchwillbringtremendousopportunitiesfortheinnovationofmedicaldevicestoaddressunmetclinicalproblems.ThisbreakoutsessionbringstogetheragroupofoutstandingPennStateBiomaterialscientistsandsurgeonswithentrepreneurialexperienceandleadersinmedicaldeviceindustrytoleadthediscussionontheopportunitiesandchallengesinbiomaterialinnovation,technologytranslation,Startups,FDAregulations,andpatientcare.

Panelists

Moderator:JianYang–professorofbiomedicalengineering,ThePennsylvaniaStateUniversity

v Prof.JimAdair–professorofmaterialsscienceandengineering,biomedicalengineering,andpharmacology,ThePennsylvaniaStateUniversity

v Prof.DanHayes–associateprofessorofbiomedicalengineering,ThePennsylvaniaStateUniversity

v Mr.DonaldMcCandless–Director,BusinessDevelopment,BenFranklinTransformationServices

v Mr.JamesMalayter–ManagingPartner,AcuitiveTechnologies,Inc.v EliasRizk,M.D.–assistantprofessorofneurosurgery,ThePennsylvaniaStateUniversityCollege

ofMedicineandMiltonS.HersheyMedicalCenterv Mr.BarryFell–President,SIGMedicalCorp.

15

BreakoutSession:

ElectronicsandPhotonicsontheHorizonWhatWeareBuildingintheLabTodaythatWillMatterTomorrow Wednesday,October18|9:00a.m.–11:00a.m.

Abstract

Theworldofelectronicsischanging.Atsmallscales,wearenearingtheendofMoore'slawforcomputing,andlightisincreasinglyreplacingcopperforsignaltransmissionattheboardleveltodayandchipleveltomorrow.Atlargescales,newmaterialsandfabricationapproachesaredrivingarangeofopportunities,fromflexibledisplaystophotovoltaicwindows,biosensors,andimplantabledeviceswithexcitingpotentialforhumanhealth.Basedoninputfromleadersinindustry,government,andacademia,thisbreakoutsessionwillexploresomeoftheemergingphotonicandelectronicdevicesthatwillchangethewayweprocessandinteractwithinformation,useandconserveenergy,andimproveourhealthwithinthenextdecade.

Panelists

Moderator:ChrisGiebink–assistantprofessorofelectricalengineering,ThePennsylvaniaStateUniversity

v Dr.PeteTrefonas–CorporateFellowinElectronicMaterials,DowChemicalCompanyv Dr.MikeHaney–ProgramManager,ARPA-Ev Prof.Jon-PaulMaria–professorofmaterialsscienceandengineering,ThePennsylvaniaState

Universityv Prof.TomJackson–professorofelectricalengineering,ThePennsylvaniaStateUniversityv Prof.EnriqueGomez–associateprofessorofchemicalengineering,ThePennsylvaniaState

University

16

AbouttheIndustryToursVisitorstoMaterialsDayfromoffcampushadtheopportunitytosignupforoneofthetoursdescribedbelow.WealsowelcomeallattendeestotakeamomenttoviewthefirstfivepostersinourongoingMaterialsatPennStateHistoricalPosterProject.MillenniumScienceComplexOpenedin2011,theMillenniumScienceComplexisthelargestresearchbuildingoncampusatjustunder300,000sqft.Userfacilitiesincludethebasement-levelMaterialsCharacterizationLaboratory,NanofabricationFacilityandTwo-DimensionalCrystalConsortiumlabsonthefirstfloor,andnumeroussharedlabsthroughouttheNorthwing.TheSteidleBuildingThisbeautifullyrenovatedbuildingretainstheiconicfrontexterioroftheoriginalMineralIndustriesBuilding,completedin1929.HometotheDepartmentofMaterialsScienceandEngineering,thenewSteidleBuildingreopenedin2016withanopenconceptdesignfeaturingsharedlaboratoryspacewithglasswalls.Dramaticdisplaysandmuralsthroughoutthebuildingshowcasematerialsdiscoveryandinnovations.CIMP-3DTheCenterforInnovativeMaterialsProcessingthroughDirectDigitalDeposition(CIMP-3D)isaworld-classresourceforadvancinganddeployingadditivemanufacturing(AM)technology.LocatedinInnovationPark(230Building),the8,000sqftfacilityhousesadditivemanufacturingandhybridmanufacturingsystemsforpolymer,metal,andceramicmaterialsprototyping,pluscharacterizationinstrumentationandastateof-the-artdesignstudio.MaterialsatPennStateHistoricalPosterProjectThefieldofmaterialsresearchiswovenfrommanystrands–metallurgy,ceramics,polymerscience,physics,chemistry,chemicalengineering,electricalengineering,geosciences,thelistgoeson.TheMaterialsatPennStateHistoricalPosterProjectintendstocapturesignificantpeopleandeventsrelatedtotheillustrioushistoryofmaterialsdiscoveryatthisuniversity.Thefirstfivemetal-printpostersintheongoingserieswillbeondisplayintheMillenniumScienceComplexforMaterialsDay2017.

AboutPosterVotingThisyearwewillbeopeningalivepollviaSMS(textmessage)onTuesday,October17from11:00a.m.–2:00p.m.Tovote,textyourfavoriteposternumberto850-331-0323.Votingdirectionsareprovidedinthisprogramandontheposterdisplay.IfyouwanttovotebutnotviaSMS,visitthevotingboxattheregistrationdeskoutsidetheNittanyLionBallroomfrom11:00a.m.–2:00p.m.LIMIT:Onevoteperattendee.

17

PosterListingbyResearchCategory

MaterialsCharacterization Total:16

1. UnderstandingtheNativeAssembly,InterfaceInteractions,andPiezoelectricProperties ofCelluloseS. Huang,M.Makarem,I.Chae,S.H.Kim

2. Electro-ThermalAnalysisofβ-Ga2O3BasedUltra-WideBandgapSchottkyBarrierDiodesB. Chatterjee,A.Jayawardena,S.Dhar,S.Choi

3. 3DFull-FieldMechanicalMeasurementofShoulderBonesunderImplantLoadingY. Zhou,G.S.Lewis,A.D.Armstrong,J.Du

4. InvestigationofSurfaceConditionsontheCoolingofNuclearFuelRodsS. Ebrahim,F.B.Cheung NOTE: THIS POSTER IS DISPLAYED AT #107

5. ControllingChemistryandMicrostructureforFunctionalSoftMaterialsM. Aplan,J.Litofsky,E.D.Gomez

6. ResonantSoftX-rayScatteringofBiologicalSystemsD. Ye,S.Rongpipi,E.D.Gomez,E.W.Gomez

7. Low-doseTransmissionElectronMicroscopyofHighlyOrientedPolyacetyleneH.-T.Huang,M.D.Ward,S.J.Juhl,A.Biswas,T.A.Strobel,J.V.Badding

8. PhotonicNanomaterialsExaminedUsingMagneto-OpticalCorrelativeLightandElectron Microscopy(MO-CLEM)K. L.Knappenberger,Jr.,P.J.Herbert,andT.ZhaoSecond

9. SynthesisandCharacterizationofAnionicExchangeMembranes:HicknerGroupR.J.Lopez-Hallman,T.J.Zimudzi,L.Zhu,R.A.Wiencek,M.A.Hickner

10. DefectPhenomenainNanostructures:AnUltra-highResolutionElectronMicroscopy StudyD. Mukherjee,S.Juhl,P.Moradifar,L.Miao,S.Bachu,K.Agueda,N.Alem

11. In-situTEMStudyonShapeDeformationandThermalStabilityofSilicaOpalsandNickel FilledSilicaNano-OpalsP. Moradifar,Y.Liu,J.Russell,T.Mallouk,J.Badding,N.Alem

12. TheHighFieldMRIFacilityatThePennsylvaniaStateUniversityT. Neuberger

13. ResearchattheElectroactiveMaterialsCharacterizationLaboratoryS. Ahmed,M.A.AlMasud,T.Carroll,N.D’Souza,J.Kopatz,A.FosterIII,A.Meddeb,M.A.Vecchio,W. ZhangandZ.Ounaies

14. SNIPE:AScanningProbeMicroscopewith In-situOpticalAccessforLocatingMaterialandDeviceFeaturesandInterfacesL. Pabbi,R.Banerjea,E.Hudson

15. UsingLaserDiagnosticstoUnderstandChangesinSootNanostructureM. Singh,R.VanderWal

16. PennStateUndergroundPipelineCorrosion“Living”LaboratoryB. Shaw,E.Sikora,C.VanPelt,K.S.Venkataraman

Tovote,text:“#[POSTERNo.]”to850-331-0323

18

ComputerSimulationandModeling Total:12

17. Phase-field-basedPackageforModelingandSimulatingMaterialsMicrostructureandPropertiesX.X.Cheng,T.N.Yang,B.Wang,Y.Z.Ji,R.Wang,J.J.Wang,J.M.Hu,J.Britson,L.Q.Chen

18. ComputationalMaterialsScience:Multi-scaleMicrostructureSimulationL.-Q.Chen

19. Two-FoldAnisotropyinSodiatedBlackPhosphorousforSodiumIonBatteriesT.Chen,P.Zhao,X.Guo,S.Zhang

20. DesigningandProductionofCork-BasedFunctionally-GradedConcreteWallsF.Craveiro,J.Duarte

21. BoneRemodelingUnderToothLoadingK.Su,L.Yuan,J.Du

22. DFTStudiesofIntermetallicGamma-BrassCrystalStructuresforSelectiveHydrogenationH.He,A.Dasgupta,G.Kumar,R.M.Rioux,M.J.Janik

23. PredictingStabilityofModifiedMetalOxideSurfaceswithFunctionalAtomic-LayersforNano-engineeredCatalystsA.S.M.Jonayat,A.vanDuin,M.Janik

24. Quantum–continuumSimulationoftheElectrochemicalResponseofPseudocapacitorElectrodesunderRealisticConditionsN.Keilbart,Y.Okada,S.Higai,I.Dabo

25. ComputationalMaterialsSystemDesignZ.-K.Liu

26. QuantumTheoryofCondensedSystems:BilayerGrapheneLandauLevels,InversionDomainsinGaN,ProtonDynamicsonAlumina,andTransportinGrapheneG.DuCharme,B.Green,J.Robins,M.Umar,J.Sofo

27. TheDaboGroup|FirstPrinciplesInterfacialElectrochemistryS.Weitzner

28. ExtendingtheTimeandLengthScaleofModelingforVanderWaalsHeterostructuresP.Zhao,S.Zhang

BiomaterialsandMedicalDevices Total:13

29. SpecificTargetingofhBMSCsandRFMediatedOsteogenesisUsingDumbbellShapedAuFe3O4NanoparticlesConjugatedwithAnti-CXCR4AntibodyandmiR148bMimicJ.Casey,A.Forghani,M.Abu-Laban,C.Chen,J.Bursavich,M.B.Cavalier,R.Hoff,K.Hogan,W.Phelan,D.Hayes

30. Self-AssemblyofSmartMultifunctionalHybridCompartmentswithProgrammableBioactivityG.Cheng,S.Hao,Y.Wan,S.Y.Zheng

31. PortableSample-to-AnswerMultiplexedMolecularDiagnosisforMalariainRemoteAreasG.Choi,T.Prince,J.Miao,L.Cui,W.Guan

Tovote,text:“#[POSTERNo.]”to850-331-0323

19

32. BIOENIGMA:HighThroughputScreeningforProteinBasedMaterialsM.Demirel

33. Mechanotargeting:ChangesinCellShapeModulatetheOverallRateofNanoparticleEndocytosisP.Fattahi,Y.-T.Yeh,S.-Y.Zhang,S.Zhang,J.L.Brown,P.J.Butler

34. Citrate-basedBiomaterialsforDrugDeliveryandTissueEngineeringG.BoraKimandJ.Yang

35. SynthesisandSelf-AssemblyofPNBE-PEOAmphiphilicBlockCopolymerC.Lang,J.LaNasa,M.Kumar,R.J.Hickey

36. BirdcageCoilFabricationforHighFieldMagneticResonanceImagingG.Lee,W.Lee,J.Clark,M.Lanagan,T.Neuberger

37. BiomimeticPhotoluminescentBiodegradablePolymersforBoneTissueEngineeringC.Ma,X.Tian,X.Bai,J.Yang

38. ANewInSituMethodtoMeasureMembraneElasticityinCellMembranesUsingFluorescenceLifetimeDistributionofDiIS.Son,H.S.Muddana,P.J.Butler

39. MechanotargetingofNanoparticlestoMalignantCellsQ.Wei,T.K.Zhao,P.Zhao,P.Butler,S.L.Zhang

40. TowardsaReal-timeData-drivenApproachforProactiveInjuryPreventioninConstructionJ.Zhao,E.Obonyo

41. AForce-thresholdCriterionforMulticellularEpitheliumDispersionY.Zhang,T.K.Zhao,X.C.Shi,P.Zhao,C.J.Huang,Q.Wei,X.Tang,L.Santy,T.M.A.Saif,S.L.Zhang

NanomaterialsandNanofabrication Total:12

42. ImprovingEnergyDensityandPowerPerformanceofLi-IonCapacitorsUsingNanoGraphiteAnodesA.R.Aref,C.-C.Chou,M.T.Lanagan,C.Randall,R.Rajagopalan

43. ScalableManufacturingofPolymerNanocompositesUsingOscillatingMagneticFieldsY.Atescan,M.Spencer,S.Trivedi,M.Sharp,R.B.Branco,N.Yamamoto

44. RandomLaserEmissionTuningViaAnisotropicScatteringParticleAlignmentP.Donahue,J.Miller,C.Wang,C.Zhang,N.Nye,D.Christodoulides,Z.Liu,C.D.Keating

45. ReconfigurableElectricFieldDirectedParticleAssembliesforMetamaterialApplicationsN.Famularo,S.J.Boehm,L.Kang,X.Guo,T.S.Mayer,D.H.Werner,C.D.Keating

46. DirectLaserWritingViaLaserInducedThermalVoxelsC.Kindle,L.Zarzar

47. CVDGrowthofGrapheneandhBNfor2DHeterostructuresandIntegrationJ.W.Kronz,R.Lavelle,J.Redwing,D.W.Snyder

48. SurfaceInitiatedRingOpeningMetathesisPolymerizationfromSilicaNanoparticlesJ.LaNasa,C.Lang,R.J.Hickey

49. SizeandInterfaceModulatedMetal-InsulatorTransitioninSolution-SynthesizedNanoscaleVO2–TiO2–VO2HeterostructuresXuefeiLiandRaymondE.Schaak

Tovote,text:“#[POSTERNo.]”to850-331-0323

20

50. CondensationandFogHarvestingonBioinspiredSlipperyRoughSurfacesX.Dai,N.Sun,B.B.Stogin,J.Wang,L.Wang,T.-S.Wong

51. BandFillingandElectricFieldEffectsonAnisotropicMagnetotransportofTwo-dimensionalElectronGasesatSrTiO3(111)-,(110)-,and(001)-orientedSurfacesL.Miao,J.Wang,R.Du,Y.Yin,QLi

52. AdvancedMultifunctionalEnergyMaterialsandSystemsQ.M.Zhang,T.Zhang,Y.Thakur,H.Xi,M.Lu,XinChen,Y.Zhou,Y.Hou,Q.X.Yang

53. Two-dimensionalElectronicMaterialsR.Zhao,D.D.Deng,B.M.Bersch,S.Subramanian,N.Briggs,X.Zhang,K.Zhang,N.Simonson,B.Jariwala,Y.C.Lin,M.Wetherington,B.Kupp,H.Al-Sadeg,A.Duran,S.Holoviak,A.Kozhakhmetov,S.Manzo,S.Mileski,C.Pernia,T.Williams,N.Stegamat,J.A.Robinson

MaterialsProcessingandManufacturing Total:25

54. PlasmaMetamaterialsS.Antonsson,M.Lanagan,C.Randall,D.Wolfe,E.Furman,Z.Cohick,J.Guo,S.Perini,A.Baker

55. Magneto-activeMaterialsandStructuresLabP.vonLockette,C.Breznak,A.Erol,L.Althoff,N.Watson

56. FASTManufacturingofAdvancedNano-/micro-structuredMetallicandCeramicCompositesJ.Dai,C.Lin,S.Niuman,J.Singh,N.Yamamoto

57. CeramicCoatingforCorrosion(C3)ResistanceofNuclearFuelCladdingE.Alat,A.T.Motta,R.J.Comstock,J.M.Partezana,D.E.Wolfe

58. ManufacturingandUniformityofGrainTexturedPiezoelectricCeramicsM.A.Fanton,R.J.Meyer,E.R.Kupp,B.H.Watson,Y.Chang,R.L.Walton,H.E.Payne,G.L.Messing

59. ColdSintering:AnExtremelyLowTemperatureProcessingRouteforCeramicsandRelatedCompositesJ.Guo,M.Sengul,X.Zhao,K.Tsuji,B.Li,W.Chen,A.Baker,M.T.Lanagan,C.A.Randall

60. AdditiveManufacturing:AnEnablingTechnologyforDesignOptimizationB.Hanks,M.Frecker,M.Moyer

61. EffectofAlloyingElements(CrandAl)inNickel-basedAlloysinMoltenSulfateEnvironmentsK.Kumar,H.Kim

62. AdditiveManufacturingShapeMemoryAlloys:HeatTreatingtoTuneMicrostructureB.A.Bimber,R.F.Hamilton,T.A.Palmer

63. EffectsofComposition,Impurities,andGrowthConditionsontheVerticalBridgmanGrowthoftheTopologicalInsulatorsBi2Se3,Bi2Te3,andBi2TexSe1-xD.Snyder,R.Lavelle,R.Cavalero,R.Redwing,M.Carrasco-Munoz

64. InvestigatingthePolymorphisminβ-nucleatediPPInjectionMoldingsUsingaCombinedXRD/flowSimulationAnalyticalApproachA.M.Gohn,A.M.Rhoades,D.Okonski,D.Mileva,R.Androsch

65. GradedGlass-CeramicInterfaceS.Nazarian,C.Pantano,P.Colombo,M.Marangoni,M.Hojati,H.Ye

66. MarsCreteS.Nazarian,J.Duart,A.Radlinska,M.Hojati,N.Ashrafi

Tovote,text:“#[POSTERNo.]”to850-331-0323

21

67. HighPressureMethaneAdsorptioninMetal-organicFrameworksandTheirMonolithicCompositeswithSilicaAerogelY.D.Noh,S.Komarneni

68. RoleofPorosityofCarboninDeterminingtheElectrodePerformanceinCapacitiveDeionizationProcessM.Nkiawete,R.VanderWal,M.Horn,R.Rajagopalan

69. Flow-inducedCrystallizationofNylon6/6 J.Seo,H.Takahashi,B.Nazari,A.M.Rhoades,R.P.Schaake,R.H.Colby

70. SurfaceChemistryofGlassandTribology N.S.Sheth,J.Luo,X.He,H.Liu

71. ExploringtheCauseofNon-graphitizabilityofCarbonMaterialsUsingGrapheneandGrapheneOxideM.Singh,R.VanderWal

72. EnergySavingswithMicrowaves:MetalPowderHeatingMechanisms T.Slawecki,Y.Zhang,J.Cheng,D.K.Agrawal

73. AdvancedMultifunctionalCoatingsandMaterialsProcessingforExtremeEnvironmentsJ.Stokes,E.Alat,Z.Cohick,G.Schneeberger,M.El-Tantawy,E.Sun,T.Bowen,N.O’Brien,A.Baer,P.Albert,A.Schwartz,S.Karwa,M.McPherson,B.Karafinski,T.McKnight,T.Medill,S.Showers,B.Thaler,D.E.Wolfe

74. DevelopmentofSacrificialCoatingforMagnesiumAerospaceComponentsK.S.Venkataraman,R.W.Gresh,B.A.Shaw,E.Sikora

75. ApplicationofMesoporousMaterialsforCO2CaptureandConversionX.X.Wang,X.Jiang,N.Koizumi,C.S.Song

76. TailoringMicrostructureandProcessestoEnhanceStructuralandFunctionalPropertiesofCeramicMaterialsG.L.Messing,E.R.Kupp,Y.Chang,R.Bermejo,T.Frueh,B.H.WatsonIII,M.Brova,R.Walton,K-HLee,J.Wu

77. NewPolymericMaterialsforAdditiveManufacturingM.A.HicknerResearchGroup

78. FunctionalPolyolefinswithHighThermalStabilityG.Zhang,W.Zhu,M.Chung

Electronic/PhotonicMaterialsandDevices Total:18

79. TheRoleofInterfacesinPerformance,Degradation,andBreakdownofNon-LinearDielectricsUnderExtremeConditionsT.J.M.Bayer,J.-J.Wang,J.Carter,R.Wang,S.Sahu,M.Ryu,A.Klein,L.-Q.Chen,C.A.Randall

80. SteepSlope2DStrainFieldEffectTransistor:2DSFET&Electro-AblatedMonolayerTMDsD.S.Schulman¸A.J.Arnold,S.Das

81. TunableandFlexibleMetasurfaces X.Chen,X.Ni

82. InterfacialChemistryRegulationviaaSkin-GraftingStrategyEnablesHigh-performanceLithium-metalBatteriesY.Gao,Y.Zhao,Y.C.Li,Q.Huang,T.E.Mallouk,D.Wang Tovote,text:“#[POSTERNo.]”

to850-331-0323

22

83. Integrating2DMaterialsandNanostructuresforPhotonicandMedicalApplicationsS.Huang

84. DielectricandViscoelasticPropertiesofElectrostaticNetworkIonGelsJ.E.Bostwick,C.Zanetolli,L.A.Madsen,R.H.Colby

85. Space-TimeModulatedMetasurfaceX.Guo,X.Ni

86. RecentDevelopmentsintheFabricationofAstronomicalGratingsF.Grisé,J.McCoy,R.McEntaffer,D.Miles,N.Zhang

87. VisibleSwitchableOpticalMetasurfacewithPhaseChangeMaterialsY.Ding,Y.Duan,A.S.Gupta,R.E.Herbert,X.Ni

88. DurableBroadbandGraded-indexFluoropolymerAntireflectionCoatingsforPlasticOpticsB.Wang,J.S.Price,N.C.Giebink

89. AnOverviewofMaterialSynthesis,Characterization,DeviceDevelopmentandTestingCapabilitiesintheARL’sEMDDepartmentD.Snyder,M.Fanton,D.Rearick,R.Cavalero,B.Weiland,R.Gamble,R.Lavelle,J.Fox

90. HighThermalStabilityOLEDs J.S.Price,B.Wang,Y.Shen,N.C.Giebink

91. Record-lowContactResistancestoManySemiconductorsK.A.Cooley,T.N.Walter,A.C.Domask,A.Molina,A.Agyapong,C.Lawrence,L.Kerstetter,S.E.Mohney

92. SynthesisandCharacterizationofAdvancedNanoscaleMaterialsS-Y.Yu,A.C.Domask,T.N.Walter,I.Campbell,K.A.Cooley,A.Molina,L.Kerstetter,R.Alsaadi,S.E.Mohney

93. ZnOTFTsforIntegratedElectronicsApplicationsA.Gupta,T.Liu,S.Lee,M.M.Tendulkar,S.Yoo,E.W.Gomez,E.Gomez,S.Trolier-McKinstry,T.N.Jackson

94. DirectGrowthandTransportPropertiesofEpitaxialGraphene/MolybdenumDisulfideLateralHeterostructuresD.D.Deng,S.Subramanian.K.Xu,N.Simonson,J.Li,D.Waters,K.Zhang,K.Wang,R.Feenstra,S.Fullerton-Shirey,J.A.Robinson

95. TuningtheDielectrophoreticAssemblyofDielectricParticlesThroughSurfaceFunctionalizationN.Burrows,N.Alexander,I.Ibrahim,C.Keating 

96. PiezoelectricMicroelectromechanicalSystems(PiezoMEMS)L.Jacques,N.Kirchner-Hall,C.Cheng,K.Coleman,T.Liu,D.Wang,L.Dennis,C.Morandi,B.Akkopru-Akgun,S.Shetty,H.G.Yeo,W.Zhu,J.Walker,S.Trolier-McKinstry

Humanitarian Total:6

97. MaterialMatters:AModelfortheDesignandConstructionofLow-cost,High-

performance,Energy-efficientSheltersinBurkinaFaso,WestAfricaV.A.A.Noel,R.A.Kimel

98. Point-of-careMicrofluidicPlatformUsingZnONanowireTemplateforVirusDetectionbyPlasmonicColorimetricReactionY.Xia,Y.Chen,G.Cheng,X.Yu,Z.Liu,S-YZheng Tovote,text:“#[POSTERNo.]”

to850-331-0323

23

99. ExpandingtheCapacitytoConfronttheGlobalWaterCrisis:ExploringAffordablePossibilitiesandIncreasedEffectivenessofPointofUseCeramicWaterFilterswithMetallicNanoparticlesI.Dabo,Z.Ounaies,S.Carpenter,II,S.Weitzner,F.Rodriguez

100. Smartphone-basedOpticalSpectrometerforEarlyPlantDiseaseDetectionandQuantificationC.Zhou,V.Bucklew,P.Edwards,C.Zhang,D.Hughes,X.Qu,Z.Liu

101. ThePerceptionsandFeasibilityof3DPrintedSpectacleDesigninArusha,TanzaniaA.Cronin,M.Freeman,J.Rong,D.Zaremsky,E.Obonyo,S.Ritter,E.Park

102. ThePeanutShellM.KKenneh,E.Obonyo

MaterialsResearchCenters Total:12

103. MRSECIRG2:ActiveMatterSystemsattheNanoscale

P.Butler,S.Cochran,P.Cremer,V.Crespi,C.Demore,R.Golestanian,T.J.Huang,M.MacDonald,T.Mallouk,A.Sen,S.Trolier-McKinstry,D.Velegol

104. NewAutomatedImagingCapabilitiesatMCL E.Bazilevskaya,N.Wonderling

105. CRAFT:CenterforResearchonAdvancedFiberTechnologies M.Demirel

106. TheTwo-dimensionalCrystalConsortium-MaterialsInnovationPlatformK.A.Dressler,J.M.Redwing,N.Samarth,V.H.Crespi,E.W.Hudson

107. InvestigationofSurfaceConditionsontheCoolingofNuclearFuelRodsPSUGlobalNuclearPowerSafety(GNPS)CenterS.Ebrahim,F-B.Cheung

108. ThePennsylvaniaStateUniversityNanofabricationLaboratory K.A.Gehoski,G.P.Lavallee,W.R.Drawl,S.Trolier-McKinstry,C.M.Eichfeld

109. MRSECIRG4-MulticomponentAssembliesforCollectiveFunctionC.D.Keating,Z.Liu,D.Werner,M.Rechtsman,D.Christodoulides,R.Schaak,K.Fichthorn,L.Q.Chen,T.S.Mayer

110. CenterforInnovativeSinteredProducts–FundamentalandAppliedResearchinSinteredMaterialsT.A.Palmer

111. ATOMIC M.Terrones,J.Robinson,N.Simonson,F.Zhang,K.Zhang,YLei

112. 3DMetalPrintinginThePennsylvaniaStateUniversity’sCenterforInnovativeMaterialsProcessingThroughDirectDigitalDeposition(CIMP-3D)T.Simpson

113. CenterforDielectricsandPiezoelectrics(CDP) S.Trolier-McKinstry,C.A.Randall

114. TheMaterialsComputationCenter -AHighlyVersatileFacultyCollaborativeforComputationalSupportofMaterialsResearchC.Ashraf,D.Akbarian,R.Lotfi,D.Yilmaz,Y.K.Shin,M.Singul,A.vanDuin

Tovote,text:“#[POSTERNo.]”to850-331-0323

24

NewFacultyattheMaterialsResearchInstitute Total:7

115. e-Bio-eLab@PSUataglancePoint-of-CareSystemsforReal-timeBiochemicalAnalysis

A.Ebrahimi116. GlassResearch@PSU

J.C.Mauro117. AdditiveManufacturingofMetallicMaterials

T.A.Palmer,Z.Khayat,S.Meredith,A.Iams,M.Brennan118. PolyampholytesinElectricFields

C.W.Pester119. RamanandNear-FieldCharacterizationofGrapheneHeterostructures

M.Blades,X.Li,S.V.Rotkin120. Electronic,Optical,andCeramicMaterialsResearchforInfra-redSystems,Nanoenergetic

Systems,NewMaterialsDiscovery,andAdvancedSynthesisScienceJ.-P.MariaResearchGroup

121. PhotonicsTechnologiesbyEngineeringNon-HermiticityinOptics:FromControllingLightTransporttoOpticalSensingandOptomechanicsS.OzdemirResearchGroup

PPGUndergraduateFellowship Total:3

122. GreenAdhesivesforIndustrialPaperProductsBasedonPolysaccharidePolyelectrolyteComplexes(PPC)T.A.Strickland,S.Basu,J.M.Catchmark

123. HighSpatio-temporalResolutionMeasurementwithQuantitativeFlowVisualizationC.H.Teoh,R.Ni,A.Salibindla,A.Masuk

124. CircularPolarizationFiltersforMid-IRLightusingChiralSculpturedThinFilmsV.Vepachedu,A.Lakhtakia

MiscellaneousEntries Total:3

CoolRoomDesignedforsub-SaharanAfricaFarmStorageA.Bailey,E.ObonyoNationalRemotelyAccessibleInstrumentsforNanotechnology(RAIN)NetworkR.EhrmannPowerElectronics:EfficientEnergyConversionSolidStateSwitches/WideBandgapSemiconductorMaterialsS.A.Suliman

Tovote,text:“#[POSTERNo.]”to850-331-0323

25

PosterListingwithAbstract

1 UnderstandingtheNativeAssembly,InterfaceInteractions,andPiezoelectricPropertiesofCellulose S.Huang,M.Makarem,I.Chae,S.H.Kim

Cellulose is one of the most abundant polymers on earth. In plant cell wall,cellulose microfibrils are embedded in other matrix polymers. We focus onunderstandingthemesoscaleorganizationofcellulose in thecellwallsandtheinteractions between cellulose and other cell wall components by using sumfrequency generation/scattering (SFG)/(SFS) vibrational spectroscopy. Also, weinvestigatetherelationshipbetweenpolarorderingandintrinsicpiezoelectricityofcellulosenanocrystals.

SFGisanonlinearopticalprocesswhichissensitivetoamediawithnoinversionsymmetry.SFGprovidestheselectivedetectionofnon-centrosymmetriccellulosecrystallites without spectral interference from amorphous matrix polymersaround them. Using SFG, we are able to investigate the 3D architecture ofcellulose organizations including orientation and interfibrillar distances in theintactcellwallswithoutchemicalorphysicalpurifications.OurnewlydevelopedSFGmicroscopesystemwithmicron-sizeresolutioncanalsobeappliedtostudycelluloseorganizationsamongdifferentplantcellwalls.TheSFG-microscopehelpsustorealizethelocaldifferencesinthepackingofcellulosemicrofibrils.Also,thedifferencesincellulosedepositioninvariouscelltypeswithdistinctrolesinplantdevelopment can be investigated. Our recent study on plants in differentdevelopmentalstageshasrevealedhowthepackingandorientationofcellulosemicrofibrilsvaryinxylemandinterfascicularfibercellsastheplantcontinueitsgrowth.

Ithasbeenpredictedthatcellulosehasthepiezoelectricpropertiesduetoitsnon-centrosymmetriccrystallinestructureforseveraldecades.However,theintrinsicpiezoelectricityofcellulosehasnotbeenmeasuredaccurately. It isbecausenoonehasprovidedasolidevidenceofpolarordering,whichisessentialtohavethenetpiezoelectricity.Thereisnosecuremethodreportedtoaligncellulosecrystalsinparallel.WearedevelopingSFGvibrationalspectroscopytocharacterize thepolarorderingofcellulosecrystals.Inaddition,weaimtodeviseeffectivemeanstoaligntheminparallelsuchthatthepolarityofindividualcrystalsaddsup.Thiswill help us elucidating the intrinsic piezoelectric properties of cellulose andcontributetodesigningcellulosebasedelectro-activedevices.

2 Electro-ThermalAnalysisofβ-Ga2O3BasedUltra-WideBandgapSchottkyBarrierDiodes B.Chatterjee,A.Jayawardena,

S.Dhar,S.Choi

Thedevelopmentofultra-widebandgap(UWBG)β-galliumnitride(Ga2O3)-basedpowersemiconductordevicessuchasSchottkyrectifiersandpowerMOSFETsisdrawing significant attention to the power electronics research arena. Ga2O3offersabandgapof4.6-4.9eV,evenlargerthanthatforcurrentstate-of-the-artsilicon carbide (SiC) and gallium nitride (GaN) wide bandgap (WBG) materialswhichtranslatesintosignificantincreaseinthecriticalelectricfieldthatadevicecanwithstand. Furthermore, low cost and high quality single crystallineGa2O3

substratescanbefabricatedinlargevolumes,usingamultitudeofstandardmeltgrowthtechniques.

26

Self-heatingisviewedasonemajorchallengethattheGa2O3devicetechnologywillencounter.ThemainreasonfordevelopingsuchUWBGpowerdevicesistoimprovethesize,weight,power(i.e.,higherpowerdensities),andefficiencyovercurrent state-of-the-art GaN and SiC based WBG counterparts. However, thethermalconductivityofβ-Ga2O3 isonlyon theorderof10-20W/m-K,which issignificantly lower as compared to GaN (~150 W/m-K) and SiC (380 W/m-K).Therefore, the self-heating effect in Ga2O3 devices needs to be accuratelyassessedandmanagedtoaccomplishsuccessfultransitionfromtheWBGtotheUWBGtechnologyincommercialandmilitarypowerelectronicsapplicationsandtoensuredevicereliability.

Inthiswork,forthefirsttime,self-heatinginGa2O3Schottkybarrierdiodes(SBD)has been investigated using non-invasive, in-situ optical techniques andmulti-physics simulation. Thermoreflectance thermal imaging and infraredthermographywereused toprobe thedevicesurface temperature.ThedevicepeaktemperaturethatoccursinthevicinityoftheresistiveSchottkycontactwasmeasured via cross-sectional Raman thermography. Experimental resultswerevalidatedthroughcomparisonwith3-Dcoupledelectro-thermalsimulation.Thecollected data and simulation results indicate that without optimized thermaldesign,thetemperatureriseofaGa2O3SBDcanbeanorderofmagnitudehigherthanthatforGaNandSiCbasedverticaldiodesunderforwardbiasedoperationwith identical areal power dissipation. Simulation shows that the Ga2O3technologyallowssignificantreductionofthedevicevolumetoachievearatedblockingvoltageforcommercialSiCpowerdiodes.However,thethermalconcernstill remains that needs to be overcome through employing proper thermalmanagementschemes.

3 3DFull-FieldMechanicalMeasurementofShoulderBonesunderImplantLoading

Y. Zhou,G.S.Lewis,A. D.Armstrong,J.Du

Themechanicsofshoulderboneunderimplantloadingisimportanttothesuccessof shoulder bone implant treatment. This work presents the results of anoninvasive three-dimensional (3D) full-field mechanical measurement ofshoulderbonesunderimplantloadingconditions.Glenoidimplantsareplacedinhumancadaver specimensand loaded.MicroX-rayComputedTomography (µ-XCT) of the specimens are taken under no-load and loaded conditions. Usingimage processing technique and digital image correlation in 3D, the 3Ddisplacementandstrainfieldinsidetheshoulderbonearecalculated.Theresultsaredisplayedusing3Dvisualizationtools.Theclinicalimplicationsoftheresultsarediscussedfortheimprovementofglenoidimplanttreatment.

4 InvestigationofSurfaceConditionsontheCoolingofNuclearFuelRods

S. Ebrahim,F.B.CheungNOTE: THIS POSTER IS DISPLAYED AT #107

This research investigates the influence of surface conditions on the coolingprocess of nuclear fuel rods. Specifically, material characterization of CRUDformedonthefuelrodsurfacesisperformedanditseffectsonthecoolingoffuelrodsarestudied.ThetermCRUD(ChalkRiverUnidentifiedDeposits) isusedtodescribethedepositedcorrosionproductsonthesurfaceofthefuelcladdingrodsduringtheoperationofPressurizesWaterReactor(PWR).ThePennsylvaniaStateUniversityhasconstructedandoperateda7x7rodbundletestfacilityundertheRodBundleHeatTransfer (RBHT)ProgramsponsoredbyUnitedStatesNuclearRegulatoryCommission(NRC).Inconeltype600rodswiththedimensionsof9.5mmdiameterand3.657mheatedlengthareusedinthetestfacility.Theyhaveexperiencedanapproximateof200totalheatingandcoolingcyclesundersystem

27

pressureandcladdingtemperaturerangesbetween0.138–0.414MPaand315–1093°C,respectively.Material characterization has been performed on test samples collected atdifferentelevationsoftheheatedrodstoidentifythemicrostructuresoftheCRUDlayersbyusing fieldemissionscanningelectronmicroscopy (FE-SEM), scanningelectronmicroscopy(SEM),energydispersivex-rayspectroscopy(EDS),andx-raydiffraction (XRD). Additionally, an automated goniometer and opticalprofilometryareused tomeasure, respectively, the surface roughnessand thewatercontactangleofselectedrodsurfaceswithandwithoutCRUDformation.The goal is to correlate the surface conditions of the rods such as the surfaceroughness, the water contact angle, and the thickness, porosity and chemicalcompositionoftheCRUDlayeronthecoolingbehavioroftherodsunderPWRaccidentconditions.Aheattransfercorrelationhasbeendevelopedfromthedatawhichpredictstheenhancementofthecoolingprocessofthefuelrodsfollowingasevereaccidentsuchas loss-of-coolant-accident(LOCA)resulted in improvingthesafetyofthePWR.

5 ControllingChemistryandMicrostructureforFunctionalSoftMaterials

M.Aplan,J.Litofsky,E.D.Gomez

The research focus of the Gomez group is on understanding how structure atvarious length scalesaffectsmacroscopicpropertiesof soft condensedmatter.Though diverse, complex organic molecules share free energy landscapesdominatedbynon-equilibriumstatesandathemeofdisorder.Understandingthefundamental processes that lead to, for example, charge transport andseparation, requires characterization of equilibrium, near equilibrium, and farfromequilibriumstructures.

Current efforts are directed at understanding the structural parameters thataffecttheperformanceoforganicelectronics,includingsolarcellsandtransistors,throughacombinationofelectronandlightmicroscopy,X-rayandlightscattering,electron diffraction, and device testing. Throughmodel systems,we study thephysicsofchargeinjectionandchargetransferatsemiconductor-metalinterfacesaswellasorganicheterojunctions.Furthermore,weexaminethemicrostructureof polymeric membranes used in water filtration to uncover how membraneperformance depends on structural properties. We are also extending ourstructural characterization tools for the study of biological systems, includingproteins,viruses,andplantcellwalls.

6 ResonantSoftX-rayScatteringofBiologicalSystems

D.Ye,S.Rongpipi,E.D.Gomez,E.W.Gomez

Thestructureatonetoafewhundrednanometersiscriticaltothepropertiesandfunctionalityofproteins, lipidmembranes,hydrogels,andavarietyofcomplexbiologicalassemblies.SmallangleX-rayscatteringisapowerfultoolcapableofprobingtheaforementionedlengthscales,but isoften limitedbytherelativelysmall differences in electron density between phases or domains of softmaterials.ResonantsoftX-rayscattering(RSOXS),atechniquedevelopedwithinthe lastdecadeforthestudyofpolymericthinfilms,couplesspectroscopyandscattering to overcome some of the critical limitations of hard X-rayscattering. Conventional X-ray scattering relies on circa 8 keV X-rays as theincidentradiation;incontrast,RSOXSemploysX-rayenergiesbetween0.2and1.5keVtoaccessvariousabsorptionedges(e.g.,C,N,O,F,Ca)andenhancescatteringcontrast. Working at these lower energies, however, requires a high-vacuumsamplechamber.Wehavebeentakingadvantageofrecentadvancesinwet-cell

28

technologyfortransmissionelectronmicroscopyexperimentstoenableRSOXSofbiologicalmaterialsinsolution,therebyopeningthedoorforextractingchemicalcontrast frommulticomponent biological assemblies. We have demonstratedproof-of-concept experiments using wet-cell RSOXS to extract the envelopefunctionofproteins.Furthermore,wehaveusedRSOXStoexaminethestructureof plant cell walls, where we extract the average spacing between cellulosenanofibrils.

7 Low-doseTransmissionElectronMicroscopyofHighlyOrientedPolyacetylene

H.-T.Huang,M.D.Ward,S.J.Juhl,A.Biswas,T.A.Strobel,J.V.Badding

Recent advances in the synthesis of polymeric fibers and textiles havedemonstrated that well-defined supramolecular architectures with desiredmechanicalandelectronicpropertiescanbedesignedandproducedatamassivescale. In order to understand the structure-property relationship of thesepolymericfibers,characterizationtechniquesinthesubnanometrescaleiscriticalbecausethemacroscopicpropertiesofthesefibersareusuallycloselyrelatedtothe local atomic structures and chemical functionality. However, directobservation of the atomic structures of polymeric fibers through electronmicroscopyremainsachallengeasthesesoftmaterialsareusuallyverysensitivetoelectronbeamdamage.

Polyacetyleneisawell-knownelectricallyconductinglinearorganicpolymerwithcis-trans- isomerism. The ratio of cis- and trans-isomers in thematerial has acritical impact on the properties. Using low-dose transmission electronmicroscopy and microanalysis technique, we identified highly orientedpolyacetylene (HOPA) synthesized via high-pressure induced solid-statepolymerization is primarily composed of trans-isomers. Furthermore, thestructural transformation of HOPA film into nanocrystalline buckydiamonds(onion-likegraphitic shellswithdiamondcores)underelectronbeamradiationwas examined through high-resolution transmission electron microscopy(HRTEM) and Electron Energy Loss Spectroscopy (EELS). Such low-dosemicroscopyandmicroanalysistechniquesopenupawidevarietyofopportunitiesin characterizing beam sensitive materials such as carbon nanomaterials,syntheticpolymers,andbiologicalfibers,whichcanpotentiallyofferinsightsthatcannotbeprovidedbyconventionalanalyticalchemicalmethods.

8 PhotonicNanomaterialsExaminedUsingMagneto-OpticalCorrelativeLightandElectronMicroscopy(MO-CLEM)

K.L.Knappenberger,Jr.,P.J.Herbert,T.ZhaoSecond

Correlative light and electron microscopy (CLEM) is a powerful approach todeveloping structure-function relationships for nanoscalematerials. Our grouphas developed nonlinear optical (NLO) imaging methods that can be used topinpointthelocationofanopticalpointsourcewithone-nanometertransverseand ten-nanometer axial localization accuracies. Among the suite of NLOprocesses,magneto-optical(MO)methodsenablesimultaneousspatiallyresolvedcharacterization of the electronic and optical properties of these materialdomains. We will provide examples using variable-temperature, variable-magnetic-fieldopticalmethodstodetermineelectronicgfactors,termsymbols,andzero-fieldenergygapsforexcitonictransitionsinnanoscalematerials.

29

9 SynthesisandCharacterizationofAnionicExchangeMembranes:HicknerGroup R.J.Lopez-Hallman,T.J.Zimudzi,L.Zhu,R.A.Wiencek,M.A.Hickner

As an alternative clean energy source, protonexchangemembrane (PEM) fuelcellsareapromisingtechnology;however,thehighcostofnoble-metalcatalysts(platinum)hindersitswidespreadcommercialization.Contrarily,anionexchangemembrane(AEM)fuelcellsemploycationicmoietiesfixedtopolymerchainsanddo not require noble-metal catalysts. However, AEMs have their own set ofchallenges,suchassubstandardstabilityandconductivity.Work in theHicknergroup has focused on synthesis/characterization of a more stable AEM, andevaluationofwater/polymerinteractionsinAEMstobetterunderstandwaysofimprovingAEMconductivity.

A series of comb-shaped quaternary ammonium-containing poly(2,6-dimethyl-1,4-phenyleneoxide) (QA-PPO)weresynthesizedwithdifferent lengthsofalkylside chains, where Cy refers to length (y = 6, 10, 16) and D40 to degree ofbromination (0.4 bromomethyl groups per PPO unit). Specifically,benzyldimethylhexyl ammonium (C6D40), benzyldimethyldecyl ammonium(C10D40), andbenzyldimethylcetyl ammonium (C16D40).Also synthesizedwasbenzyltrimethyl ammonium (BTMA) to serveasaQA-PPOcontrolwithout sidechains.

SolubilitystudiesoftheQA-PPOsexhibitedexcellentsolubilityinpuremethanol,ethanol and n-propanol, and insolubility in pure water (even at 80°C),demonstrating their usefulness as catalyst layers. Small-angle X-ray scatteringanalysis revealed ionic peaks (indicating ionic clusters due to nanophaseseparation) of a moderate size for BTMA40, C6D40 and C10D40, but adistinguishablepeakforC16D40.Wateruptakestudiesdisplayedalowerwateruptake relative to the longer alkyl chain lengthof the comb-shapedpolymers;C16D40wasthemosthydrophobicwithrestrictedwaterabsorption.Hydroxideconductivity measurements showed higher conductivity relative to the longeralkylchainlengthofthecomb-shapedpolymerscomparedtoBTMA40.Alkalinestability studies of the comb-shapedQA-PPOs demonstrated a slow decline inconductivityduringtheinitial200hoffastdegradation.After2000hofimmersionin1MNaOHat80°C,theyretained~80%oftheirconductivity,whiletheBTMA40decreasedto40%.Overallfindingssuggestthattheircomb-shapedarchitectureisapromisingapproachforAEMdesign.

QA-PPOmembranesweresaturatedwithsodiumazideandresultingspectraweremeasuredinattenuatedtotalreflectance(ATR)Fouriertransforminfrared(FTIR)configurationfrom0to90%relativehumidity.Thehydration-sensitiveazide(N3

-)asymmetric stretch peakwasmonitored in-situ during hydration experiments.QA-PPOsampleshaddifferentinteractionswithazidespeciesasevidencedbytheposition and intensity of their characteristic FTIR bands. In BTMA40, thewavenumberoftheN3

-groupwaslocatedat2002cm-1and2022cm-1at0%RHand90%RH,respectively.Forthecomb-shapedsamples,theN3

-absorbancewasobserved at approximately 2000 cm-1 and 2017 cm-1 at 0% RH and 90% RH,respectively. Results indicated that polymer interactions with water became

30

weakerasthealkylpendantwaslonger.Theresultingshiftwasassociatedwiththedynamichydrogen-bondingenvironmentinsidethepolymermembrane,andto cationic interactions with the azide ion. The azide probe was successful inevaluatingwater/polymerinteractionsandeffectivelymeasuredbyATR-FTIR.

10 DefectPhenomenainNanostructures:AnUltra-highResolutionElectronMicroscopyStudy D.Mukherjee,S.Juhl,P.Moradifar,L.Miao,S.Bachu,K.Agueda,N.Alem

Theatomicandchemicalstructureofmaterialscanhaveaprofoundeffectontheresultingphysical,chemical,andmechanicalpropertiesandleadtoapplicationsin electronics and optoelectronics, energy, and catalysis. Probing andunderstandingtheeffectofdefects,vacancies,interfaces,grainboundaries,anddomainwallsonthechemical,physical,andelectronicpropertiesofmaterialsisacrucial step in material nano-engineering. We use ultra-high resolutionaberration-corrected transmission electronmicroscopy to visualize the atomicstructure, electronic structure, bonding, and chemistry in a wide variety ofnanocrystalsatom-by-atominbothstaticanddynamicmode.Thispresentationwillshowthestructurally-drivenchemical,physical,andelectronicpropertiesbyprobing theatomicbonding, registry,andchemistryusingavarietyofelectronmicroscopy imaging and spectroscopy techniques. The focus of our currentresearch is mainly on complex oxides, van der Waals heterostructures,heterojunctions,metalattices,andothernovelnanostructuressynthesizedunderextremeconditions.

11 In-situTEMStudyonShapeDeformationandThermalStabilityofSilicaOpalsandNickelFilledSilicaNano-Opals

P.Moradifar,Y.Liu,J.Russell,T.Mallouk,J.Badding,N.Alem

Metalattices are three-dimensional interconnected ordered arrays ofnanostructured solids with periodicity size range between 1 nm – 100 nm.Functionalpropertiesof3Dorderedframeworkssuchasnano-opalsandzeolitescanbetunedbyinfiltratingthemwithsemiconductormaterials(likeSi,Geetc)and/or metals (Pt, Ni, Ag etc). The quantum confinement in these metallicnanostructures,suchasNiinfiltratednano-opals,resultsinanequallengthscaleoftheintrinsicelectronmeanfreepathandmagneticcharacteristiclengthwhichcan lead to a strong interaction between the intrinsic physical and structuralparametersresultinginnovelmagnetic,electricandthermalbehavior.Usingin-situ heating high-resolution scanning/transmission electron microscopy (HR-S/TEM)techniques,weaimtounderstandstructuralchanges,thermalstability,and thermophysicalbehaviorof silicanano-opalsandNi filledsilicanano-opalsbeforeandafterinfiltrationasafunctionofthesizeofthesilicanano-opalsandtemperature. This studywill present the structural and chemical changes thatoccursinNiinfiltratedsilicaopalsunderheatingconditions.MorphologychangesoccurringatdifferenttemperaturesarevisualizedbyTEM.Imagingthestructuraland chemical changes of silica nano-opals and Ni filled nano-opals andunderstandingthethermalstabilityandthermophysicalbehaviorunderheatingconditions canprovide informationonhigh temperaturemagnetic behavior ofthismaterialasafunctionofbothtemperatureandsizeofthesilicanano-opaltemplates as a3Dordered template. Thisunderstanding is the key todevelopnovelmetalatticematerialsforfuturehightemperaturemagneticandelectronicapplications.

31

12 TheHighFieldMRIFacilityatPENNSTATE

T.Neuberger

MagneticResonanceImaging(MRI)isaversatiletooltoimagenoninvasively.Itsexcellentsofttissuecontrastininvivoimagingmakesitanindispensabletoolindiagnosticsinthedailyclinicalroutine.Nevertheless,MRIcandosomuchmore.BesidestheinvivoimagingMRIcanbeusede.g.tomonitormoisturedistributionindryingconcrete,driedorganicmaterialslikecoffeebeans,orwood.Itcanalsobeusedtoquantifythelipiddistributioninobjectslikeseedswhichisanessentialcomponent to thebiofueland thecropresearchcommunity.Furthermore, thedevelopmentofnewmultimodal‘theranostic’nanoparticlesincancerresearchisoneofourresearchprojectsaswellasthedesignandtheconstructionandtestingofnewmagneticresonanceradiofrequencydetectors.Manyoftheseprojectsaredevelopedincooperationwithfacultyfromseveraldepartments,especiallywiththefacultyfromtheMaterialsResearchInstitute.

TheHigh FieldMagnetic Resonance Imaging (MRI) Facility at the PennsylvaniaStateUniversitycomprisestwohighfieldpreclinicalimagingsystems.The7teslasystem is a recently upgraded Bruker Biospecwith the newest technology forpreclinical imaging and spectroscopy. It has 4 receiver channels, x-nucleicapabilities and the latest available software. The second system is a 14 teslamicroimaging system from Agilent.With its four receiver channels and the x-nucleicapabilities,itisaversatileinstrumenttoacquirehighresolutiondata.

13 ResearchattheElectroactiveMaterialsCharacterizationLaboratory

S.Ahmed,M.A.AlMasud,T.Carroll,N.D’Souza,J.Kopatz,A.FosterIII,A.Meddeb,M.A.Vecchio,W.Zhang,Z.Ounaies

ResearchattheElectroactiveMaterialsCharacterizationLaboratory(EMCLab)focusesonprocessing-microstructure-propertyrelationshipsinpolymer-basedsmartmaterials.Ourgoalistodevelopmaterialsexhibitinguniquecombinationsofmechanical,electricalandcoupledpropertiesforsensing,actuation,andenergystorage.Ourcurrentprojectscovertherangebelow:

• Polymernanocomposites:polymernanocompositesarepromisingcandidatestoovercomethelimitationsofmonolithicmaterials;significantimprovementlevelscanbeachievedbyincorporatinghighsurfaceareaparticlesinpolymermatrices.Chemicallymodifyingthenanoparticlesleadstotheabilitytotunetheexpansivesurfaceareaandthereforedramaticallyenhancetheeffectivepropertiesusingverylowparticlecontents.Additionally,wedemonstratethatmanipulationoftheparticlesusingmechanicalandelectricfieldsisabigsteptowardsspatiallyengineeringanddesigningmaterialsystemsforprescribedperformance.

• Activefibercomposites(AFCs)forsensingandactuation:AFCsarelongcircularpiezoelectricceramicfibersembeddedinanepoxypolymer,wheretheelectricfieldlinesareparalleltothefiberdirectioninsteadofthrough-the-thickness.AFCscanbeusedinseveralapplicationsforself-healthmonitoring,vibrationcontrolandenergyharvesting.Fullexperimentalcharacterizationofthecommercialcompositesandfiniteelementmodelingwithparametricstudyonthedesignparametersareconductedinordertomaximizetheperformanceofnewflexibleelectro-activecomposites.

• Multi-fieldresponsiveorigami-inspiredstructures:Theobjectiveistodevelopmulti-fieldactivematerialsyieldingon-demandlargebendingandfolding.Avarietyofelectroactivepolymersandpolymernanocompositesarebeingdevelopedandinvestigatedtorealizeactiveorigami-inspired

32

structuresusingacombinationofexperimentalmaterialsdevelopment,analyticalandFEAmodelingandmultiscalecharacterization.

• Polymercompositeforlowdosenuclearthreatdetection:Anovelapproachisbeingdevelopedtoactivelydetectshieldedspecialnuclearmaterials(SSNM)whileintransitwitharelocatablelowdosesystem.Severalcompositedetectorscomposedofapoly(vinyl)tolueneasthescintillatingmatrixandGS20lithiumglassindifferentgeometriesarebeingmanufacturedandcharacterized.

• Multilayerpolymerlaminatesforhighenergydensityandlowlossdielectrics:Theobjectiveofthisprojectistostudythebreakdownbehaviorofmultilayeredpolymerlaminatesunderpulsedconditionsandatlowandhightemperatures.Findingswillinformthedevelopmentofnovelpolymer-basedcapacitorswithhighdielectricpermittivity,lowdielectriclossandhighenergydensity.Animportantexpectedoutcomeisthatthemultilayeredlaminateswillenhancecapacitorandcablereliabilityathightemperaturebecausedielectricfailurepathsaredeflectedatthemanyinterfacesduetobarriereffects.

• Polymersurfacemodification:Twowaystomodifythechemicallyinertpolymersurfacearestudiedinourgroup:plasmatreatmentandmolecularlayerdeposition(MLD).Plasmatreatmentofferstailorabilityofthepolymersurfacebymodifyingthesurfacechemicalbonds,addingspeciessuchaspolarand/orfunctionalgroups,andformingradicals.Molecularlayerdepositionenablescreatingorganiccoatingsonpolymersubstrates.ThemainobjectiveoftheseprojectsistodevelopacomprehensiveunderstandingoftheelectronictransportandpolarizationphenomenaatresultingdielectricinterfacescreatedbyetchingthesurfacebyplasmaordepositinganorganiclayerbyMLD.

14 SNIPE:AScanningProbeMicroscopewith In-situOpticalAccessforLocatingMaterialandDeviceFeaturesandInterfaces

L.Pabbi,R.Banerjea,E.Hudson

ScanningProbeMicroscopy(SPM)hasproventobeapowerfultool instudyingexoticmaterialsbymeasuring,withatomicresolution,topographicandelectronicproperties.Wepresenthereanewvariabletemperature(4K–RT),lownoiseSPMthatcombinesatomicforce(AFM)andscanningtunneling (STM)capabilities. Inaddition,ournoveloptically-guided tippositioning systemallowsus to initiallypositionthetipoverspecificfeaturesinlarge(5mm)sampleswithhighprecision(10 µm)before resorting to “step-and-scan” techniques. This abilitymakesoursystem especially attractive for studies of small or rough crystalline samples,dispersedtwo-dimensionalflakes,andinterfaces.Coupledwithasuiteofsamplepreparation techniques such as Ar-ion sputtering, annealing and variabletemperaturesamplecleavage,wecanaccommodateawiderangeofcrystallineandnon-crystallinesamplesanddevicesforatomicresolutionstudies.

33

15 UsingLaserDiagnosticstoUnderstandChangesinSootNanostructure

M.Singh,R.VanderWal

Particulate matter such as soot derived from vehicle emissions or othercombustionprocesses isdetrimental tohumanhealth.Deterioratingairqualityduetoparticulateemissionshasbeenlinkedtohighriskofheartandlungdiseasesand also contributes to climate change. Thus, to establish global air qualityguidelines, it is important to measure the concentration of soot in theatmosphere. Laser induced incandescence (LII) is one such diagnostic thatmeasures soot concentration and primary particle size. This technique can beusedin-situandhashighsensitivity,providingaccuratemeasurementsevenwithlowconcentrationsofsoot.InordertointerprettheLIIsignalforthesemeasuresrequiresreferencetomodelsforLIIbasedonanenergybalance.Thesemodelspredict soot primary particle size and concentration, each with a set ofassumptions about soot physical parameters – often leading to discrepanciesbetweensimulatedandexperimentalresults.Thisworkusescarbonblackassootsurrogateandhighlightssomesuchdifferencesbycomparingexperimentswithmodel predictions. For instance, transmission electronmicroscopy (TEM) fromthis work shows significant changes in carbon black nanostructure upon laserheating, analogous to annealing, an aspect overlooked by LII models. UV-Visspectroscopy of laser annealed carbon black shows that its emissivity can beapproximatedbythatofablack-bodywithunitemissivity.ThismakestheanalysisoftheLIIsignalmorestraightforwardthanwithpresumedinitialproperties.Bynot accounting for such changes, models often over- or under-predict sootprimaryparticlesizewhencomparedtoparticlesizesdirectlymeasuredbyTEMimaging. Concentration determination is similarly skewed. Thus, refinement ofmodelparametersby comparison toexperimental results is required tobetterpredictthesequantities–asshownbythepresentedresults.

16 PennStateUndergroundPipelineCorrosion“Living”LaboratoryB.Shaw,E.Sikora,C.VanPelt,K.S.Venkataraman

Theconceptisalivinglaboratoryforstudyingundergroundcorrosionandpipelinecorrosioncontrol.Thisfacilitywouldrealisticallyapproachtheuniquechallengespresent inassessingpipelinecorrosionandcoatingsdamageand implementinganddesigningbetterandmorecost-effectivecathodicprotectionsystemsforthecontrolofundergroundcorrosion.Todate,thelivinglaboratoryhasbeenusingexisting Penn State underground infrastructure that is cathodically protected(buried tanks/ gas pipelines and above ground storage tanks) for teachingconcepts of underground corrosion control. We would like to expand ourcapabilitiesbybuildingasmall,low-costundergroundtestfieldofburiedempty,cappedpipesegmentswith“seeded”defectsandotherpipelinecorrosioncontrolchallengestoaidintheresearchanddevelopmentofnewinspectiontechniques,newcorrosionprotectionproducts,andprovideaplatformforabroadrangeoftrainingopportunities.Thisfacilitywouldofferhands-onlearningexperiencesforstudents,anewresearchavenuetosolveproblemsthatarecurrentlyrelevanttothepipelineindustry,afacilityforpipelineprofessionalstopracticetheircurrentskillswhileinteractingwithPSUstudentsandfaculty,aplatformtodiscusscurrentand future pipeline industry needs and research, training of industry-readyprofessionals,andthechanceforcommunityoutreachandeducation.Thisfacilitywill take advantage of PSU’s broad expertise in the science and engineeringneededfordevelopmentofnewinspectiontechniquesandtoolsanddataanalysis(corrosiondatainformatics).

34

17 Phase-field-basedPackageforModelingandSimulatingMaterialsMicrostructureandProperties

X.X.Cheng,T.N.Yang,B.Wang,Y.Z.Ji,R.Wang,J.J.Wang,J.M.Hu,J.Britson,L.Q.Chen

A to-be-released commercialized phase-field package µ-pro (microstructure-property modeling package) and its academic counterpart MesoExplorer arepresented for modeling microstructure evolution and predicting materialpropertiesin avarietyofmaterialsystemsanddevices. Bothpackages,atheart,area seriesofphase-fieldmodels implementedwithmodern Fortran andMPI,thusgainingnativenumericalandperformanceadvantages.Thepackagesexcelindealingwithnumeroustypesofproblems,e.g.,materialresponsetoanexternalfield and effective material properties (mechanical, thermal, transport,piezoelectric, dielectric, etc.) of an arbitrary single-phase or multi-phasemicrostructure; domain structure and domain switching in ferroelectric,magnetic, ferroelastic and multiferroic systems and devices;  dielectricdegradation and breakdown in capacitors; microstructure evolution duringstructural and diffusional phase transformations, Ostwald ripening and graingrowth in alloys; ion transport and microstructure evolution in lithium ionbatteries and solid oxide fuel cells.Users can easily finish thewholemodelingprocedure,fromparameterinputtoprogramexecutionandoutputvisualization,withacombinationofcommandlineinterfaceandgraphicaluserinterface.Suchversatilephase-field-basedpackageswouldbehelpfulforstudyinganddesigningmaterialsanddevicesfordesiredproperties.

18 ComputationalMaterialsScience:Multi-scaleMicrostructureSimulation

L.-Q.Chen

Dr. Long-Qing Chen’s group focuses on modeling the thermodynamics andkineticsofphasetransformationsandmulti-scalemicrostructureevolution.Westudy bulk and thin film materials using multi-scale computer simulationscombiningthefirst-principlescalculationsandphase-fieldmethod.Onecanusethe phase-field method to help interpret as well as provide guidance toexperiments. Our group collaborates extensively with experimentalists aroundtheworld,industry,andnationallabs.

19 Two-FoldAnisotropyinSodiatedBlackPhosphorousforSodiumIonBatteries

T.Chen,P.Zhao,X.Guo,S.Zhang

Phosphorousrepresentsapromisinganodematerialforsodiumionbatteriesandis regarded as the counterpart of Si for lithium ion batteries. Recent in-situtransmission electron microscopy studies evidenced anisotropic swelling insodiated black phosphorous. We rationalize that the apparent anisotropicswellingmaybeoriginatedfromtwointrinsicanisotropicpropertiesinherenttothelayeredstructureofblackphosphorous:sodiumdiffusionaldirectionalityandinsertion strain anisotropy. To assess the role of the two-fold anisotropy inmorphological evolution and stress generation upon sodiation, we develop achemo-mechanical model by incorporating the intrinsic anisotropic propertieswithlargeelasto-plasticflowinsodiatedblackphosphorous.Ourmodelingresultsreveal that the apparentmorphological evolution is critically controlledby thecoupledeffectof the two intrinsicanisotropicproperties. Inparticular, sodiumdiffusional directionality generates along the [010] and [001] directions sharpinterphases, which constrains anisotropic development of the insertion strain.The coupled effect renders substantial difference in sodiation induced stressgeneration when sodiation starts from different crystal facets. In addition toprovidingapowerfulmodeling framework for sodiationor lithiationof layeredstructures, our findings shed significant light on the sodiation-induced chemo-mechanicaldegradationofblackphosphorousasapromisinganodeforthenext-generationsodiumionbatteries.

35

20 DesigningandProductionofCork-BasedFunctionally-gradedConcreteWalls

F.Craveiro,J.Duarte

Naturalsystemsareoptimizedfortheloadingconditionstheyaresubjectedto,andtheirgeometryandmaterialpropertieschangeaccordingtostressorstrainrequirements.CurrentAdditiveManufacturingtechnologiesconsiderthedesignandfabricationofphysicalelementswithhomogeneousmaterialproperties,notheterogeneous composite materials with varying material distribution, calledfunctionally-gradedmaterials(FGM).WithFGMsitispossibletotakeintoaccountdifferent functional requirements in the design, simulation, and fabrication ofconstructionelements,optimized for specific thermo-mechanical conditions. Inthiswork,wepresentanewstrategydevelopedtooptimizematerialcomposition,using a graphical algorithm editor together with FEM software. The proposedalgorithm adjusts themulti-material ratio locally, according to the stressmap,simulatingnature’sstructuralbehavior.Thematerial isthenproducedusinganadditivemanufacturing process developed for this purpose,which combines aroboticarmandconcretemixersandpumps.

21 BoneRemodelingunderToothLoading

K.Su,L.Yuan,J.Du

Thestabilityandsuccessrateoforthopedicanddentalimplantsareaffectedbytheir surrounding bone quality. Bone adapts to mechanical loads throughremodelingactivitiestoachievenewequilibriuminstrain/stressstate.Theobjectof this study is todevelopanumerical algorithm to simulatebone remodelingactivitiesundermechanical loading.Finiteelementmethod isusedtocalculatethestrain/stressdistribution in thealveolarboneunder tooth/implant loading.The bone density remains unchanged near the equilibrium point of themechanicalstimulus;undergreaterorsmallermechanicalstimulus, it increasesordecreases.Iterationsareperformedtosimulatetheevolutionofbonedensitydue tomechanical stimulus. The effects of model geometry and the adjacentteeth are studied. The effects of various applied loads and different boundaryconditions are also compared. The calculated results are validated usingcomputed tomography (CT) data of humanmandibles. The implications of theresultsonpatient-specifictreatmentandtheinsightsforclinicaltechniquesarealsodiscussed.

22 DFTStudiesofIntermetallicGamma-BrassCrystalStructuresforSelectiveHydrogenation

H.He,A.Dasgupta,G.Kumar,R.M.Rioux,M.J.Janik

Bimetalliccompoundscanoffertunablesiteelectronicsandensemblestructureforselectivehydrogenationcatalysis.Inthisstudy,weconsidertheγ-brassphase(Cu5Zn8prototype) inordertoexposesurfaceswithcontrolledMxnuclearitytocontrol theselectivity forhydrogenation.Theγ-brass structurehasa52atomsunitcellwith4distinctsymmetrysites—outertetrahedral(OT),innertetrahedral(IT)octahedral(OH)cuboctahedral(CO). Inparticular,thePd-Znγ-brassatomicarrangementaswellasthesubstitutionpatternofZnbyPdinthePd-Znγ-brassphase(15.4-24%)hasbeenextensivelystudiedbyEdstromandWestmanthroughx-ray diffraction analysis. Surface energy calculations indicated that the moststablePd8Zn44facetis(1-10),whichexposesonlymonomersforPd8,butincludesPdtrimersforPd9-11.WevarythenumberofPdatomsperisolatedactivesiteandinvestigateitseffectonH2dissociationandacetylenehydrogenationmechanisms.DFTcalculationsagreedwithexperimentalresultsthatH2activationisfasterontrimersites,substantiatingtheformationofPd3trimersitesonPd9Zn43catalystsurfaces. The activation barrier for H2 dissociation is nearly identicalexperimentallyonPd9,Pd10andPd11,furthersubstantiatingtheisolationofthePd trimersites.DFTcalculations indicate thatacetylenebindsstronglyonbothmonomerbridgeandtrimersites,whereasethylenebindsstronglyonmonomer

36

atopand trimer side atop sites.At the same time,H2dissociation andbindingadjacenttoethyleneisonlypossibleonthetrimersites.DFTcalculationsshowedthe apparent barrier of ethylene hydrogenation is higher than the ethylenedesorption barrier, which indicates Pd8Zn44 is superior catalyst in selectivelyhydrogenatingacetylenetoethylene.Pd9-11ontheotherhand,containstrimersonthesurface,whichcanlowertheethylenehydrogenationbarrier,comparedwithPd8Zn44.Thefullpathofacetylenehydrogenationontheseisolatedsites,aswellasamicrokineticmodelforacetylenehydrogenationontheseintermetallics,willbepresented.Thegamma-brassintermetallicstructuresofferisolatedactivesiteswithcontrollednuclearity,allowingboththedesignofactiveandselectivecatalystsaswellastheelucidationofsiterequirements.

23 PredictingStabilityofModifiedMetalOxideSurfaceswithFunctionalAtomic-LayersforNano-engineeredCatalysts

A.S.M.Jonayat,A.vanDuin,M.Janik

Multicomponent metal oxide systems can offer tunable redox properties andchemical reactivity. Thesematerials are used in fuel cells, gas sensors, and asheterogeneouscatalysts.Thelargenumberofpossiblecombinationsofdifferentmixed-metaloxidesandtheirmetastabilitymaketheexperimentaldiscoveryofsuchsystemsveryinefficient.Wefocusonpredictingthe(meta)stabilityoftwoclasses of these materials with potential for unique chemical properties - (1)Monolayersofoxidized transitionmetalsoveranothermetaloxide support (2)Surface-confinedmixedoxides. Formonolayermetaloxides,wepresentanabinitio thermodynamic framework using density functional theory to acceleratethisdiscoveryprocessbypredictingstablemonolayermetaloxidesthatcanbesubjected to further computational study or experimental investigation. As anexampleoftheapplicationofthisframework,wepresentourstabilityanalysisofZnO (0001)-Zn terminated and rutile TiO2 (110) surfaces with epitaxial MxOy(M=Pd, Ru, Ni, Pt, Au, Zn) monolayers. Metastability is predicted relative tosegregatedparticle structuresof varying radii.Wepredict thatNiOcan formametastablemonolayerwiththesamestoichiometryasthesupport,ZnO(0001)-Zn. A PdO and RuO2 monolayer on ZnO (0001)-Zn are potentially stable. AmonolayerofRuO2onTiO2(110)isstablerelativetosegregatedRuO2particlesof2nmradiusor less.However,RuO2showsahighpreferenceforgrowingas2Dmultilayer islands. Predicted stable monolayers are also found stable againstsubsurface segregation in the host oxide. For surface-confined mixed metaloxides,asamodelsystem,weexaminedstabilityofmixedmetaloxidesofFe2O3,Cr2O3,V2O3ontheir(0001)surfacetermination.Weshowthatpureoxidesurfacestabilityisadescriptorofthesurfacesegregationpreferencesforthesesystems.Using thermodynamic relationships, we predict transition points for thesesurface-confined mixed metal oxides at which exchange betweensurface/subsurface and subsurface/surface metal atoms occur due to varyingoxygenchemicalpotential.

37

24 Quantum–continuumSimulationoftheElectrochemicalResponseofPseudocapacitorElectrodesunderRealisticConditions

N.Keilbart,Y.Okada,S.Higai,I.Dabo

Electrochemicalenergy storage isdominatedbybatteriesand supercapacitors;batteries exhibit high energy capacities but low charging rates, whereassupercapacitorsarecharacterizedbyfastchargingtimesbutlowenergydensities.The development of advanced technologies combining the energy density ofbatterieswith thepowerdensityof supercapacitors is critical toovercome thefrontier separating the performance of electrochemical systems from that ofinternal combustion engines andmeet the technical requirements for electrictransportationandgridenergy storage.A subsetof supercapacitors, knownaspseudocapacitors,areenergydevicescharacterizedbyfastandreversibleredoxreactionsnearthesurfaceoftheelectrode.Studyingpseudocapacitiveprocessesrequiresonetoconsiderthetime-dependentevolutionoftheelectrolyteattheelectrified interface. Although this problem can be tackled by leveraging theaccuracy of first-principles molecular dynamics, these simulations arecomputationally demanding, making it challenging to apply them to thecombinatorialdiscoveryforpseudocapacitiveoxides.Wesimulatetheresponseofpseudocapacitiveelectrodesunderelectrochemicalconditionsthroughtheuseofelectronic-structuremethodsusedtogetherwithaself-consistentcontinuumsolvationmethodtobuildanextensivedatasetoffreeenergiesasthesurfaceofthematerialisgraduallycoveredwithionsunderappliedvoltage.Thisdatasetisthen combined with grand-canonical Monte Carlo sampling to computeadsorption isothermsandcharge–voltage responses.Thecombinationof thesetwomethods allows them to identify the factors that endow themwith theirexceptionallyhighchargecapacitywithaninitialfocusonrutheniumdioxideasaprototypical material. Our approach provides a widely applicable quantum–continuum framework to predict the intrinsic properties of pseudocapacitiveoxidesandultimatelyoptimizetheirchargestorageperformance.

25 ComputationalMaterialsSystemDesign

Z.-K.Liu

ThisposterpresentsabriefintroductionofPhasesResearchLaboratoryadvisedbyProf.Zi-KuiLiuattheDepartmentofMaterialsScienceandEngineering.Ourresearch activities in computational materials system design are financiallysupported by different organizations, i.e., National Science Foundation (NSF),industries,DARPA,U.S.ArmyResearchLaboratory(ARL),U.S.AirForce,andotherNational Laboratories (i.e., NETL), NASA Jet Propulsion Laboratory ( JPL), Webrieflydescribeandgreatlyappreciatethesupport,whichalsoshowsthevariousopportunities/collaborationsforourcurrentandpotentialgroupmembers.Themainmethodologies applied in ourmulti-scalemodelingworks are graphicallydescribed. Under the support of CALPHAD committee and Bayer Travel Fund(InternationalTravelGrants for iMATSEGraduateStudentsatPSU),weshowagreatamountof international travelchances forourgroupmemberstoattendinternational workshops, conferences, and exchange opportunities studyingabroad.

38

26 QuantumTheoryofCondensedSystems:BilayerGrapheneLandauLevels,InversionDomainsinGaN,ProtonDynamicsonAlumina,andTransportinGraphene

G.DuCharme,B.Green,J.Robins,M.Umar,J.Sofo

Wepresentfourresearchlinesinourgroup.TheyallhaveincommontheuseofQuantumMechanicstomodelthepropertiesofmaterials1)Thecontrolofgroundstatesymmetriesusingelectricfieldsinthelandaulevelsofbilayergraphene2)The energetics of the formation of inversion domains ion polar GaN 3) Thedynamics of protons adsorbed on alumina surfaces 4) The evaluation of theconductivityofgraphenewithstaticimpurities.

27 TheDaboGroup|FirstPrinciplesInterfacialElectrochemistry

S.Weitzner

Ourgroupdevelopsandappliesnovelcomputationaltoolstopredictandimprovethepropertiesofnextgenerationenergyconversionandstoragematerials.Ourresearchteamoperatesatthefrontiersofmaterialsscience,physicalchemistry,applied mathematics, and computer science. We aim to break down thecomplexity ofmaterial problems in order to guide the development of futureenergymaterials.Centraltothisworkisthedevelopmentofquantum-continuummethodsthatprovideanaccurateandcomputationallyefficientdescriptionoftheelectrode-solution interface. The quantum-continuum approach permits thesystematic study of interfacial phenomena for electrodes in contact withelectrolytic environments under an applied bias. Coupling this method withadvanced statistical mechanical tools and Monte Carlo sampling techniquesfacilitatesthefinitetemperaturedescriptionofabroadclassofelectrode-solutioninterfaces. Our group applies these methods to study electrodepositionphenomena on transition metal surfaces, energy storage mechanisms atpseudocapacitiveinterfaces,aswellasphotocatalyticwatersplittingforhydrogenproductionatsemiconductor-solutioninterfaces.

28 ExtendingtheTimeandLengthScaleofModelingforVanderWaalsHeterostructures

P.Zhao,S.Zhang

Thefirstisolationofgraphenein2004hasledresearchesontwo-dimensional(2D)atomiccrystalsintoavastfieldoverthelastdecade.Inparallelwiththegreatlyexpanding2Dlibraryeversince,tremendousdevelopmentsinthesynthesisandunderstandingoftwo-dimensionalmaterialssuchasgraphene,phosphorene,BNandMoS2havespurredgreatinterestinexploitingtheirthree-dimensional(3D)heterostructures through layer-by-layer stacking, where van der Waals (vdW)interactionsemergeasaversatile ‘weakglue’keepingthestacktogether.Withrationallychosenbuildingblocks (2Dcrystals)andstackingsequence, these3Dheterostructuresmaycompensatefortheweaknessofitsconstituent2Dcrystalsand possess exceptional multifunctionalities that enable multi-tasking(mechanical,opticalandelectronic)applications.Despitesuchinspiringprogressandpromisingdesigning,defectshavebeenseenasimperfectionsthatdegradedeviceperformanceandlayeredsystemsareparticularlyrichinthisregard.Foronething,becauseoftherelativelylowout-of-planerigidityofsuch2Dcrystals,ripplescanbeeasilyformedduringstacking.Ourrecentresearchhasshownsuchline defects, termed as ripplocations, are very straight, narrow, andcrystallographically oriented. For another, due to the latticemismatch amongneighboring layers of different crystals species or/and orientations, the

39

coincidenceMoiresuperstructureswouldthusoriginate,inparallelwithstrong,localizedinteractions.

Ononehand,tofurtherinvestigatesuchfundamentalstackingmechanismanditseffect in an extending length scale, we present a simple and effective quasi-continuummodelusingfinitecrystalmethodbasedontheexponentialCauchy-Born rule. For each graphene-like crystal specie, a homogenized finite crystalmodel is developed exclusively, by fitting its unique lattice parameters andmoduli. Inaddition,tocatchtheeffectofbothregistryand latticemismatch,amodifiedvandeWaalsinteractionmodelisimplementedaccordingly.Ourstudyhasshownthatthemodeliseffectiveinnotonlycharacteringthemorphology,stability,motion,andinteractionofripplocationsbutalsouncoveringthehighlylocalized stress due to registry and lattice mismatch. On the other hand, wepresenthereanapproachcalleddiffusivemoleculardynamics(DMD),whichcancapturethediffusionaltimescalewhilemaintainingatomicresolutionbycoarse-graining over atomic vibrations and evolving a smooth site-probabilityrepresentation.

29 SpecificTargetingofhBMSCsandRFMediatedOsteogenesisUsingDumbbellShapedAuFe3O4NanoparticlesConjugatedwithAnti-CXCR4AntibodyandmiR148bMimic

J.Casey,A.Forghani,M.Abu-Laban,C.Chen,J.Bursavich,M.B.Cavalier,R.Hoff,K.Hogan,W.Phelan,D.Hayes

Spatialandtemporalcontrolfordeeptissueregenerationislargelydependentontheprecisetargetingoftherapeuticstoprogenitorcellsatthesiteofthedefect,as well as properties of drug delivery vehicles used to affect the intendedarea. Herewe present our efforts to develop a targeted RF stimulated siRNAdeliverytooltomodulatetissueregenerationviaspatiotemporalcontrolofpost-transcriptionalgeneregulation.Tothisend,wehavedevelopedaheterodimericAu-Fe3O4nanoparticlecomposedofgoldand ironoxidesubunitsthatallowfordiscretechemicalattachmentsitesandchemistryfordualfunctionalizationwithtargetingmoleculesandmiRNAmimics,inthiscaseAnti-CXCR4antibodyandmiR-148bmimicrespectively. Tocontrolactivation(uncaging)ofthemiRNAmimic,we have developed a stimulus responsive Diels-Alder linkerwhich tethers theoligo to the surface in an inactive state. The Diels Alder linkage provided aneffective spatial and temporal control switch tomodulate gene expression viaradio frequency (RF) activation, while Anti-CXCR4 antibody provides specifictargetingofheterodimerNPstohBMSCs.Regardingtargetingoftherapeuticstoprogenitor cells,MALDI demonstrated effective conjugation of the Anti-CXCR4antibody to the iron oxide portion of the AuFe3O4. Flow cytometry confirmedattachment of the Anti-CXCR4 antibody to the hBMSCs. Osteogenic hBMSCsexhibitedupregulationofalkalinephosphatase(ALP)atday7,aswellascalciumdeposition at 14 and 21 days when stained with Alizarin Red and furthersupportedbyICP-AESanalysisforthegold,iron,magnesium,phosphorous,andcalcium.WithdemonstratedupregulationofhBMSCsosteogenesisandpreferredtargetingofNPtohBMSCsinvitro,usingthisapproachopensthepossibilityfordeeptissueregenerationandrepairforfuturestudies.

40

30 Self-assemblyofSmartMultifunctionalHybridCompartmentswithProgrammableBioactivity

G.Cheng,S.Hao,Y.Wan,S.Y.Zheng

Asonetheofbasicbuildingunitsof life, thecell isacompartmentalizedspacewith an outermembrane andmultiple internal organelles,which canmediatemanycomplexbiochemicalreactionsinconcertandprovidespecializedcellularfunctions. By mimicking biological compartmentalization, the design andconstructionof the smartartificialmicrocompartmentsarehighlydesirable forunderstandingthemechanismofformationofprimitivecellsfortheoriginoflifeandhavetechnologicaleffectsinbroadfieldssuchasmaterialsscience,catalysis,environmental remediation, biomedicine, and biotechnology. However, itremains a critical challenge for the construction of a structurally stable,semipermeable, and a multifunctional compartment that can maintain aprotective and confined internal space while allowing internalization ofingredients. Here, we present a strategy for construction of novel smartmultifunctionalhybridcompartments(SMHCs)withsemi-permeability,stimulus-response,andenzymaticbioactivity.

31 PortableSample-to-AnswerMultiplexedMolecularDiagnosisforMalariainRemoteAreas

G.Choi,T.Prince,J.Miao,L.Cui,andW.Guan

This paper reports a multiplexed “sample-in-answer-out” diagnostic system(AnyMDx)forspecies-specificmoleculardetection(P.falciparumandP.vivax)ofmalaria in fieldsettings. Inourpreviouswork,wehavesuccessfullyexploredasingleplex P. falciparum-specific AnyMDx system. The multiplexed AnyMDxsystemdescribedinthisabstractaimstofurtheraddresstheneedforsensitiveand species-specific detection of malaria in the field clinics. The multiplexeddiagnosissystemincorporatesaready-to-usereagentcompactdisk(withmultipleindependentspecies-specificreactionunits)andalow-power,portableanalyzer.Usingwholebloodasatestingsample,themultiplexedAnyMDxcandeliverfast(40minsfromrawsampletoanswer),sensitive(~1.6parasite/μL),andspecific(P.falciparum and P. vivax) molecular answers without any laboratoryinfrastructures.

32 BIOENIGMA:HighThroughputScreeningforProteinBasedMaterials

M.Demirel

Recent advances in the nanotechnology of materials, combined with parallelimprovements inbiotechnologyandsyntheticbiology,havedemonstratedthatmore complex biomimetic materials with properties engineered precisely tooptimize performance can be achieved. Specifically, proteins provide uniqueadvantagesasadvancedmaterials.Forexample,proteinscanoftenself-assembleandformnetworkmaterialswithextraordinarypropertiessuchasextremelyhighdurability or elasticity. More importantly, protein can evolve to newfunctionalitiesbygenemutationsorduplications,which is auniqueadvantagecompared to inorganicmaterials. Recently,we reported thedevelopmentof anewtechniquetoscreenproteinevolutionbasedonlaser-probingspectroscopywith sub-picosecond resolution. Our results demonstrate, for the first time,relative quantification of protein network topology in real time for directedevolution.Hence,usingprotein-basedassemblyandhigh-throughputscreening,wecouldanswermanyfundamentalquestionsinmaterialsresearch,suchasthefundamentallong-rangeorderinsoftmatteraswellasdevelopingnewtoolsforadvancedmaterialsassembly.Wearebuildingalargelibraryofpolypeptidesinbacteriaaswellasoptimizationusingcomputationalscreeningtools inorderto

41

analyze how small changes in the protein sequence can alter protein-basedmaterialsproperties.Ourultimategoalistobeabletotailorproteinpropertiestofabricatedesiredbiomaterials.Programmingphysicalpropertiesthroughdirectedevolutionintroducesanewdesignrulefortheunderstandingofmaterialsdesign.

33 Mechanotargeting:ChangesinCellShapeModulatetheOverallRateofNanoparticleEndocytosis

P.Fattahi,Y.-T.Yeh,S.-Y.Zhang,S.Zhang,J.L.Brown,P.J.Butler

Changes in cellular morphology alter stress fiber alignment, which changesmembranebendingandtensionenergies.Allthesechangeseventuallywillaffectthe overall cellular nanoparticle uptake. To fully understand the changes inendocytosisprocessasaresultofcell-shapealteration,weexplorednanoparticleselectivity forendothelialcell inbothsingleandmonolayerorders.Weutilizedmicro-printing of extracellular matrix proteins for single-cell engineering andhome-built 3Dnear-fieldelectrospinning (3DNFES)printer to createanalignedmonolayer cell layer. Using these models, we showed that nanoparticlesendocytosis in cells is inhibited when cells convert from a low-stress state(ellipticalform)toahigh-stressstate(highlyelongated)independentofcellularareaandtime.Onthebasisof these findings,wesuggestoptimalnanoparticleuptake to the cells can also be regulated by cellular shape and morphology,thereforeprovidingamoreeffectivediseasediagnosisandtargetingapproach.

34 Citrate-basedBiomaterialsforDrugDeliveryandTissueEngineering

G.BoraKim,J.Yang

In recent years, citrate-based biomaterials have become an intense focus ofresearchinthesearchfornewfunctionalbiomaterialsforsolvingpressingmedicalproblems.Citric acid, ahistorically known intermediate in theKrebs cycle, is amultifunctional, nontoxic, readily available, and inexpensive cornerstonemonomer used in designing our citrate-based biomaterials. In addition to theconvenientcitratechemistryforthesynthesesofanumberofversatilepolymersthat may be elastomeric or mechanically strong and tough, injectable andphotocrosslinkable, fluorescent and MR imaging-able, and/or tissue adhesive,citricacidalsopresents inherentanti-bacterialandanti-clottingcharacteristics,whichmakecitrate-basedbiomaterialsidealforanumberofmedicalapplications.Furthermore,morerecentstudieshaverevealedtheintriguingbiologicallinksofcitratetotissueregeneration,especiallytoboneregeneration.Allthesefeaturesmakecitrate-basedbiomaterialsasthematerialofchoiceformanyapplicationsin regenerative medicine that are worth further developing. Herein,methodologiesforthedesignandbiomedicalapplicationsofcitratebiomaterialswillbediscussed.Specificexamplestobeshowcasedincludevasculargrafts,boneimplants, nerve guides, micro/nano-composites for orthopedic devices,bioinspired adhesives forwound healing,materials/cells/tissue for bioimaging,immunecell-mediatedcancerdrugdeliverysystems,andchloridesensorforcysticfibrosisdiagnosis.

35 SynthesisandSelf-assemblyofPNBE-PEOAmphiphilicBlockCopolymer

C.Lang,J.LaNasa,M.Kumar,R.J.Hickey

Blockcopolymersarebecominguniversallyusedinbiomedicalapplications.Theyhave been used as drug carriers, prosthetic materials, tissue engineeringsubstrates,medicalmembranes,andotherbiomedicalmaterials.Inthisstudy,wehave developed a new class of amphiphilic diblock copolymers combining twodifferent living polymerization methods: ROMP (ring-opening metathesispolymerization)andanionicpolymerization.Usingthisnewlydevelopedsyntheticstrategy,wewereabletoproducepoly(norbornene)-block-poly(ethyleneoxide)(PNBE-PEO) block copolymers with precisely controlled molecular weight andpolymerblockfractionsofdiblockandtriblockcopolymerswhichiscrucialforself-

42

assembling desired colloidal nanostructures. We found that these polymersundergoself-assemblyinwatertoformarangeofnanostructures,whichmaybefurther used in applications related to drug delivery, templated synthesis, ormembraneseparations.

36 BirdcageCoilFabricationforHighFieldMagneticResonanceImaging

G.Lee,W.Lee,J.Clark,M.Lanagan,T.Neuberger

TheHighFieldMagneticResonanceImaging(MRI)FacilityfabricatesitsownMRIRadioFrequency(RF)resonators.TheseresonatorsareantennasthatareusedtotransmitandreceiveelectromagneticsignalstocreateMRIimages.TheoptimaldesignandusageofRFcoilsisoneofthekeystoacquirehighqualityMRIimages.TherecenttrendinusinghigherfieldMRIinordertocreatehigherSignaltoNoiseRatio(SNR)requiresthefabricationofhigherfrequencyantennasthatmatchtheoperating frequency. However, the fabrication of RF antennas becomesmoredifficultathigherfieldsduetoincreasedradiationlossandshorterwavelengths.Abirdcagecoil,oneofthemostcommonlyusedhomogeneouscoilsinclinicalsetupsat1.5T,3T,and7T,inhighpassconfigurationwasdesigned,simulated,andfabricated in this work to image stroke in a mouse model at 14.1 tesla fieldstrength.

37 BiomimeticPhotoluminescentBiodegradablePolymersforBoneTissueEngineeringC.Ma,X.Tian,X.Bai,J.Yang

Phosphoserine (Pser), the phosphorylated amino acid highly abundant inNon-collagenousproteins(NCPs),andsmallmoleculessuchascitratearebothintegralpartsofbonematrixandplayimportantregulatoryrolesattheorganic/inorganicinterfaceforcontrolledbonecellactivityandmineralization.Therefore,tobettermimicthenativebone,weincorporatedPserintocitrate-presentingpolymerstodevelopanewbiomimeticbiodegradablephotoluminescentpolymer,BPLP-Pservia a convenient polycondensation reaction. BPLP-PSer showed excellentphotoluminescence properties, such as tunable emission and excellentphotostability.FluorescentimagingandanalysisofBPLP-PSerfilmsenabledtheinvitrotrackingoffilmdegradation.Moreover,theincorporatedPserwasfoundtofacilitate the mineral deposition on polymer films, further improve itscytocompatability,andevenenhancetheosteogenicactivityofhMSCsonfilmsevidencedbyelevatedalkalinephosphatase(ALP)productionandincreasedgeneexpressionofosteopontin(OPN).Ontheotherhand,solutecitrateandPSerthatcouldbereleasedfromBPLP-PSerfilms,revealedtheirosteopromotiveeffectinterms of maintaining ALP production even at late stage and elevating OPNexpression. Furthermore, BPLP-PSer/hydroxylapatite (HA) compositeMicroparticulatescaffold(Mps)systemwasdeveloped.TheMpswithhighsurfacearea greatly supported cell adhesion, and promoted the proliferation andosteogenic activity of hMSCs after packed into in vitro 3D culture modelsproviding interconnective 3D porous structure,which led to the generation ofintact and fluorescent cell-Mps constructswith defined shape andmechanicalproperties. Homogenous cell distribution was observed within the cell-Mpsconstructs,whichisaccompaniedwithmassiveproductionofextracellularmatrixforming interwovennetworkstobridgedifferentMps. Inarat femoralcondyledefect model, the implanted BPLP-PSer/HA Mps presented their excellentosteoconductivity by providing an interconnective 3D framework allowingsuccessfultissueingrowtharoundtheimplantsandthroughoutthedefect,whichled to extensivemore peri-implant bone formation and significantly increasedbone mineral density (BMD). H&E and Masson's trichrome staining further

43

confirmed the earlier bone formation and the facilitated bone maturationconducting along the BPLP-PSer/HA surface, suggesting its potential as apromisingscaffoldinorthopedicapplicationsforspeedybonehealingwithouttheneedforexogenousgrowthfactors.

38 ANewInSituMethodtoMeasureMembraneElasticityinCellMembranesUsingFluorescenceLifetimeDistributionofDiI

S.Son,H.S.Muddana,P.J.Butler

Theelasticityofmembranesgovernsmembrane-dependentprocessesofproteinactivation, cell migration, mitosis, and other important cellular biologicalphenomena. Elasticity is described bymembranemoduli, which represent theproportionalitybetweenstressandareal/flexural strain.Here,wedemonstratethat the fluorescence lifetime of 1'-dioctadecyl-3,3,3'3'-tetramethylindocarbocyanineperchlorate(DiI),whichresidesinthemembrane,canbeconvertedtomembranearea-per-lipid(APL)andthevaluesweredirectlyusedtodetermineelasticmodulioflipidmembranes.FluorescencelifetimeofDiIwas measured under confocal optics using time-correlated single photoncounting.Fluorescencelifetimes(τ),wereconvertedtoAPLusingtheequations:A" = A$ + A& = A$ +

(∙*+,- ./0+ 1,- ./0

, andl n K-8 = −1.0476 ∗ ln τ − 0.095,

whereAoisthehardcoreVanderWaalsarea(0.42nm2),Afisfreearea,Kristheradiativedecayrate,Knroisthenon-radiativedecayrateinlowviscosityandxisa constant determined in control experiments. Themean and variance of APLapplied to calculate compressibility modulus and bending modulus.Nanoliposomesweremadeviaextrusionfromlipid/dyemixturesof1mg/mloflipidand0.04mole%DiI (diameters intherangeof100to150nm)frombothsaturatedandunsaturatedlipidsandthefluorescencelifetimeofDiIembeddedin nanoliposomes was measured. The DiI molecule decreases in lifetime inresponse to subtle increases in membrane APL resulting from temperatureincreases. In nanoliposmeswith saturated lipids, both compressibilitymodulusandbendingmodulushavealinearrelationshipwithhead-to-headlipidthickness.Furthermore,weappliedthisassaytodeterminethemembranebendingmoduliin human cells. Results show that a newly developed method with lipophilicfluorescentprobes,DiI,providesawaytomeasureAPLanddynamicchangesinAPL to membrane compressibility and bending. Furthermore, this method isapplicable tohumancellmembranes.Such resultsenable themeasurementofthe mechanical origins of cellular processes such as filapodia formation, andmechanicalpropertiesofnanoliposomesandmembranousorganellesforwhichtherearecurrentlynomethodsavailable.

39 MechanotargetingofNanoparticlestoMalignantCells

Q.Wei,T.K.Zhao,P.Zhao,P.Butler,S.L.Zhang

Targeteddeliveryofnanoparticle (NP)-baseddiagnosticandtherapeuticagentstomalignantcellsandtissueshasexclusivelyreliedonchemotargeting,whereinNPs are surface-coated with ligands that specifically bind to over-expressedreceptorsonmalignantcells.Herewedemonstratethatcellularuptakecanalsobebiasedtomalignantcellsbasedonalteredcellmechanicalproperties,enablingmechanotargeting.Inlightofmechanotransduction,wedirectthecelllines(HeLaandHCT-8) intodifferentmechanicalstatesandmorphologies. Invitrodeliveryrevealsthatfornon-metastaticcancerouscellsthecellstresssuppressescellularuptake, counteractingwith the exposed surface area of cells. Upon prolongedculture on stiff hydrogels, cohesive HCT-8 cell colonies undergo metastatic

44

phenotypic change and disperse into individualmalignant cells. The dispersedcellsareverysoftandadoptanunspread3Dmorphology,resultinginseveral-foldhigher uptake than the pre-dispersed counterparts. Our study opens a newparadigmofharnessingmechanicsforfuturenanomedicine.

40 TowardsaReal-timeData-drivenApproachforProactiveInjuryPreventioninConstruction

J.Zhao,E.Obonyo

Thereisaneedformoreproactiveinjurypreventionstrategiesthatcanenhancethe progress towards zero injuries and fatalities in construction. This need isgreaterinchronicdiseasessuchasMusculoskeletalDisorders(MSD).Thispaperpresentspreliminaryfindingsfromresearchdirectedatinvestigatingthepotentialforleveraginganemergingsensor-basedsystemtogenerateactionabledatathatcanbeusedtoimprovetheunderstandingofthecontributingfactors.Oneofthekey barriers to injury prevention is the lack of reliable data on the complexinteractionsacrosscontributingfactors.Lessonscanbelearnedfroma"WebofCausation" approach that is being used to characterize and analyze thedevelopmentprogressofthedisease.Thisisadata-intensiveapproach.ItisthecontentionofthisposterthattherequireddatacollectionandprocessingneedscanbeaddressedusingemergingWearableTechnologies(WT).Themainbodyofthe poster outlines the pros and cons of existing systems. This is based on acomprehensiveliteraturereviewofpublishedworkandexperimentaluseoftwolow-costWT.ThediscussionalsoproposesastrategyfordesigninganddevelopingaWTapplicationthatcanenhanceconstructioninjurypreventionusingreal-timedata.

41 AForce-ThresholdCriterionforMulticellularEpitheliumDispersion

Y.Zhang,T.K.Zhao,X.C.Shi,P.Zhao,C.J.Huang,Q.Wei,X.Tang,L.Santy,T.M.A.Saif,S.L.Zhang

Cancermetastasis iscommonlyregardedasageneticallyprogrammedprocess.Yet recent studies have accumulated evidence that tumors may acquiremetastatic ability through reciprocal interactionswith theirmicroenvironment.Ontheonehand,tumorprogressionisoftenaccompaniedwithchangesintumormicroenvironment, spanning from increased stiffness of extracellular matrix(ECM)toalteredECMcompositionandproteindensity.Reciprocally,cellssensebiophysicalcuesfromtheirsurroundings,andrespondbyactivatingacascadeofbiochemicalsignalsthatinturnregulatecoordinatedremodelingofcytoskeleton,cell-cell and cell-ECM adhesion junctions; all of which contribute to theprogression of malignancy_ENREF_10. Despite increasingly accumulatedevidenceonmicroenvironment-inducedmalignantbehaviors,nocriterionexistsforpredictingthemalignanttransformationandtumormetastaticpotential.Cell migration, particularly the onset of cancer metastasis, involves dynamicgeneration and transmission of intracellular, intercellular, and extracellularforces. For cells in isolation, actomyosin contraction is transmitted to integrin-mediated focal adhesions, generating extracellular traction on the ECM. Thetraction reacts back to the cell, generating cell body stress. In multicellularmicrotissues,contractileforcesaretransmittedthroughbothfocaladhesionsandcadherin-mediatedadherens junctions, generatingextracellular tractionon theECMontheonehandandlong-rangeintercellulartensioninthemicrotissuesontheother.Thoughithasbeenlongconceivedthatstresshomeostasisisessentialto cell morphogenesis, survival, and normal functions, how mechanical forcecontributes to cancer metastasis and malignant transformation has remainedelusive.

45

Hereinwe show that human colon carcinoma (HCT-8) cell colonies seeded onpolyacrylamide (PAA)hydrogelsundergo invitrometastatic-likedispersionandmalignanttransformationinagel-stiffnessandcolony-sizedependentmanner.Toelucidate the role of cellular forces in this process, we measure extracellulartractionandintercellulartensionoftheHCT-8cellcoloniesatdifferentstagesofculture through traction force microscopy (TFM) and monolayer stressmicroscopy (MSM), respectively.Abiophysicalmodel ispresentedandused togenerate cellular force landscapes in the parametric space of gel stiffness andcolony size.Thecombinedexperimentalandmodelinganalyses reveala force-threshold criterion for the in vitro metastasis and malignant transformation,resembling the Griffith theory for crack propagation andmaterial failure. Ourfinding underscores the potential importance of physical forces in directingphenotypicchangeofcells.

42 ImprovingEnergyDensityandPowerPerformanceofLi-IonCapacitorsUsingNanoGraphiteAnodes

A.R.Aref,C.-C.Chou,M.T.Lanagan,C.A.Randall,R.Rajagopalan

Electrochemical capacitors (ECs) are receiving extensive attention as potentialenergystoragedeviceduetotheirhighcapacitance,ratecapability,andlongcyclelife.Theenergydensityofthecapacitorislimitedbythespecificcapacitanceofhighsurfaceareadoublelayercarboncathodes,whilethepowerperformanceisdependent upon the rate capability of the anode. In this investigation, wedemonstratethatahighenergydensitylithiumioncapacitorthatcanbechargedanddischargedbetween2.2V–4.2Vwithenergydensityexceeding100Wh/kgbasedonboth themassesof theelectrodeanddischarge time<1mincanbefabricated. The capacitor was capable of being cycled at 1 A/g with 90%capacitanceretentionover5000cycles.Thehighvoltagestabilityofthecapacitorupto4.2Vwasalsodeterminedusingacceleratedfloatingvoltagetests.Thehighperformanceofthecapacitorwasduetotheuseofahighpuritypolymerderivedcarboncathodewithcontrolledporesizedistributionalongwithananocrystallineprelithiatedgraphiteastheanode.

43 ScalableManufacturingofPolymerNanocompositesUsingOscillatingMagneticFields

Y.Atescan,M.Spencer,S.Trivedi,M.Sharp,R.B.Branco,N.Yamamoto

Polymernanocompositesprovideadvancedmultifunctional,tailorablepropertieswhileretaininglowdensity.However,bulkapplicationiscurrentlylimitedbecausefabricationofnanocompositeswithprecisecontrolofnanofillerstructuringandtheir interfaceconditions is currentlymissing.Activeassemblyusingoscillatingmagnetic fields is a promising, scalable manufacturing method to organizenanofillerswithinpolymermatricesinanon-contactandenergy-efficientmanner.Using magnetically-responsive nanoparticles, assembly can be achieved usingsmallfields(~100sofG)inashorttime(~15mins).Withoscillatingfields,time-average negative inter-particle forces can be provided, improving tailoring ofnanofiller structuring that is often dominated by innate positive inter-particleforces. Inthisstudy,first,magneticassemblyofnanofillerswereparametricallystudiedforamodelnanofiller:superparamagnetic ironoxidenanospheres(~15nmdiameter) indeionizedwater.Then nanofiller concentrationandmagneticfieldproperties(fluxdensity,frequency,andwaveform)werevariedtotunetheforces appliedon thenanofillers (inter-particlemagnetic forces, hydrodynamicforces,etc.)andtheirassociatedresponsetime.Fromexperimentalobservation,magneticfieldsthatoscillatedinthelowfrequencyrange(<1Hz)wereeffectiveto tune inter-particle distances and thus interface conditions, balancing inter-particle magnetic attraction and particle diffusion. Second, the knowledge on

46

magneticassemblyobtainedaboveisbeingappliedtofabricatenano-structuredmagneto-active elastomers (MAEs) and nano-prepreg layers consisting ofverticallyalignedcarbonnanotubes(CNTs).Ferromagneticironoxide

nanoparticlesweresuccessfullyassembledeveninahighlyviscoussiliconrubbermatrix. CNT nanofillers are being prepared by coating with nickel formagnetizationandbysurfacetreatmentwithdiazoniumtreatmentforimprovedsuspensionanddispersionwithinathermosetmatrix.

44 RandomLaserEmissionTuningviaAnisotropicScatteringParticleAlignment

P.Donahue,J.Miller,C.Wang,C.Zhang,N.Nye,D.Christodoulides,Z.Liu,C.D.Keating

Theproductionoflasermodesisaccomplishedbyconfininggainwithinanopticalresonator. This is conventionally accomplished through precise design andpositioningofmirrors.Conversely, randomlasersaccomplish lightconfinementviarandommultiplescatteringevents.AsuspensionofTiO2nanowiresin2mMrhodamineBdyesolution is showntosupport thisphenomenon.Fluorescenceproducedbytheexciteddyeisscatteredbytheparticlematrixsuchthatphotonsundergo a randomwalkwithin the gain region. A percentage of the resultantopticalpathwaystaketheformofclosed-loops,resultinginlaserbuildup.

In suspension, the long axes of anisotropic particles are readily alignedby theapplicationofanalternatingcurrentelectricfield.SimulationresultspredictthatsuchcollectivealignmentofTiO2wirescanbeutilizedtochangethescatteringpropertiesofaparticlesuspensiondramaticallyduetoanisotropiceffects.Thus,reconfigurablewirealignmentprovidesameanstotunetheemissionprofileofadevicebetweenfluorescenceandrandomlasing.

45 ReconfigurableElectricFieldDirectedParticleAssembliesforMetamaterialApplications

N.Famularo,S.J.Boehm,L.Kang,X.Guo,T.S.Mayer,D.H.Werner,C.D.Keating

Opticalmetamaterials are a class of engineeredmaterialswhich typically haveunprecedented properties, like negative refractive index or optical cloakingcapabilities.Thesepropertiesareoftenfacilitatedbytherationaldesignofsub-wavelength features of specific size, shape, and arrangement. For this reason,most experimentally realizedmetamaterials in the literature aremadeby top-downfabrication.Asthedemandforincreasinglysophisticateddevicescontinuesto grow, it is important to developmetamaterials with dynamic functionality.Whiletop-downfabricationallowsforprecisecontrolovermicro-andnanosizedfeatures, the resulting fabricated device typically is not reconfigurable. Hybridtop-down/bottom-upparticle assembly is onepossibleway to achieve tunableand dynamic metamaterials. We demonstrate this by using electric fields,propagatingfromlithographicallypatternedco-planarmicroelectrodes,todriveparticleassembly.Electricfielddrivenassembliesareadvantageousbecausetheyallowforassemblyreconfigurabilitybytogglingthefieldon/offandtunabilitybyvaryingtheelectricfieldconditions.Here,wecharacterizetheassemblybehaviorofmetamaterial-relevantcompositemetal/dielectricparticlesmadebytemplatedelectrodepositionofmetal salts, subsequentglass coating, and finally selectivemetal etching. This process yields nanowireswith stripes of gold separatedbyhollowsolvent-filledetchedregions,allencasedinasilicashell.Therefore,smallergoldsegmentscanbepre-orderedwithinalargernanowirebysynthesispriortoassembly, providing additional degrees of spatiotemporal control over theassembly.Additionally,weshowthatadjustingthestripingpatternchangesthe

47

assemblybehaviorofthecompositeparticles.Thus,assemblymotifsofinterestcan be realized byad-hocparticle design. Finally,we show a proof-of-conceptreconfigurable polarizer as an application of assemblies of compositemetal/dielectricparticles.

46DirectLaserWritingviaLaserInducedThermalVoxels

C.Kindle,L.Zarzar

Easeofcustomizationandfabricationaresignificantdrivingforcesintherealmofmaterialsinnovationandproduction.Weaimtodevelopamethodologyfor3Dintegration of materials that marries solvothermal synthesis with laserpatterning.Bygeneratingafemtoliter-scalesolvothermalreactionvolumeatthefocusofalaser(“laserinducedthermalvoxel”orLITV)withtemperaturesthatcanexceed2000K,wecanconfineandpatternchemicalsynthesisforabroadrangeofmaterialswithhighchemicaltunability,includingmetals,oxides,andcompositematerials directly from solutions of the desired precursors. LITV implements astreamlinedprocessinwhichanabsorbingmaterialconvertstheenergyprovidedby a laser to thermal energy at the tightly focused volume, promoting thesolvothermal synthesis of inorganic nanomaterials directly from a precursorsolution.Thesynthesizednanoparticlesaredepositeddirectlyattheliquid/solidinterfaceandcanbepatternedor“drawn”byscanningthelaserfocusoverthesurface.Thematerialdepositedcanbecontrolledbychangingdifferentaspectsofthesyntheticprocesssuchassolvent,pH,laserpower,scanrate,concentration,andpresenceofsurfactants.

47 CVDGrowthofGrapheneandhBNfor2DHeterostructuresandIntegration

J.W.Kronz,R.Lavelle,J.Redwing,D.W.Snyder

Two-dimensional (2D)materials arepaving theway for thenext generationofnanoelectronics, offering unique electronic and mechanical properties inmaterialsconfinedtoaplaneofatoms.Materialsofcurrentinterestaregrapheneand hexagonal boron nitride (hBN). Both of these materials have attractivepropertiesforelectronicdevices,butshowsuperiorpropertieswhenintegratedtogether in a van derWaals (vdW) heterostructure. Reports have shown thatgraphenetransferredontoa2DhBNsubstratecanradicallyboostmobility.ThemobilityenhancementusinghBNasasubstratecanalsobeseenwhenMoS2isplaced onto hBN, further demonstrating the usefulness of integrating 2DmaterialsontohBN.

Chemicalvapordeposition(CVD)isausefulmethodtofabricatethesestructuresasitallowsforlargeareagrowthsinadditiontocrystalstructureandthicknesscontrol.Byenablingthegrowthof2Dmaterialsdirectlyontopofoneanother,higherqualityfilmsandheterostructurescanbecreated.

CVDofgrapheneiscurrentlyconductedgrowingonacopperfoilsubstrateatloworatmosphericpressureandhigh temperature followedby transfer toamoresuitablesubstrate.Thisapproachtypicallyresultsinamonolayerofhighqualitygraphene.Thetransferprocess isawettransferprocessthatrequiresaPMMAsupportlayerontopofthegraphene,whilethecopperisselectivelyetchedoffthebackofthegraphene.

Growth of hBN is carried out using a two-step process of a low temperaturegrowthwith a high temperature anneal. Growth occurs at low pressure using

48

borazine (B3H6N3) as a source. Borazine is created by sublimating a boraneammonia complex (H3N·BH3) powderupstream from the substrates,which areeithersapphireor(111)silicon.Thesegrowthsyieldathinfilmthathasasurfaceroughness of less than 0.2 nm, which is ideal for integrating with other 2Dmaterialstoenhancecarriermobilityandopticalproperties.

Thisposterwilldiscussrecentresults for thegrowthandtransferof large-areagraphene, the growth of high quality hBN film and the integration of thesematerials,andillustratethebenefitsofhBNsubstratesforintegrationofvarious2Dmaterialsincludinggraphene,MoS2,andWSe2.

48 SurfaceInitiatedRingOpeningMetathesisPolymerizationfromSilicaNanoparticles

J.LaNasa,C.Lang,R.J.Hickey

Block copolymers are linear chains composed of chemically distinct polymerblocks that are connected through covalentbonds.Due to thermodynamicsofmixing, block copolymers self-assemble into nanoscale morphologies thatminimize interfacial surface area between unlike chain regions. The followingresearch aims to develop functional materials by hierarchically organizinginorganic nanoparticles using the self-assembly of block copolymers under theconstraintofimmobilizingoneofthechainendstoinorganicnanoparticles.Herewehavedevelopedanapproachforcontrollingthepolymergraftingdensityandmolecularweightusinga“graft-from”polymerizationapproach.Wehavefocusedoursyntheticworkonpolymerizingpoly(norbornene)-block-poly(ethyleneoxide)blockcopolymersfromthesurfaceofsilicananoparticles.Theprecisechemicalcontroloftheblockcopolymerarchitectureallowsustostudythefundamentalsdriving nanoscale self-assembly. Hybrid polymer/inorganic composites couldprovideanovelmechanismoforderinginorganicmaterialwithinsoftmatter,withresulting materials possessing enhanced mechanical, thermal, and opticalproperties.

49 SizeandInterfaceModulatedMetal-InsulatorTransitioninSolution-SynthesizedNanoscaleVO2–TiO2–VO2Heterostructures

XuefeiLi,R.E.Schaak

Integration of materials into miniaturized electronic devices requiresunderstandingtheirpropertiesat reduced lengthscalesanddimensions,whichareoftendifferentthantheirbulkcounterparts.Suchunderstanding,whichoftencorrelateswithfactorsincludingstoichiometry,dopants,crystallographicdefects,and strain, can be further utilized to modulate the properties of thenanomaterials.Herewepresentthemodulationofthemetal-insulatortransition(MIT) temperature in nanoscale vanadium dioxide (VO2), which, in bulk,undergoes a reversible phase transition between a high temperature metallicphaseandroomtemperatureinsulatingphasewithatransitiontemperatureof68°C.Withthemicroscopic,crystallography,andthermalanalysiscapabilitiesatPennState’sMaterialsCharacterizationLab(MCL),wewereableto investigatethe influenceof sizeand interfacial strainon theMIT temperature in solution-synthesized epitaxial VO2-TiO2-VO2 nanoscale heterostructures.We found thatthesyntheticprotocol impactsthedomainand interfacialcharacteristicsoftheVO2-TiO2-VO2nanostructures,which isusefulknowledgethatcanbeappliedtoother applications of VO2 nanomaterials, including memory devices, Motttransistors,metamaterials,andgassensors.

49

50 CondensationandFogHarvestingonBioinspiredSlipperyRoughSurfacesX.Dai,N.Sun,B.B.Stogin,J.Wang,L.Wang,T.-S.Wong

Dropletnucleationandrepellencyonsurfacesaretwofundamental issuesthatare critical to condensation heat transfer. State-of-the-art liquid-repellentsurfaces cannot achieve exceptional droplet nucleation and repellencyconcurrentlyduetotheunfavorablehydrophobicsurfacechemistryanddropletpinning on surface defects.While hydrophilic surface chemistry favors dropletnucleation, hydrophilic surfaceswith excellent droplet nucleation and removalcapabilitieshavenotbeenreported.Inspiredbytheuniquefunctionsofpitcherplants, and lotus and rice leaves,we present a hydrophilic directional slipperyrough surface (SRS) that is capable of rapidly nucleating on the hydrophilicfunctional groups and removing water droplets on the super slippery water-lubricant interface.Our surfaces consist of nanostructuredmicrochannelswithinfused hydrophilic liquid lubricant into the nanotextures alone. We havedemonstratedthattheSRS,owingtoits largesurfacearea,hydrophilicslipperyinterfaceanddirectionaldropletmobility,significantlyoutperformsstate-of-the-art hydrophobic liquid-repellent surfaces including superhydrophobic surfacesand slippery liquid-infusedporous surfaces in condensationand fogharvestingapplications.

51 BandFillingandElectricFieldEffectsonAnisotropicMagnetotransportofTwo-dimensionalElectronGasesatSrTiO3(111)-,(110)-,and(001)-orientedSurfaces

L.Miao,J.Wang,R.Du,Y.Yin,Q.Li

Two-dimensional electron gases (2DEGs) at the interfaces or surfaces of bandinsulating SrTiO3 (STO) have been a fertile platform for a host of emergentphenomena such as quantum Hall effects, superconductivity, andferromagnetism.Theyarealsoanimportantbasisforrealizingoxideelectronics.ThesepropertiesarelargelygovernedbythestructuresofTi3dbandaswellasRashba spin-orbit coupling at the surfaces or interfaces. One example is theanisotropic magnetoresistance (AMR). Unlike magnetization-induced AMR inmagnetic systems, AMR in non-magnetic systems reveals other subtle physics.However,AMRinSTO2DEGshasnotbeenfullyunderstoodyet.Inthisposter,wereport a systematic study of AMR of STO surface 2DEGs on two sets of 2DEGstates:onewithdifferentcarrierdensities,withoutagatingelectricfield,andtheother with a nearly constant carrier density, but with different gating electricfields.ThesestatesallowustoseparatelystudytheeffectofbandfillingandtheeffectoftheelectricfieldonAMRs.Tooursurprise,AMRsof(111)-,(110)-,and(001)-oriented 2DEGs exhibit dramatically different responses to the tuning ofbandfilling,andperfectlymatchwiththesymmetriesofthegate-selectedbands,revealingacloserelationshipbetweenAMRandthebandstructures.Ontheotherhand,AMRsof2DEGswithvariousorientationsshowsimilarresponsestoelectricfieldtuning,verifyingthattheyalsorelyonRashbaeffect.TheseresultsnotonlyprovideunderstandingstowardtheoriginsofAMR,butalsoopenanewroutetoprobethebandstructuresviatransportcharacterizationofelectrongassystems.

52 AdvancedMultifunctionalEnergyMaterialsandSystemsQ.M.Zhang,T.Zhang,Y.Thakur,H.Xi,M.Lu,XinChen,Y.Zhou,Y.Hou,Q.X.Yang

This poster will present recent advances in the Laboratory for AdvancedMultifunctional Energy Materials and Systems in the area of nanocompositepolymer dielectric capacitors with high dielectric constant, low loss, and highoperatingtemperature,nanocompositesionicsystemforenergyharvestingwithhigh energy density, electrocaloric polymers and ceramics and their relateddevices,andultrasensitivebiomagneticsensors.

50

53 Two-dimensionalElectronicMaterials

R.Zhao,D.D.Deng,B.M.Bersch,S.Subramanian,N.Briggs,X.Zhang,K.Zhang,N.Simonson,B.Jariwala,Y.C.Lin,M.Wetherington,B.Kupp,H.Al-Sadeg,A.Duran,S.Holoviak,A.Kozhakhmetov,S.Manzo,S.Mileski,C.Pernia,T.Williams,N.Stegamat,J.A.Robinson

Ultra-thinlayeredmaterialsexhibituniquepropertiessuchasphysicalflexibility,chemical inertness, and thickness dependent optoelectronic characteristics,makingthemversatileforawidevarietyofapplications.TheRobinsongroupatPennStatefocusesonbetterunderstandingthegrowthandelectronicpropertiesof a variety of 2D materials, ranging from better-known materials such asgrapheneorMoS2 tonovel 2Dmaterials such asGaN. This poster provides anoverview of the research topics done by the group, including: metal organicchemicalvapordepositionofTMDselenidesandexpansiontowaferscalesinglecrystalgrowth;oxidevaporizationsynthesisofMoS2onvarioussubstrates;MotttransitioncharacteristicsofTaS2asafunctionofsubstrate;directgrowthofandelectronictransportacrossverticalandlateral2Dheterostructures;growthandband alignment tuning of epitaxial graphene; growth, discovery, andcharacterization of novel 2D selenides and III-V materials; and other workfurtheringthefieldof2Delectronicmaterials.

54 PlasmaMetamaterials

S.Antonsson,M.Lanagan,C.Randall,D.Wolfe, E.Furman,Z.Cohick,J.Guo,S.Perini,A.Baker

Metamaterials are a class of man-made materials which showcase unnaturaldielectricandopticalbehaviors,suchasnegativepermittivityandrefraction.Byintegrating a controllableplasmaarray into themetamaterial, electromagneticproperties can be dynamically altered. This integration is possible due to theresonantnatureofmetamaterials,whichcreates strongelectric fields that canbreak down the surrounding gas to ignite plasma. To evaluate constituentmaterial performance for plasma production, we use split-ring resonators tocomparedifferentmetals,andnowwehavedevelopedadouble-ridgewaveguide(DRWG) to measure the performance of resonating dielectric blocks. DRWGsfocuselectricfieldbetweenconductiveridgeswhichrunalongthetopandbottomofthewaveguide,andadielectricblockisplacedbetweentheridges.TheDRWGis thenvacuum-pumpedandbackfilledwith low-pressureargongasand,whenpowered, forms argon plasma within a gap between the dielectric and upperridge.Simulationsshowthatthedielectricblocksharplyincreasestheelectricfieldstrengthwithinthegap,enablingthisplasmaignition.Argonpressureisvariedtocollect Paschen-like data and determine minimum power needed for plasmaignition.Inthissetting,dielectricworkfunctionsandtheelectronicpropertiesofplasmacanbecloselymeasured.

55 Magneto-activeMaterialsandStructuresLab

P.vonLockette,C.Breznak,A.Erol,L.Althoff,N.Watson

The Magneto-Active Structures and Composites Lab (MACS) fabricates andmodels magnetically active materials for origami, locomotive, and sensoryapplications. Current projects within the lab include the fabrication andcharacterizationofhardmagneticmaterials,thedevelopmentofamulti-materialprinter capable of printing magnetic material, as well as the mathematicalmodelingofmulti-fieldstructures.

For origami applications, magneto-active elastomers (MAE) are fabricated byembeddinghardmagneticparticleswithinanelastomermatrix.AsanMAEcures,an external magnetic field can be applied to align the particles in a specifiedorientation,suchasanin-planealignmentoranoutofplanealignment.MAEscanthen be strategically placed on flexible material, to replicate known origamistructures. MAEs have a preferred magnetic direction. When this preferred

51

magnetizationisnotparalleltoanappliedexternalfield,torquewillbegenerated,andtheMAEwillrotatetoalignwiththeexternalfield.

TocalculatethetorquegeneratedbyanMAE,theremanentmagnetizationoftheMAE must be determined. To find the remanent magnetization, a vibratingsamplemagnetometer(VSM)isused.TheVSMappliesanexternalmagneticfieldontheMAE,andmeasurethemagneticmomentproduced.Usingtheresultinghysteresisloop,themagneticpropertiesoftheMAEcanbedetermined.

ComplementarytotheexperimentalsideoftheMACSLab,isthemodelingside.UsingComsolMultiphysicsandin-housecode,magneticallyactivematerialandelectricallyactivematerialaremodeledandcomparedtoexperimentaldata.

56 FASTManufacturingofAdvancedNano-/micro-structuredMetallicandCeramicComposites

J.Dai,C.Lin,S.Niuman,J.Singh,N.Yamamoto

Fieldassistedsinteringtechnology(FAST)isapotentialsolutiontobulkfabricationandjoiningofnano-/micro-structuredmetalandceramiccomposites.Unliketheconventional sintering and hot pressing processes, in the FAST set-up, thepowders,pressedinsideadie,areappliedwithradiantheatingfromthegraphitemoldand Jouleheating fromtheDCcurrent flown throughpowders.With theeffectivecombinationofpressure,temperature,andlocalizedheatingatthegrainboundaries, theFASTrequires reducedsintering time (downtoa fewminutes)and temperature, and thus can provide small-grained composites. In ourcollaborativework,engineeringoftwomaterialsareexploredusingFAST:joinedinterfacesofnickel(Ni)-basedsuperalloysandnanoporousceramiccomposites.

First,westudytoengineerNi-basedsuperalloyinterfacesusingFAST.Toprovidehighstrengthandcreepresistanceatextremetemperatures(~1400oC),turbineengine blades currently consist of mechanically joined single crystalline andpolycrystallineNi-basedsuperalloys.Toeliminatetheheavymechanicaljointandthustoincreaseperformance,methodstobondthesedissimilarmaterialsneedtobe investigated.Unlike linearfrictionweldingthat introducesthickandnon-homogenous interfaces, the FAST can potentially provide clean, nano-grainedinterfacestoeffectivelydistributemechanicalandthermalstresses.TheeffectofFAST sintering parameters and the mixtures of powders (Inconel 625 micropowdersof~44-105µm,SiCandTiCnanoparticlesof~80-100nmand~40-60nm)are studied on morphology (grain size and phase) and mechanical properties(stiffness,hardness,includingathightemperatures).

Second,westudytomanufacturenano-porousboroncarbidecompositesusingFAST to induce quasi-ductile deformations and thus to potentially improvefracture toughness. With high strength, low density, corrosion resistance andthermalstability,ceramicsaresuitableforextremeaerospaceenvironment,buttheirapplicationsarecurrentlylimitedduetolowfracturetoughness.Ourrecentnanoindentationstudiesonanodicaluminumoxide(AAO)sampleshaveshownthat nanoporosity can introduce quasi-ductile deformations; highly localizedshear-banding-likenanoporedeformationandothernon-brittledeformationsarepromotedbyincreasedfreevolumesandgrainboundaryeffects.Thecombinationof sampleparameters (interporedistance, porosity, andphase)of nanoporousAAOmembraneswereidentifiedtotriggersuchquasi-ductiledeformation.Based

52

on this knowledge,boron carbide ceramic compositeswill be FAST-sintered toyieldsmallporosity,grainsizes,andgrainboundaries.Powdersofdifferentsizeandofhighpropertycontrast(boroncarbidepowdersof~0.6-1.2um,titaniumoxide of ~40 nm, and carbon black nanopowders of ~42 nm)will be sintered.Multi-scale characterizationwill be conductedon these samples, in relation totheirmicro-structures.

57 CeramicCoatingforCorrosion(C3)ResistanceofNuclearFuelCladding

E.Alat,A.T.Motta,R.J.Comstock,J.M.Partezana,D.E.Wolfe

The Fukushima-Daiichi accidentmotivated research for accident tolerant fuelsthataremoreforgivinginthecaseofaloss-of-coolant-accident(LOCA).Theaimofthisresearchwastodevelopceramiccoatingsforzirconiumbasednuclearfuelcladding that are corrosion resistant and canwithstand normal operation andaccidentconditions.SinglelayerTiN,singlelayerTi1-xAlxNandmultilayerTiN/Ti1-xAlxN coatings were deposited on flat and tubular ZIRLO® substrates by usingcathodicarcphysicalvapordeposition(CA-PVD).Suchcoatingshavebeenwidelyused for years on high-speed tool steels, cemented carbides, and cermetsubstratesforvariouscuttingandfinishingoperationsinthetoolingindustrysincethey provide enhanced hardness, wear resistance, and chemical inertness.Autoclavecorrosiontestsofthecoatedmaterialswereperformedinstaticpurewaterat360°Cand18.7MPaatWestinghouseCo.(Pittsburgh,PA)forupto128days.Followingtheautoclavetest,weightgainanalysiswasusedtocharacterizecorrosionperformanceofthecoatedmaterials.Severalcharacterizationmethodswereusedtoexaminethematerialsbeforeandafterthecorrosiontestincludingscanning electron microscopy (SEM) for morphology examination, energydispersivespectroscopy(EDS)forelementalanalysis,andX-Raydiffraction(XRD)todeterminephasespresent.Coatingadhesionandcorrosionperformancewassystematically improved through the optimization of parameters involvingsubstrate surface preparation method, substrate surface roughness, titaniumbondcoatingthickness,coatingthickness,depositionparameters,andmultilayerdesign architecture. We determined deposition parameter effects on coatingmorphology,compositionandadhesionproperty; identifiedoptimizedcathodicarcphysicalvapordepositionparameterstoenhanceadhesionofthecoatingsonflatandtubularZIRLO®;determinedcorrosionbehaviorofTiNandTiAlNinnuclearreactorenvironment.Theresults indicatedthatthecorrosionperformancewassubstantially improved for themultilayer design considering anorder of lowerweight gain than the uncoated ZIRLO® without spallation. We conclude thatmonolithicTiN,monolithicTiAlN,andmultilayerTiN/TiAlNcoatingsareapplicableonZIRLO®substratesbyusingthecathodicarcphysicalvapordepositionmethodand optimized multilayer TiN/TiAlN coatings on ZIRLO® enhance corrosionresistanceatnormaloperationandextremeenvironmentconditions.

53

58 ManufacturingandUniformityofGrainTexturedPiezoelectricCeramics

M.A.Fanton,R.J.Meyer,E.R.Kupp,B.H.Watson,Y.Chang,R.L.Walton,H.E.Payne,G.L.Messing

Formanydecades,metalsandpolymersbenefittedfromtheabilitytoenhanceelectrical and mechanical performance by creating highly directionalmicrostructures via rolling, drawing, directional cooling, or other similarprocessing techniques.Directional tailoringof performance foroxidematerialshas been largely limited to taking advantage of anisotropies in single crystalmaterials. Meanwhile, traditional technical ceramics remain unimproved withrespecttocommercializedproducts. Thisposteroutlinestheprocesstechnologyand scale up considerations for tailoring asymmetric, directionally orientedceramic microstructures, with a focus on achieving near single crystalperformance from highly oriented ceramic piezoelectric materials. The keyprincipleexploited istheabilityofhighlyanisotropicgrainstobeaddedtoandthen aligned inside a ceramic green body such that they seed pronouncedasymmetric grain growth.  Critical processes, including template synthesis,template alignment via tape casting, part fabrication, process controls, andprocesscharacterization,willbediscussed. Theengineeringchallengesassociatedwithscalingeachprocessstepandrelatedfactorscriticaltoeconomicallyfeasiblemanufacturingwillbeoutlined.

59 ColdSintering:AnExtremelyLowTemperatureProcessingRouteforCeramicsandRelatedComposites

J.Guo,M.Sengul,X.Zhao,K.Tsuji,B.Li,W.Chen,A.Baker,M.T.Lanagan,C.A.Randall

Theconventionalthermalsinteringprocessofceramicsisgenerallyperformedathightemperatures,typicallyrangingfromseveralhundredtotensofhundredsofdegreesCelsius, to enable themass transport processes that allow the atoms,cations, or molecular groups to diffuse across the boundaries of adjoiningparticulates.Coldsinteringprocess(CSP)isanewsinteringtechniquethatweareexploring tosinterceramicsandceramic-basedcompositeswith theassistofatransient liquid phase, such as water and acids. With CSP, the sinteringtemperaturesofceramicscanbedecreasedfromseveralhundredsofdegreesoreventensofhundredsofdegreestolowerthan300ºC.Coldsinteringhasbeensuccessfullydemonstratedforalargenumberofchemistries(oxides,carbonates,bromides, fluorides, chlorides, and phosphates) and a diverse range ofapplications, including ferroelectrics,microwavedielectrics,semiconductors,Li-ion batteries, and thermoelectrics. In addition, the low sintering temperaturesenable the co-sintering of new types of ceramic-polymer composites. SeveralceramicsandrelatedcompositeswithdifferentapplicationsareselectedtoshowtheoveralldiversityofCSPandthepreliminarysimulationresultisalsoincludedtodiscussthemechanismsofcoldsintering.

60 AdditiveManufacturing:AnEnablingTechnologyforDesignOptimization

B.Hanks,M.Frecker,M.Moyer

Additive Manufacturing (AM) presents a unique opportunity for designoptimization and customization, where optimized designs are not necessarilymanufacturablewithtraditionalprocesses.WedemonstratetheabilityofAMtoallow greater freedom for design optimization with two cases: an endoscopicsurgicaltoolandimpactabsorptioncellulararrays.

In the case of radiofrequency ablation treatment, the shape of the tooldeterminestheshapeofthetreatmentandultimatelyitsefficacy.Usingageneticalgorithmtooptimizetheshapeoftool,wehaveshownanincreaseintreatmentefficiencyfrom25%to71%fora2.5cmsphericaltreatmentzone.WiththeuseofAM,thesecustomandoptimizedsurgicaltoolsmaybecomeareality.

54

Lattice,orcellular, structuresare readilymanufactured throughAMprocesses.Compliant cellular structures allow for varied directional stiffness and energyabsorptionduringimpact.Previousworkhasshownthatdesignoptimizationcanbeusedtomanipulateaunitcell’stopologyandoptimizeitforimpactabsorptionat specific velocities. While the initial cells were 2D, metal AM allows formanufacturing of complex 3D cells that can be used to tailor mechanicalproperties in various directions. The ability to adapt a structure’s stiffnesspropertiesshowsuniqueopportunitiesinorthopedicsandenergyabsorptionbyremoving many of the manufacturing constraints that would typically beassociatedwiththesecomplexstructures.

61 EffectofAlloyingElements(CrandAl)inNickel-basedAlloysinMoltenSulfateEnvironmentsK.Kumar,H.Kim

Extreme thermal and chemical environments in gas turbines cause prematurefailureofturbinematerialsduetohotcorrosion.Contaminantsinthefuelduringcombustionareconvertedtomoltensaltdepositscomposedoflowmeltingalkalihalidesandsulfates.Thisstudywillreporttheinterfacialdegradationreactionsatthe substrate/molten sulfate interface using electrochemical techniques ofpotential sweep, impedance spectroscopy,andcyclic voltammetry toelucidatetheimpactofalloyingelementsincontrollingthedegradationreactionsat700°C.Thisstudywasguidedbythehypothesisthattheinterfacialdegradationbehavioris dictated by electrochemical reactions due to the dissociation tendency ofmoltensulfates(Na2SO4→Na2++SO4

2-).TheelectrochemicalcorrosionpropertieswillbecorrelatedwithexposuretestsbycharacterizingcorrosionproductsusingSEM/EDS,XRD,andthermalanalysis.Boththeelectrochemicalandexposuretestswereconducted ineutecticLiCl-KClwith theadditionof10mol%Na2SO4underreactivegaseousatmosphere(O2-0.1%SO2).

62 AdditiveManufacturingShapeMemoryAlloys:HeatTreatingtoTuneMicrostructure

B.A.Bimber,R.F.Hamilton,T.A.Palmer

Additivemanufacturing(AM)shapememoryalloys(SMAs)affordsthematerialsengineer a tool to tailormaterial behavior for practical applications by tuningmicrostructure with respect to composition, grain structure, andmicroconstituent phase morphology. The AM microstructure dictates theunderlying martensitic phase transformation (MT) that begets shape memorybehavior.TheabilitytotunethemicrostructurewithAMcanexpandintegrationofSMAsintonewapplicationspaces.AMisalayerbylayerdepositionprocess.For this work the laser directed energy deposition (LDED) AM technique isemployed. Powder flows into a molten pool that follows a prescribed buildplan/path. Consequently, melting/remelting, solidification and reheating areinherentlylocalized.BinaryNiTiistheworkhorsecommercializedcomposition.Though AM of NiTi alloys has been the subject of many works recently,correlations between the AMprocess and the differentmicrostructural lengthscales of the AM material microstructure (i.e. composition, grains, andmicrosconstituents)arenotwellunderstood.Solutionandagingheattreatmentswereemployedtoalterthematerialmicrostructurepost-deposition.Agingiswell-knowntoprecipitateNi4Ti3,whichisbeneficialinpromotingstrainrecovery,from3 up to 8 times that of typical liner elasticity, after unloading at constanttemperature, which is referred to as superelasticity (SE). In-situ and full-fieldstrain analyses resolved the evolution of fine scale strain measurementsthroughout load and unload deformation. With this, this work provides

55

unparalleledinsightsintotheconsequencesoftheinteractionsoftheMTandthemicrostructures resulting fromAM.The results showthatpost-depositionheattreatmentsconsistingofsolutiontreatingfollowedbyagingcanbebeneficialforimproving multi-scale strain recovery, and the accompanying MT can mimicconventionallyprocessedalloys.

63 EffectsofComposition,Impurities,andGrowthConditionsontheVerticalBridgmanGrowthoftheTopologicalInsulatorsBi2Se3,Bi2Te3,andBi2TexSe1-x

D.Snyder,R.Lavelle,R.Cavalero,R.Redwing,M.Carrasco-Munoz

ThisposterhighlightsthestudyofVerticalBridgman(VB)growthoftopologicalinsulators(TI’s)Bi2Se3,Bi2Te3,andBi2Te2Se.Thesematerialsareofinteresttothematerialsscienceandphysicscommunitybecausetheyarebulk insulatorswithconductingsurfacestatesprotectedbytime-reversalsymmetry.

In particular, this study examined the effect of varying the stoichiometriccomposition of the binary and ternary constituents and other process-relatedvariablesthatmayintroduceimpuritiesintothecrystalstructure.

Additionally, this poster will discuss our ampoule preparation process and VBgrowthconditions.Specifically,theampoulecoatingwasintroducedasaprocessvariable in this study.Wealso sourcedmaterialswithdifferentpurity levels toexaminetheeffectontheTI’s.

Aftergrowth,theTIbouleswereimagedandexfoliatedforcharacterization.Themobility,carrierconcentration,andresistivityofthematerialswerecharacterizedby Hall Effectmeasurements conducted at varying temperature levels. EnergyDispersive Spectroscopy (EDS) was used to analyse the constituent ratio as afunctionofboulelength.GlowDischargeMassSpectrometry(GDMS)wasusedtoquantifythe impurities intheTI’sgrownwithdifferentsourcematerialpuritiesandampoulecoatings.

Ofparticular interestwastheefforttogrowhighqualityTI’swith lowimpuritylevels and low bulk carrier concentrations. We will present our findings fordifferentmaterialcompositionsinvestigatedinthisstudy.

This work was conducted as part of the bulk growth initiative of the2DCC/MaterialsInnovationPlatform(MIP)atPennState,inconjunctionwiththeAppliedResearchLaboratory(ARL).

64InvestigatingthePolymorphisminβ-nucleatediPPInjectionMoldingsUsingaCombinedXRD/flowSimulationAnalyticalApproachA.M.Gohn,A.M.Rhoades,D.Okonski,D.Mileva,R.Androsch

Theinfluenceofγ-quinacridoneasaβ-crystalnucleatingagentininjectionmoldedisotacticpolypropylene(iPP)isdiscussed.ToimprovetheunderstandingofiPPcrystal polymorph development, the molding process was first simulated toestablish shear and cooling rate profiles at specific locations within thepart. Physical sampleswere injectionmoldedand characterized via polarized-lightopticalmicroscopy(POM)andX-raydiffraction(XRD).TheXRDanalysisofthesesamplesshowedthat inthehighlynucleatedsystem(500ppm),theonlyregion thatwas unable to produce the β-structurewas at the skin layer. Thecooling rateassociatedwith thequenchat themoldwallwasestimated tobegreaterthan600°C/susingsimulation;confirmingpreviousstudiesthatβ-growthisnotsupportedatthatcoolingrate.Thenon-nucleatedsampledidnotproduceβ-crystals at any cooling rate in thequiescent condition. With theadditionof

56

shearandpressureinthisprocess,thesampleformedβ-crystalsat100-300µmfromtheskinandintothecore.Interestingly,themoldfillingsimulationdidnotpredictshearinthecore.Theβ-crystalsformedinthecoreareattributedtosheareffectsintheinjectionunitofthemoldingmachinethatwerenotmodeledinthissimulation,norwouldbetypicallymodeledinanyanalysis.This“melt-memory”effecthasshowntobesignificantinthesemoldedsamples,assuchhistorycanchange theexpectedcrystalpolymorphand resultantbulkmaterialproperties.Mechanicalanalysisofthematerialsshowedthatgreaternucleationcontent,and,therefore, higher content of β-crystals as well as spherulite size reductionincreased theductilityof thematerial.Bybetterunderstanding theprocessingconditionsthatproducethespecificmaterialpolymorphs,thefinalpartpropertiescanbebetterpredictedbeforemanufacturing.

65 GradedGlass-ceramicInterface

S.Nazarian,C.Pantano,P.Colombo,M.Marangoni,M.Hojati,H.Ye

This poster presents innovativematerial interfaces, achieving seamless and/orsequential transition fromceramized geopolymer cement to transparent glass,executingtheconceptofseamlessarchitecturebysinteringorcastingtechniques,making possible novel sustainable practices in production processes and inbuilding’s performance (i.e.: less embodied and operational energy). Thistechnology presents novel solutions for building in harsh weather whereimpermeabilitybetweenandthroughsurfacematerials isrequired;highlightingunique advantages of additivemanufacturing in the design and production offunctionallygradedmaterials,andseamlessarchitecture.

Ourapproachhasmanypotentialapplicationsinthearts,industrialdesign,andarchitecture, permitting lower embodied and operating energy, constructiondetailsneverimaginedbefore,andsurfaceconditionsexhibitingmultipleopticalandstructuralcharacteristics.Imagineforexample,transparentwindowswithinopaque walls while achieving structural, thermal, optical, and even a gradedtransitionbetweenglassandopaquematerialssuchasgeopolymerconcreteandadvanced closed porosity ceramics. We have used casting and kiln formingprocesses to fabricateourprototypesandhavealreadyachieved strongbondsbetweenglassandgeopolymercementandalsoglass-foam.SeveralformulationsofGeopolymer (GP)basedceramicsandGlass-Foam(GF)basedceramicswereseamlessly interfaced with glass creating the desired structural and opticalcontinuity, resulting inairtightandwatertighttransitionbetweenthematerialswithoutanymechanical jointsorconnectivetissue.Ourvisionistoexpandthistechnology to engage 3D manufacturing and other free-form fabricationtechnologies.

Generativeconcept:Incontemporaryarchitecture,whendifferentbuildingpartsormaterialsmeet an overwhelming variety of joints are present. These jointsaddress air-tightness, water-tightness, load bearing, thermal insulation, ormultipleotherissuesthatoccurwherebuildingspartsormaterialsmeet.Wefindjoints between components or materials on the same wall, such as windowframes, exterior finishing, thermal insulation layers, and load-bearing concreteblocks.

57

Conventionally, a joint between two materials or components is resolved byintroducing a thirdmaterial/component that either chemically ormechanicallyfastensthem.Forexample,ametalframeistypicallyusedtomechanicallyfastenglass inside amasonrywall. This type ofmechanical joint requires an array ofsmaller joints to dealwith a number of functional requirements to create thenecessarythermal,fluid,vapor,andacousticalbarriersandinsulatinglayers,eachintroducing additional complexity, involving numerous building trades, andaddingmaterialandlaborcosts.

As a result, coordination between various trades is complicated and difficult,therearemorepotentialpointsoffailure,andthesecurityofthesealovertimecannotbeguaranteed.Itisimportanttorethinktheseconventions.Thisresearchmakes possible impermeable seams and/or seamless interface(s) betweenbuildingmaterialsandcomponentstoaddressfunctional,optical,andstructuralrequirementsforapplicationsinthebuildingconstruction,arts,industrialdesign,aerospaceresearch,andarchitecture.

66 MarsCrete

S.Nazarian,J.Duart,A.Radlinska,M.Hojati,N.Ashrafi

Theposter exhibits the interconnectednessof threemainpathsof explorationthat theaward-winningmultidisciplinary teamof faculty, staff,andstudentsofPSU pursued in NASA’s 3D-Printed Habitat Challenge. These included thedevelopment of novel concrete formulations, development of autonomous 3Dprintingprocesses,anddesignanddevelopmentoftheoverall3Dprintingsystemnecessarytoprintlargestructures.Themaingoaloftheprojectwastoadvancethe additive construction technology needed to create sustainable housing onearthandfordeepspaceexploration.

In addition, the poster reveals the relevance of the teams' choices to thesignificantandpressing issuesofglobalwarmingandexhibits that thebuildingindustry which now has a huge carbon foot-print, can make a measurablecontribution to reverse that trend by engaging in sustainable practices in thedesignandproductionofmaterialsandconstructiontechniquesandprocesses.Theproject'saimwastodevelopadditivemanufacturingtechnologyto3DprinthabitatsthatcanwithstandharshconditionsusingaspeciallyformulatedconcretemadefromrecycledandindigenousmaterialsthatcanbefoundlocallyonMars,butcanbeapplicableonEarth.

The production of the geopolymer binder(s) used in the formulation of theconcretedesignedbytheteamdoesnotemitcarbondioxideintotheatmosphere,unlike theproductionofPortlandcement (themostcommontypeofcement).Currentexpertisein3Dprinting,alsocalledadditivemanufacturing,isleveragedtotransferexpertisewithsmaller-scaleprintersandtheirassociatedprocessestothelarge-scaleprintingofconcrete.

The project was based on previous research aimed at developing functionallygraded materials and verifying the possibility of designing and constructingseamlessbuildings,whichcanhaveasignificantimpactonarchitecturallanguageandbuildingprocesses.

58

The interdisciplinary team of Penn State researchers, included representativesfromthedepartmentsofarchitectureandcivilandenvironmentalengineering,and the School of Engineering Design, Technology, and Professional Programs(SEDTAPP). To further develop the technology and assess its impact onarchitectural language and building processes, the first interdisciplinary designstudioisbeingconductedthisfallinthedepartmentofarchitecture,whichmakesuseofournewlyestablished"ConcreteAM"lab.

67 HighPressureMethaneAdsorptioninMetal-organicFrameworksandTheirMonolithicCompositeswithSilicaAerogel

Y.D.Noh,S.Komarneni

Twodifferentporousmetal-organicframeworks(MOFs)Cu3(btc)2(HKUST-1)(btc= benzene-1,3,5-tricarboxylic acid), Cr3F(H2O)2O(bdc)3 (bdc = benzene-1,4-dicarboxylicacid) (MIL-101)andtheirmonolithiccompositeswithsilicaaerogelwereinvestigatedformethaneadsorptioncapacitiesfornaturalgasfuelstorageinvehicles.CompositesofMOFandsilicaaerogelwerepreparedtoincreasetheirmethane uptake capacity on a volume basis by filling in the void space withaerogelwhilekeepingthevolumeoftheMOFandcompositeconstant.TheMOFswere prepared using solvothermalmethod, while theirmonolithic compositesweresynthesizedbymixingtheMOFswithaerogelsolutionwhichwaspreparedusing methyltrimethoxysilane by acid-base catalyzed method. According topowder X-ray diffraction, the MOFs are pure and highly crystallized, and theaerogel composites maintained the original structure of the MOFs. Nitrogenadsorption-desorptionisothermsat77KsuggestedtheshapeischaracteristicofTypeIwhichindicatedthatallthematerialsaremicroporous.Methaneadsorptionisothermsweremeasuredatroomtemperatureupto35bars.Amongthefourmaterials,Cu3(btc)2aerogelcompositeshowedthehighestadsorption(9.8wt.%)atroomtemperaturealthoughthecapacityofCu3(btc)2itselfismuchlower(6.8wt.%)than itscompositewithaerogelonaconstantvolumebasis.However, itwasfoundthattherewasonlyasmalldifferenceinmethaneadsorptioncapacitiesbetweenCr3F(H2O)2O(bdc)3anditscompositewithaerogel,butfurtherstudiesareinprogresstodeterminethecauseofthissmalldifference.

68 RoleofPorosityofCarboninDeterminingtheElectrodePerformanceinCapacitiveDeionizationProcess

M.Nkiawete,R.VanderWal,M.Horn,R.Rajagopalan

Capacitivedeionization(CDI) isanenergyefficientandeconomicaldesalinationtechnique.With the currentwaterdemand for irrigation and theneed for theconservationofdrinkingwater,capacitivedesalinationofbrackishwateroffersanalternative way to reduce the tension between irrigation and the directconsumptionofwater.Thisresearchencompassesthefullprocesscycleconsistingof carbon production, activation, characterization, electrode fabrication,electrochemical testing and analyses for capacitive desalination rate, capacity,and cycling stability. The electrodes are fabricated using various carbonprecursors includingcommerciallyavailableactivatedcarboncloth,polyfurfurylalcohol (PFA) derived carbon and biomass-derived (coconut shell, switchgrass)high surface area activated carbon materials. The goal of the research is tocomparetheadsorptionratesandcapacitiesofthesecarbonmaterialsaswellastheirchargeandregenerationefficienciesinordertodeterminewhichoftheseactivatedcarbonmaterials isbestsuitable for this technique.Our investigationshowed that microporous coconut shell derived carbon had the best chargeefficiencywhilepolymerderivedcarbonhadthehighestadsorptionrate.Theporesize distribution of the carbon had a profound impact on CDI performance.Microporosity improves salt adsorption capacity. Macroporosity facilitates

59

transport,improvingtheadsorptiondynamics,butatthecostofchargeefficiency.Amongthecarbonstested,commerciallyavailablecoconutcharcarbon,YP50hadthehighestchargeefficiencyof~60%andasaltremovalcapacityof~5mg/g.Saltremovalcapacityincreasedwithappliedvoltageforallthecarbons.

69 Flow-inducedCrystallizationofNylon6/6

J.Seo,H.Takahashi,B.Nazari,A.M.Rhoades,R.P.Schaake,R.H.Colby

When a semi-crystalline polymermelt is subjected to sufficiently intense flowbeforecrystallization,thecrystallizationkineticsareacceleratedandthecrystalmorphology is transformed from spherulites to anisotropic structures. Thephenomenaarecalledflow-inducedcrystallization(FIC).Inthisstudy,theFICofNylon6/6wasinvestigatedusingrheologyandpolarizedopticalmicroscopy.Forrheological investigation, small amplitude oscillatory shear (SAOS) tests wereperformedtomonitorFICkinetics.AsashearingworkwasimposedonaNylon6/6meltat270°Cfrom10to107Pa,theonsetofcrystallizationat245°Cwasaccelerated from 628 s to 26 s. For quantitative analysis for the acceleration,Avrami equation was used with Pogodina’s storage modulus normalizationmethod.Basedontheanalysis,thedegreeofaccelerationbecamegreaterafterthetransitionofAvramiexponentfrom3to2attheimposedspecificworkof105Pa. Moreover, the shear-induced morphological transformation was observedusingpolarizedopticalmicroscopy.At nearly zero shear rate, large spheruliteswere observed without cylinderites, while a mixture of small spherulites andcylinderiteswasshownatashearrateof10s-1.

70 SurfaceChemistryofGlassandTribology

N.S.Sheth,J.Luo,X.He,H.Liu

Physisorbedmoleculesonsolidsurfacesofteninfluencethesurfacechemistryandmechanical response of the solid surface. In the case of silicate glasses, it isbelievedthatwatercannucleateandexpandstrength-controllingdefectsontheglass surface, reducing its usable strength. Surface treatments, such as acidleaching and heat treatments, result in controlled alteration of the surfacechemicalstructures(BO,NBO,OH),chemicalreactivityandmechanicalresponse.This allows for the evolution of surface structures and hydration sites to beidentifiedandquantified spectroscopically.By combining informationobtainedfromsurface-sensitivespectroscopytechniques(SR-IR,ATR-IR,XPS,SFG)withthemechanical response to shear and normal loads, a relationship between thesilicateglasssurfacechemistryandmechanicalresponsecanbededuced.

71 ExploringtheCauseofNon-graphitizabilityofCarbonMaterialsUsingGrapheneandGrapheneOxide

M.Singh,R.VanderWal

Heattreatmentofcarbonisanageoldprocessandhasbeenextensivelystudiedwithanemphasisonidentifyingstructuraltransformationdependenceuponheattreatmenttemperature.Thisheattreatmentcanresultintheformationofcarbonofthegraphitizableorthenon-graphitizablevariety.Whileagraphitizablecarbonformsgraphiteonheattreatmentat2600°C,anon-graphitizablecarbonshowsthepresenceofoddmemberedrings.Thefocusofthisstudyistodeterminethestructure and cause of cross-links that result in non-graphitizability. The exactnature of cross-links responsible for non-graphitizability are still unknown.Monitoring the materials trajectory with respect to time at temperature canprovideinsightintothenatureandformationmechanismofcross-linksfoundinheat treatednon-graphitizable carbons.Prior to graphitizationheat treatment,carbonization of organic precursors is done at a relatively low temperature of500°Ctoformcarbonaceousmaterial.Carbonizationofsolidandliquidprecursorsresultsintheformationofacokeorachar,withtheprimarydifferencebeingtheirformation pathway. A coke passes through a liquid-crystal state and forms a

60

carbonofthegraphitizablekindwhileachardoesnot.Thenon-graphitizabilityofcharsformedfromoxygenrichprecursorsisbelievedtobeduetotheformationofoddmemberedrings,predominantlypentagonal,upontheevolutionofoxygenatomsduringcarbonization.Subsequentgraphitizationheattreatmentofthesematerials results in a fullerene-like nanostructure. To test this, graphene andgrapheneoxideareusedasmodelmaterialswiththelatterbeingrepresentativeofanon-graphitizablecarbonowingtothepresenceofoxygengroups.Bothofthesematerials aremixedwith anthracene, a graphitizable carbon, carbonizedandfurthersubjectedtotraditionalfurnaceheattreatmentat2600°C.Physicaland chemical transformations of the resultant materials formed by annealingweremeasuredwithenergydispersiveX-rayspectroscopy,selectedareaelectrondiffraction, and electron energy loss spectroscopy. Virgin samples and furnaceannealed samples available in bulk were analyzed with X-ray diffraction. Toresolvethedetailedmorphologicalandnanostructuralchanges,highresolutiontransmissionelectronmicroscopyisusedtoexaminethecarbonsbeforeandafterannealing.

72 EnergySavingswithMicrowaves:MetalPowderHeatingMechanisms

T.Slawecki,Y.Zhang,J.Cheng,D.K.Agrawal

Microwave processing can produce superior properties of materials withsignificant timeandenergysavings,plus lesspollutionandwaste,making itanenvironmentallyfriendlytechnology. Mechanismsbywhichmetalpowdersheatrapidlyinamicrowavefieldarecomplexandnotwellunderstood,butourrecentexperimentswith copper powder have shed new light on themechanism.  Animprovedpowerlossequationispresented.

73 AdvancedMultifunctionalCoatingsandMaterialsProcessingforExtremeEnvironments

J.Stokes,E.Alat,Z.Cohick,G.Schneeberger,M.El-Tantawy,E.Sun,T.Bowen,N.O’Brien,A.Baer,P.Albert,A.Schwartz,S.Karwa,M.McPherson,B.Karafinski,T.McKnight,T.Medill,S.Showers,B.Thaler,D.E.Wolfe

Research activities include the synthesis, processing, and characterization ofnano, multilayered, nanostructured, functional graded, ceramic, and metalliccoating systemswith novel design architectures deposited by reactive and ionbeamassisteddeposition (IBAD),electronbeamphysical vapordeposition (EB-PVD),coldspray, thermalspraytechnologies,chemicalvapordeposition(CVD),cathodic arc, sputtering (r.f, d.c., magnetron), plating (Ni, Cu, Pt), hybridprocesses, and various other PVD processes. Present work includes theenhancementofcoatingmicrostructureandcomposition to tailorand improvethe properties of vapor deposited coatings such as thermal barrier coatings,erosion resistant coatings, wear resistant, corrosion resistant, diamond likecarbon,transitionmetalnitrides,carbides,andborides,andtransitionandrare-earthmetaloxidesforavarietyofapplicationsintheaerospace,tooling,nuclear,power, oil and gas, biomedical, and defense industries under extremeenvironments. Additionally, recent research interests include development ofmetamaterials, low friction coatings, antimicrobial coatings, smart coatings,failureanalysis,andcorrosion-resistantandwear-resistantmaterialsystemsforoil and gas industry. Primary area of interest includes the development andprocessing of monolithic, nanocomposite, and multilayer vapor depositedcoatings, nano-grained structural materials, and nano-layered coatings forextreme environments, aswell asmaterials characterization using a variety of

61

analytical techniques. Thesematerial advancements contribute to a variety ofapplications in theaerospace,defense, tooling,power,biomedical, andopticalindustries. They represent the convergence of research driven by materialsscienceandengineeringwithanappliednature.

74 DevelopmentofSacrificialCoatingforMagnesiumAerospaceComponentsK.S.Venkataraman,R.W.Gresh,B.A.Shaw,E.Sikora

Withthedevelopmentofnewermagnesiumalloysforaerospaceapplications,agreater emphasis needs to be placed on designing sacrificial coatings forprotectionofthesealloys.Non-equilibriumvapordepositsofmagnesiumexhibitamore ‘active’ nature as compared to the bulk alloys.With only ‘one phase’constituting the entire coating, physical vapor deposits of certain magnesiumalloysexploitthepreferentiallycorrodingnatureofmagnesiumtoproducebettercandidates for sacrificial coatings.Vapordepositsofpuremagnesiumand rareearth containingmagnesiumalloys (WE43, EV31) showedpromising results onsilicon substrates.VapordepositsofWE43hada corrosion rateof8.2mpy (in0.1MNaClandmeasuredagainstSCE)andanopencircuitpotentialof-1.88Vascomparedtoitsbulkcorrosionrateof21.1mpyandanopencircuitpotentialof-1.66 V. As we transition from silicon to AZ61 substrate, post deposition heattreatmentandspecimensurfacepreparationaffecttheadhesionandhencetheelectrochemicalbehaviorofthevapordeposits.VapordepositsofWE43onAZ61substrateafterpostdepositionannealingexhibitedacorrosionrateaslowas1.5mpy.Whileatomicemissionspectroscopygaveustheelementalcompositionofthe vapor deposits, scanning electron microscopy gave an insight to themorphologyofthevapordeposit.Bothtechniques,inadditiontoelectrochemicalcharacterization,contactanglemeasurementsandporosimetrycombinetogiveaholistic insighttothecorrosionmechanisms inthevapordeposits.Ourvapordepositshaveamorenegativeopencircuitpotentialandalowercorrosionrate–however, aswe transition toa real life application,wewish topreserve thosecharacteristics ifnotbetter it. Ionbeamassistedphysicalvapordepositioncanimprove the adhesion by increasing the number of nucleating centers whilefluoridizationcancreatea‘self-healing’toplayer.Welooktoincorporatethesetechniquesaswetransitiontoreallifeapplications.

75 ApplicationofMesoporousMaterialsforCO2CaptureandConversion

X.X.Wang,X.Jiang,N.Koizumi,C.S.Song

Currentlyabout80%ofenergyworldwidecomesfromcoal,oil,andnaturalgas,the combustionofwhichaccounts forover85%of totalCO2emission.Carboncaptureandutilizationisofcriticalimportanceinmitigatingthegreenhousegaseffect while meeting the increasing global energy demand and achieving thetargetoftheParisAgreement.Toconfrontthechallenge,wehavedevelopedsolidsorbents for CO2 capture and metallic catalysts for CO2 conversion with theutilization of mesoporous materials. A new concept called molecular basketsorbents (MBS) has been proposed for developing solid sorbents consisting offunctionalpolymersimmobilizedinanano-porousmatrixsuchasSBA-15,whichshowshighselectivity(CO2/N2>1000)andhighcapacity(>140mg-CO2/g-sorb)for CO2 capture from various gasmixtures including flue gas of electric powerplants. For CO2 conversion, a series of Pd catalysts supported onmesoporousmolecularsieveshasbeendevelopedandevaluatedformethanolsynthesisfromCO2hydrogenation.Comparedtotheconventionalamorphoussilica,theuseofmesoporoussupportcanconfinethegrowthofsmallPdnanoparticles,leadingtohigheractivityforCH3OHformation.

62

76 TailoringMicrostructureandProcessestoEnhanceStructuralandFunctionalPropertiesofCeramicMaterials

G.L.Messing,E.R.Kupp,Y.Chang,R.Bermejo,T.Frueh,B.H.WatsonIII,M.Brova,R.Walton,K-HLee,J.Wu

Thestructuralandfunctionalpropertiesofceramicmaterialsaredeterminedbytheirmicrostructure.Keyparametersaregrain sizeandshape, crystallographicorientationofthegrains,aswellasgrainboundariescharacteristics.Thesefactorsarecontrolledbythematerialprocessing.

The Messing group investigates a variety of processes, from the rheologicalbehavior of slurries during casting techniques to the sintering and hightemperature processing, in order to develop a fundamental understanding ofinterface processes and mechanisms responsible for densification andmicrostructuralevolution inceramics.For instance, tailoringofmicrostructuresthroughcontrolledTemplatedGrainGrowth (TGG)hasbeenabreakthrough inourresearchgroup,whichhas ledtoproducingtexturedpiezoelectricceramicswith functional properties close to single crystalmaterials. The TGGprocess istypicallyusedinconjunctionwithshearformingtechniques,suchastapecasting,that align anisotropic template particles to control grain growth andcrystallographicorientation.

Recentresearchbasedonadvancedformingtechniques,suchasco-casting,arecurrently being explored to produce microstructural composites, i.e. bulkceramicswithdifferentmicrostructuresindifferentregionsofthematerial,whichfeaturesuperiormechanicalpropertiesforstructuralapplications.Bystudyingtherelationshipbetweenslurryrheology,sintering,andmicrostructuredevelopment,we gain a deeper understanding of the science behind how processing drivesstructure-property relationships that yield unique properties (e.g. optical,mechanicalorelectrical)thatweobserveinceramics.

77 NewPolymericMaterialsforAdditiveManufacturingM.A.HicknerResearchGroup

Newmaterialsareneededtorealizethepromiseofadditivemanufacturing.TheHicknerResearchGrouphasappliedtheirtoolsofpolymersynthesisanddetailedmaterials characterization to the formulation, fabrication, and analysis of newpolymers processed using additive manufacturing techniques. This poster willdetailourcurrentworkinvestigatingboththermallyprocessedmaterialsaswellasphotopolymersthatareusedinstereolithography.Wehavehighlightedafewprojects on composites, polymer membranes, and responsive materials. Ourfutureworkisaimedatexploringmaterialsandcompositesthatcannotcurrentlybe processed using additivemeans and to expand the pallet ofmaterials andpropertiesavailablefromadditivelymanufacturedcomponents.

78 FunctionalPolyolefinswithHighThermalStability

G.Zhang,W.Zhu,M.Chung

The limitation of thermal stability in PE and PP polymers causes concerns inmaintaining low operational temperature. Industrially, hindered phenolcompounds are always used as antioxidants in polyolefin materials, includingoctadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionate (Inganox 1076)and pentaerythritol tetrakis(3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate)(Inganox 1010). Since these stabilizers are polar antioxidant molecules, it isdifficult to achieve a homogeneous mixture. Moreover, these small moleculeantioxidantsarepronetoruntothesurfaceofpolymer,resultinginthelossofantioxidantwhenexposedtosolventsorheat.

63

Wereportanewclassoffunctionalpolypropylene(PP-HP)andpolyethylenePE-HPcopolymercontainingaPPbackboneandvariousconcentrationsofhinderedphenol (antioxidant)moietieswhichare located inthependantsidechains.AneffectivesynthesisroutehasbeendevelopedtopreparethesesemicrystallinePP-HPandPE-HPcopolymerswithwell-controlledmicrostructures,includingtaperedandrandomcopolymers.Evidently,thesePP-HPandPE-HPpolymericstabilizersshowthecocrystallizationphenomenonwiththePPandPEhomopolymer,whichprovides an ideal mechanism for introducing a high concentration of HPantioxidants that are homogeneously distributed and immobilized in the PPamorphousmatrix.

PP-HPandPE-HPcopolymersshowsignificantlyhigherthermal-oxidativestabilitythanthecommercialPPandcommercialPEproductsthatcontainasmallamountoforganichinderedphenolstabilizers.ThecombinationprovidesPP-HPandPE-HP copolymers and their PP-HP/PP PE-HP/PE blends with exceptionally highthermal-oxidativestability that is tunableby the incorporatedHPcontent.Thisnewantioxidantmechanismisparticularlybeneficialinthelong-termprotectionofPPandPEproductsundersevereapplicationconditions.

In addition to the known advantages of polymer-bonded stabilizers, with lowmobility and volatility to prevent loss through diffusion and/or extraction(particularly acute in films and coatings), the PP-HP thin dielectric films withuniformmorphologyshowahigherdielectricconstantandmaintainlowdielectricloss,particularlyforthetaperedPP-HPcopolymerswithhighcrystallinity.

79 TheRoleofInterfacesinPerformance,Degradation,andBreakdownofNon-LinearDielectricsUnderExtremeConditions

T.J.M.Bayer,J.-J.Wang,J.Carter,R.Wang,S.Sahu,M.Ryu,A.Klein,L.-Q.Chen,C.A.Randall

Non-linear dielectrics such as ferroelectric, anitferroelectric, and paraelectricmaterialsplayacrucialroleinthefunctionalityofintegratedcircuits,capacitors,and energy storage devices. Especially due to their intrinsic polarizationmechanismsresultinginhighpermittivityandlowloss,theyarethemostsuitablematerial platform for extreme operation conditions in terms of temperature,voltage, and frequency. While pristine devices often exhibit desired andpredictable properties, under field stress oxygen vacancy migration leads toresistance degradation and a spatial distribution of conductivity within thedielectric. Recent research efforts also identified the impact of theelectrode/dielectric interface and defect complexes to effect the resistancedegradationprocessof single crystals strongly. Inaddition,grainboundaries inpolycrystalline materials are known to impede the resistance degradationprocess,butlittleisknownabouttheimpactofonespecificgrainboundary.Thestudyofbicrystalsisasuitableapproachtogaininformationabouttheeffectofasingle,specifictiltortwistboundaryonthelocalconductivityduringdegradation.Along with the experimental studies, a predictive hierarchical multi-scalesimulation approach is developed that allows a fundamental understanding ofwhat controls the above introduced degradation and breakdownmechanisms.Theposterwillpresentasummaryofdifferentexperimentalandcomputationalapproachestoinvestigatetheroleoftheelectrode/dielectricandgrainboundary

64

interfacecarriedoutasacollaborativestudywithresearchesatPennState,NCStateUniversity,UniversityofVirginia,andTUDarmstadt.Specifickeyfindingsarehighlighted that are anticipated to lead to improved predictability of devicebehaviorandincreasetheirreliability.

80 SteepSlope2DStrainFieldEffectTransistor:2DSFET&Electro-ablatedMonolayerTMDs

D.S.Schulman¸A.J.Arnold,S.Das

Inthisposter,weprovideinsightintotherecentlyproposedtwo-dimensional(2D)electrostrictive fieldeffect transistoror2D-EFET,whichemploysstrain induceddynamic bandgap engineering in 2D layered semiconductors to achieve subthermionicandsteepslopeswitching.Inparticular,weinvestigateamorerealisticstructuralderivativeoftheoriginal2D-EFETandemploypiezoelectricmaterialasthegateinsulatorforstraintransductionupontheapplicationofgatevoltage.Werefertothisderivativeastwo-dimensionalstrainfieldeffecttransistoror2DSFET.The out-of-plane compressive stress on the 2D semiconducting channeldynamicallyreducesitsbandgap.Thiseffectcoupledwiththefieldeffectactionachieves internalvoltageamplification leadingtosub-60mVsubthresholdslopewhilemaintaining ON/OFF current ratio ofmore than 106, and achieving ~2XhigherONcurrentcomparedtotheconventional2DFET.

Wealsoreportafacile,highyieldsynthesistechniqueforobtainingmonolayersof awide variety of 2Dmaterials, includingMoS2,WS2 andMoSe2, from theircorresponding bulk counterpart via an anomalous but elegant electrochemicalcorrosionprocess,alsoreferredtoaselectro-ablation(EA).Theelectro-ablation(EA)processhaskeyadvantagesovermechanicalexfoliationandchemicalvapordeposition(CVD)methods.Mechanicalexfoliationresultsinextremelysmall,lowyieldsofmonolayers,whereaswaferscaleCVDgrowthofhighqualitymonolayersdemand expensive equipment. We demonstrated high performance thin filmtransistors (TFTs)basedontheseEAmonolayerswithcurrentON-OFFratios inexcessof107alongwithONcurrentsof120µA/µmforMoS2,40µA/µmforWS2and40µA/µmforMoSe2,whichoutperformtheexistingTFTtechnologies.

81

TunableandFlexibleMetasurfaces

X.Chen,X.Ni

The newly emerging metasurface is an ultra-thin layer of sub-wavelengthelements (or a two-dimensional metamaterial) that locally tailors theelectromagnetic field at the nanoscale, offering tremendous power formanipulating light. Inaddition, theabilities tobendorstretchthemetasurfacedeviceswillopenanewdimensiontocontrollingelectromagneticwaves.Theseabilitiesalsopromiseanewwaytodesignmulti-functionaldeviceswhichhavedifferent responses in different states. Here, we demonstrate a stretchablemetasurfaceachieving intensityandphasemodulationbasedontheresonancechangeoftheunderlyingnanostructures.Weuseresonatingnanoantennasonaflexible polydimethylsiloxane (PDMS) substrate to form a metasurface. Byjudiciouslydesigningthenanoantennas,theresonancecanbeshiftedwhenthesubstrateisbentorstretched.Weareabletomodulatethereflectivityfromzerotounityusingsuchametasurfaceandtoachievephasetunabilitycoveringthewhole2πrangeofreflectedelectromagneticwaves.Thedemonstratedapproachgivesthewayforachievingcompacttunableperfectabsorbersanddynamicbeamsteering.

65

82 InterfacialChemistryRegulationViaaSkin-GraftingStrategyEnablesHigh-PerformanceLithium-MetalBatteries

Y.Gao,Y.Zhao,Y.C.Li,Q.Huang,T.E.Mallouk,D.Wang

The lithium (Li) metal anode suffers severe interfacial instability from its highreactivity towards liquid electrolytes, especially carbonate-based electrolytes,resulting in poor electrochemical performance of batteries that use 4-V high-capacity cathodes.We reportanewskin-grafting strategy that stabilizes theLimetal-liquid electrolyte interface by coating the Li metal surface withpoly((N-2,2-dimethyl-1,3-dioxolane-4-methyl)-5-norbornene-exo-2,3-dicarboximide), a chemically and electrochemically active polymer layer. Thislayer,composedofcyclicethergroupswithastiffpolycyclicmainchain,servesasagraftedpolymerskinontheLimetalanodenotonlytoincorporateether-basedpolymeric components into the solid-electrolyte interphase (SEI) but also toaccommodate Li deposition/dissolutionunder the skin in a dendrite/moss-freemanner.Consequently,aLi-metalbatteryemployingaLimetalanodewiththegrafted skin paired with LiNi0.5Co0.2Mn0.3O2 cathode has a 90.0 % capacityretentionafter400charge/dischargecyclesandacapacityof1.2mAh/cm2inacarbonate-based electrolyte. This proof-of-concept study provides a newdirection for regulating the interfacial chemistry of Li metal anodes and forenablinghigh-performanceLi-metalbatteries.

83 Integrating2DMaterialsandNanostructuresforPhotonicandMedicalApplications

S.Huang

Two-dimensional (2D) materials have gained tremendous attention in recentyears due to their great potential for applications in large-area and flexibleelectronics, optoelectronics, and thermoelectrics. To realize high-performancedevices,thefundamentalstudyofmaterialpropertiesaswellastheexplorationof the integration of 2D materials and other nanostructures are necessarystepping-stones. Prof. Shengxi Huang’s research group at Penn State hasmultidisciplinary experience in experimental physical chemistry, opticalspectroscopy,andphotonicsfor2Dmaterialsandnanostructures.Wefocusourresearchonnanoelectronicsandnanophotonicsfornext-generationcomputing,sensing, andmedical technologyby exploring the following aspects,which areoriginalandimportantinadvancingthefieldsofnanomaterialsandnanoscience.

1. Fundamentalstudyof2Dmaterials:anisotropicdynamics,near-fieldspectroscopy

The optimization of 2D material-based devices is guided by the fundamentaloptical properties, including stability, dynamics, anisotropy, and exciton/trionbehaviors.Weaimatgainingabetterunderstandingof thesepropertiesof2Dmaterials including graphene, transition metal dichalcogenides (TMDs), blackphosphorus, iron-based superconductors. We will use various opticalspectroscopic and microscopic tools, including Raman, photoluminescence,absorption spectroscopies, ultrafast optics, and scanning near-field opticalmicroscopy, toexaminesurfacedefects,crystalboundaries,phasechange,andelectromagneticfielddistributioninintegratedmaterials.

2. Integrating2Dmaterialsandnanostructures:quantumconfinementandtuning

2Dmaterialspossessmanyuniquepropertiesnotexistentintheirconventional3D counterparts. The coupling of these properties with other nanostructures,

66

suchasnanoparticlesandmetamaterials,canyieldnovelquantumphenomena.In particular, we are interested in (1) quantum confinement effect using 2Dmaterials and metal nanoparticles, and (2) hybrid 2D materials with tunablehyperbolicpolaritons.Theseworkswillfacilitatethestudyofhigh-resolutionfar-field imaging and field enhancement, new quantum optics enabled by 2Dmaterialssuchasphotonictopologicalinsulator,singlephotonemission,photon-entanglement,andsuper-radiance.

3. Optoelectronicandmedicalapplicationsof2Dmaterialsandintegratedstructure

In the application part, we are interested in two aspects. (1) 2D materialsintegrating metasurfaces and self-assembled 2D heterostructure for novelelectronicandoptoelectronicdevices,includingsynaptic,tunneling,andinfrareddevices,whichhavetheadvantagesofdistinguishedperformance,highefficiency,ultra-flexibility, simple fabrication, and reduced cost compared to their 3Dcounterparts.(2)Medicalapplicationswithmoleculedetection.2Dmaterialswillbe used in our newly-discovered Raman enhancement technology, and adisruptive new technology will be realized which brings a highly reliable,convenient, and inexpensive biosensing tool. Combining effective machinelearningapproaches,revolutionarytechnologieswillberealizedsuchaspoint-of-caremedicineandeffectivecancerprediction.

84 DielectricandViscoelasticPropertiesofElectrostaticNetworkIonGels

J.E.Bostwick,C.Zanetolli,L.A.Madsen,R.H.Colby

Imagineanon-flammablesolidwiththemodulusofplexiglass,butwhereahighdensityofionsaremobileasiftheywereinstillinaliquid.  Lastyearanewclassofmaterials,termedelectrostaticnetworkiongels(ENIGs),wasdiscoveredwitha revolutionary combination of properties that could be utilized forelectrochemical devices.  These conducting solids, formed from a lyotropicnematicphaseofamagneticallyalignedrigid-rodpolyanion,asulfonatedaramid,and an ionic liquid (IL) exhibited an unprecedented combination of ionicconductivity, widely tunable modulus, and thermal stability.  In our study, weemployed oscillatory shear rheology and dielectric relaxation spectroscopy toanalyze ENIGs of varying polymer content, 4–13 wt.%, with 1-butyl- 3-methylimidazolium tetrafluoroborate IL. By increasing the weight percent ofpolymer content in the ENIGs, the storagemodulus increased from0.2-4MPawhilereachinganionicconductivityofupto4mS/cmatroomtemperature.ENIGsthusovercometheusualcompromisebetweenionicconductivityandmodulusinsolid-polymerorcompositeelectrolytesystems,demonstratingtheirpotentialtoresolve current limitations in Limetal batteries, allow for safer operation, andgenerate2-3XhigherenergydensitythanexistingLibatteries. 

85 Space-timeModulatedMetasurface

X.Guo,X.Ni

Nonreciprocalcomponentssuchasopticalisolatorsandcirculatorsareessentialbuilding blocks for optical communications and computing. They allow thepropagationoflightinonedirectionwhileblockingthatintheoppositedirection,thereby reducing the undesirable reflections and preventing interferenceproblems.However,mostopticalcomponentsaremadefromnaturalmaterialsthat have linear and time-independent properties, which are inherentlyconstrainedbyLorentzreciprocity.Inordertobreakthislimitation,weintroduce

67

aspace-timemodulatedmetasurfacewhichnotonlypreservesthecapabilityofspatialphasemanipulation,butalsooffersanewdegreeoffreedomresultedfromtemporalmodulationuponlight.Weshowtheoreticallyandexperimentallythatthedynamicmodulationproducesalargespace-timedependentphasechange,andprovideswavevectorandfrequencyshiftsuponincidentlight,hencecreatingastrongnonreciprocaleffect.Thephasemodulationdepthisgreatlyamplifiedbytheresonantnatureofthemetasurface.Furthermore,unidirectional frequencyshift is manipulated by the spatial phase gradient of the metasurface, whichreducesunwantedsidebandsandprovidestheflexibilityofselectingconversiondirections.Comparedwithbulkytime-varyingstructuresbasedonelectro-opticandacousto-opticmodulation,thespace-timemodulatedmetasurfaceexhibitsasmallfootprint,alargemodulationfrequencyofafewTHz,andiscompatiblewithcurrentCMOSprocesses.Webelievethisnonreciprocalmetasurfacecanworkasopticalisolatorandpotentiallyprovidesaviablenewdirectioninconstructingon-chipnonreciprocalopticalcomponents.

86 RecentDevelopmentsintheFabricationofAstronomicalGratings

F.Grisé,J.McCoy,R.McEntaffer,D.Miles,N.Zhang

Developments in grating spectroscopy is one of the keys to opening a newdiscoveryspaceinthefieldofastronomy,andparticularlyinX-ray/UVastronomy.

We present recent advancesmade at Pennsylvania StateUniversitywhereweresearch and develop new ways to build large-format gratings (i.e. dispersiveelements) by using techniques and tools that are traditionally geared towardssmaller format products. This includes the techniques for preparation andfabrication ofmaster gratings in single-crystal and amorphous silicon, such aslithography(laser-beam,electron-beam),reactive-ionetching,andwetetching.Successfulreplicationofthemasterintomanyreplicasisachallengegiventhesizeof these gratings; our group has, however, been recently using substrateconformalimprintlithographywithsuccess.

87 VisibleSwitchableOpticalMetasurfacewithPhaseChangeMaterials

Y.Ding,Y.Duan,A.S.Gupta,R.E.Herbert,X.Ni

Despitetheabilityofemergingmetasurfacestomanipulatelightinwaysbeyondnature,thepropertiesofmetasurfacesalwaysrelyonpredefinedstructuresandare therefore static. Tunable metasurfaces have far-reaching potentials andsignificances in chip-based optical devices. One way to realize metasurfaces-basedopticaldeviceswithrapidandlocalswitchabilityistoinvolvephasechangematerials,inwhichtheiropticalpropertiescanbemodulatedbyexternalfactorslikeheat,electricfield,andmechanicalforces.Especially,vanadiumdioxide(VO2)behaveslikeadielectricunderroomtemperatureandtransformsintoametalataround340K,which is a greatmaterial for building switchable optical devices.However, the reported devices work almost exclusively in the infrared regionwherethestrongmetal-dielectrictransitionhappens.Here,wedemonstratebycombining a plasmonic metasurface with VO2, that we are able to achieveswitchabilityinthevisiblerange.ThephasetransitionofVO2willshiftgreatlytheresonancepeakofthemetasurfaceelements,andthereforechangesdramaticallyitsopticalresponse.Weshowthatboththereflectivityandtransmittanceofthehybrid metasurface can be modulated by over 100%. The study points out afeasiblemeantoutilizeinfraredphasechangematerialsinthevisiblerangeandpaveawayforfutureapplicationsinvolvingswitchableopticaldevices.

68

88 DurableBroadbandGraded-indexFluoropolymerAntireflectionCoatingsforPlasticOptics

B.Wang,J.S.Price,N.C.Giebink

Anti-reflection (AR) coatings are crucial for minimizing optical loss in highefficiency concentrating photovoltaic (CPV) systems; however, a highperformance, environmentally-robust strategy for plastic optics such as acrylicFresnel lenses remainsanongoingchallenge for theCPVcommunity.Here,wedemonstratesimple,two-layerfluoropolymerARcoatingsthatreducethesolarspectrum-averaged(400<𝜆<1600nm)reflectanceofacrylicplasticfrom~3.9%to~0.4%overawiderangeofincidenceangles.Thecoatinglayersarefabricatedviaglancing angle deposition in a thermal evaporator and exhibit controllablenanoporosity due to self-shadowing that enables their refractive index to becontinuously tuned fromn=1.31 ton=1.15dependingon thedepositionangle.Owingtotheirfluoropolymernature,thefilmsexhibitverylowdispersionandaretransparentdeepintotheultravioletdownto𝜆~200nm.

The resulting AR coatings adhere strongly to common optical plastics such aspolymethylmethacrylate and polycarbonate and survive repeated mechanicalbendandcompressioncyclesonsubstratesflexedto1cmradius.Thecoatingsarealsoextremelyhydrophobic,withawatercontactangle>140°thatsupportsanti-fogging and self-cleaning behavior, and they are unaffected by prolongedsonication in most organic solvents, acids, and bases. They exhibit nodeteriorationinARperformanceaftertendaysofdampheattesting(T=85℃andRH=85%)norafteronemonthofcontinuous(ongoing)rooftopoutdoorexposureincentralPennsylvania.Thecoatingshavebeensuccessfullyappliedtoavarietyof curved lens surfaces, with virtually no variation in AR performance for f-numbersaslowasf/1.Inparticular,coatingbothsidesofanf/2acrylicFresnellensincreasesitssolarspectrum-averagedtransmittancefromapproximately92%to98%. Taken together, these results representa significantdevelopment forplastic optics commonly used in CPV systems as well as more generally forbroadbandARapplicationsthatdemandextremeenvironmental,chemical,andmechanicaldurability.

89 AnOverviewofMaterialSynthesis,Characterization,DeviceDevelopment,andTestingCapabilitiesintheARL’sEMDDepartment

D.Snyder,M.Fanton,D.Rearick,R.Cavalero,B.Weiland,R.Gamble,R.Lavelle,J.Fox

ThePennStateAppliedResearchLaboratory’sElectronicMaterialsandDevicesDepartment (EMDD) has developed a vertically integrated capability frommaterialsynthesisthroughdevicefabricationandtestingforDoDandcommercialapplications related to piezoelectric transducers, RF and power electronicsystems,Chem/Biosensors,andIRdetectors.

Thisposterdescribestherangeofcrystalgrowthtechniques,materialsynthesiscapabilities, material characterization methods, device design and fabricationcapabilities, and device testing used to support internal research projects andindustrialcollaborations.Recentlyexpandedcapabilitiesforceramicsprocessingandtwo-dimensionalmaterialswillbehighlighted.

Aseriesofspecificexamplesofprototypematerialsanddevicescurrentlyunderdevelopment including single crystal and textured ceramic piezoelectrictransducers,FETs,IRandradiationdetectors,SiCdiodes,semiconductordiodes,andMEMsstructureswillbepresented.

69

90 HighThermalStabilityOLEDs

J.S.Price,B.Wang,Y.Shen,N.C.Giebink

Reliabilityremainsanongoingchallengefororganiclightemittingdiodes(OLEDs)astheyexpandinthemarketplace.Theabilitytowithstandoperationandstorageatelevatedtemperatureisparticularlyimportantinthiscontext,notonlybecauseof the inversedependenceofOLED lifetimeon temperature, but alsobecausehigh thermal stability is fundamentally important for high power/brightnessoperationaswellasapplicationssuchasautomotivelighting,whereinteriorcartemperatures often exceed the ambient by 50°C ormore. Here,we present astrategytosignificantlyincreasethethermalstabilityofsmallmoleculeOLEDsbyco-evaporatinganamorphousfluoropolymerthatstabilizestheirmorphologyandpreventscrystallization.Using thisapproach,wedemonstrate that the thermalbreakdown limit of common electron and hole transport materials can beincreasedbymore than50°Cwithminimal impacton theirelectrical transportproperties.SimplebilayerOLEDsfabricatedusingthistechniqueareshowntobefunctionalat temperaturesup to250°C.Thegeneralityofourapproachpointstoward a new class of thermally robust and morphologically-stable organicelectronic devices that are capable of operating or being stored in extremethermalenvironments.

91 Record-lowContactResistancestoManySemiconductors

K.A.Cooley,T.N.Walter,A.C.Domask,A.Molina,A.Agyapong,C.Lawrence,L.Kerstetter,S.E.Mohney

With decades of experience researching and developing electrical contacts tosemiconductors, our group has achieved many record-low values of contactresistance and contributed to the scientific understanding ofmetal/semiconductorinterfaces. Inthisposterpresentation,wewillreviewourwork and highlight our latest findings on contacts to transition metaldichalcogenidesandphasechangematerials.

92 SynthesisandCharacterizationofAdvancedNanoscaleMaterials

S-Y.Yu,A.C.Domask,T.N.Walter,I.Campbell,K.A.Cooley,A.Molina,L.Kerstetter,R.Alsaadi,S.E.Mohney

Our group prepares and characterizes a wide variety of advanced nanoscalematerials, especially metals and semiconductors. This poster presentationdescribeshowweuse (plasmaassisted) atomic layerdepositionandadvancedmicroscopy techniques to prepare and characterize novel materials withcharacteristiclengthsontheorderofnanometers.

70

93 ZnOTFTsforIntegratedElectronicsApplicationsA.Gupta,T.Liu,S.Lee,M.M.Tendulkar,S.Yoo,E.W.Gomez,E.Gomez,S.Trolier-McKinstry,T.N.Jackson

Many applications from industrial electronics to medical devices benefit fromcloseintegrationofelectronics.Inmostcasestoday,theelectronicsisintheformofprintedcircuitboardspopulatedwithintegratedcircuits(ICs).ButmovingtheelectronicfunctionfromboardsandICsandmoredirectlyintotheapplicationcanbring advantages. Thin film electronics, extensively developed for flat paneldisplays,providesapathtodirectly integratetransistorsandelectroniccircuitswith sensors, actuators, microelectromechanical devices, and more. We aredeveloping zinc oxide (ZnO) thin film transistors (TFTs) and circuits for suchapplications.

OxidesemiconductorTFTsoffersignificantperformanceimprovementcomparedtohydrogenatedamorphous silicon (a-Si:H)devices, including>10°higher fieldeffect mobility. ZnO semiconductor TFTs provide low-temperature processing,large field-effectmobility, and good electrical stability. Using low-temperatureplasmaenhancedatomiclayerdeposition(PEALD),Al2O3gatedielectricandZnOchannelregionscanbedepositedat<200ºC.ThisallowsZnOTFTstobefabricatedonavarietyofsubstrates,includingglassandflexiblepolymericmaterials.

PEALD ZnO TFTs fabricated on thin (~5 [Symbol]m thick) polyimide substrateshavecharacteristicsverysimilartodevicesfabricatedonglass,withlinearregionfieldeffectmobility>10cm2/V[Symbol]satagateelectricfieldof2MV/cm,andion/ioff >108. These devices survive tens of thousands of cycles of flexing ormovement over fewmm diameter rollers [1,2]. Al2O3 passivated devices haveexcellent device performance and stability, and double-gate and tri-layer TFTsprovide additional design flexibility. Low-temperature processing also allowssimpleheterogeneousintegrationwithpiezoelectricmaterialssuchasPb(Zrx,Ti1-x)O3 (PZT) andwith two-dimensional transitionmetaldichalcogenide (2D-TMD)materials.

Weare investigatingZnOTFTs in a rangeof applications. Forexample,weareintegratingZnOTFTswithPZTactuatorstoprovidemirrorfigurecorrectionforafuturespace-basedx-raytelescope.TherobustradiationexposurecharacteristicsofZnOTFTssimplifyuseinspaceapplications.WearealsoinvestigatingusingZnOTFTsasbiosensors.Forthisapplicationtheultrathinchannels(typically<10nmthick)usedforourdevicescanprovidesensitivitysimilarorbetterthannanowiresor carbon nanotubes, but with greatly improved device reproducibility andstability. The flexible processing and design characteristics of oxidesemiconductor devices provide advantages for these and many otherapplications.

71

94 DirectGrowthandTransportPropertiesofEpitaxialGraphene/MolybdenumDisulfideLateralHeterostructures

D.D.Deng,S.Subramanian,K.Xu,N.Simonson,J.Li,D.Waters,K.Zhang,K.Wang,R.Feenstra,S.Fullerton-Shirey,J.A.Robinson

Low resistance contacts to thematerial is necessary to fully utilize the uniquephysicalandelectronicpropertiesoftransitionmetaldichalcogenides(TMDs)indevices. Graphene is a promising candidate and has been demonstrated toproduce low-barriercontacts toMoS2.Directgrowthofgraphene-TMDverticalheterostructures have demonstrated that suchmethods are advantageous fordevices due to the cleanliness and scalability of the process. Recently, directgrowth of graphene-TMD lateral heterojunctions has been demonstrated butlimitedtochemicalvapordepositiongrowngraphene,whichisintrinsicallyp-typeand still requires physical transfer of the material. Here, we demonstratecompletely transfer free, directly-grown epitaxial graphene (EG) - MoS2heterostructures.Inaddition,EGcanbemaden-typeorp-type,andweobservethat the type of the graphene heavily affects the heterostructure deviceperformance.DeviceswithEGcontactsofeithertypetothen-typeMoS2exhibitsteeperturn-onandlargeron/offratiocomparedtodeviceswithmetalcontacts,butdeviceswithn-typeEGhadsignificantlyimprovedperformancewithanorderofmagnitude lowercontactresistance,orderofmagnitudehigheron/offratio,andfasterturn-oncomparedtometalcontactdevices.ExfoliateddevicesmadeusingtheEGshowsapproximatelyequalon/offratio,buthasathree-foldincreasein the subthreshold swing, demonstrating the advantage of directly grownheterostructures. Barrier to electron transport for the directly grown devicesextracted using low energy electron reflectivity shows that the deviceperformancetrendsnegativelywithbarrierheight.ThissuggeststhemethodcanbeextendedtootherTMDsbychoosingtheappropriategraphenetypeforlowbarrierjunctions.

95 TuningtheDielectrophoreticAssemblyofDielectricParticlesThroughSurfaceFunctionalization

N.Burrows,N.Alexander,I.Ibrahim,C.Keating 

The directed self-assembly of particles in a non-uniform electric field can beachieved due to the phenomenon of dielectrophoresis resulting in an appliedforce.Thestrengthofthisforcedependsonthepolarizabilityofboththeparticles& suspendingmedium, theparticles’ sizeand shape, and the frequencyof theelectricfield.TheClaussius-MossottiFactor,afrequencydependentfunctionofboth the particle and medium complex dielectric constant, determines thedirectionandmagnitudeofparticle response toappliedAC fields and changeswithchargecarrierdensity.Surfacefunctionalizationcanalterthemobilityofthechargesassociatedwiththeparticlesurfaceelectricaldouble-layerandpresentsanopportunitytofurthertunethedielectrophoretic(DEP)response.Herein,wepresenttheDEPassemblyofparticlestunedbyvarioussurfacechemistriesanddemonstratetheimportanceofsurfacechargemobilityinDEPassembly.

72

96 PiezoelectricMicroelectromechanicalSystems(PiezoMEMS)L.Jacques,N.Kirchner-Hall,C.Cheng,K.Coleman,T.Liu,D.Wang,L.Dennis,C.Morandi,B.Akkopru-Akgun,S.Shetty,H.G.Yeo,W.Zhu,J.Walker,S.Trolier-McKinstry

Major challenges have emerged as microelectromechanical systems (MEMS)move to smaller size and increased integration density, while requiring fastresponse and large motions. Thin film piezoelectrics provide required largemotions that can be generated, often with low hysteresis, the high availableenergydensities,aswellashighsensitivitysensorswithwidedynamicranges,andlowpowerrequirements.TheTrolier-McKinstrygrouphasexploredawiderangeof perovskite thin films for these applications and has developed newcharacterizationtools formeasurementofthinfilmpiezoelectricproperties.OfparticularinterestisthedevelopmentofhighactuationauthorityfilmswhichareCMOScompatiblebothintermsoftherequireddrivevoltagesandtheprocessingtemperatures. Patterning approaches, including reactive ion etching, andmicrocontact printing, are also being explored. Awide variety of piezoelectricMEMSdeviceshavebeenfabricated,including:

1. AdaptiveopticssystemsincorporatingpiezoelectricMEMShavebeendevelopedfora range of wavelengths, from the visible to the x-ray regime to produce localdeformationofamirror surface, inorder tocorrect figureerrorsassociatedeitherwithfabricationofthecomponentoratmosphericdistortion.HighyieldpiezoMEMSarraysusingPZTfilmswereachievedonglasswitha220mmradiusofcurvature.Theresulting mirror pieces exhibit a consistent high yield of ~95%, with typical PZTdielectriclossvaluesof0.05andpermittivityof~1270.

2. Micro-ultrasound transducer arrays have been developed to improve detection ofdiseaseandpathologicalclassification.IthasbeendemonstratedthatPZTPMUTcanoperateintransmitandreceivemodesathighfrequencies(30-70MHz)withlowdrivevoltages.

3. AhighefficiencypiezoelectricenergyharvesteroperatedatlowresonancefrequencyandaccelerationlevelwasdevelopedviabimorphtexturedPZTfilmsonNifoil.PZTfilmshavestresstailoreddomainstructuresthatprovideefficientelectromechanicalconversionwithhighFoM.

In addition, we have developed new families of tunable dielectric materials,wherethepermittivitycanbechangedbytheapplicationofadcbiasfield. Thegroup was the first to demonstrate that Bi1.5ZnxNb1.5O6+x (where x = 0.5 to 1)providereasonabletunability(~50%)coupledwithexcellenttemperaturestabilityandlowlosses.Subsequently,itwasshownthatpulsedlasercrystallizationcanbeusedtodecreasetheprocessingtemperaturesto400°C,enablingintegrationontopolyimide.

Finally,intheareaofbulkpiezoelectricmaterials,thegroupworkedtodevelopthe cold sintering process to achieve high density at temperatures lower thanconventionalhigh-temperaturesinteringprocessing.AbimodalPZTpowderwasdensifiedtoarelativedensityof89%bycoldsinteringat300°Cand500MPa.Afterthecoldsinteringstep,thepermittivitywas200,andthedielectriclosswas2.0%.A secondheat-treatment involvinga3hannealat900 °C, increased therelativedensityto99%;theresultingrelativedielectricpermittivitywas1300atroomtemperatureand100kHz.Thesamplesshowedwell-definedferroelectrichysteresisloops,havingaremanentpolarizationof28µC/cm2.

73

97 MaterialMatters:AModelfortheDesignandConstructionofLow-cost,High-performance,Energy-efficientSheltersinBurkinaFaso,WestAfrica

V.A.A.Noel,R.A.Kimel

ThisprojectsoughttoinvestigatehowthedesignofnewmaterialmicrostructuresforclaymighttransformitspropertiestomeettheneedofsustainablehousinginOuagadougou, Burkina Faso. Clay (mud) is the typical material used in theconstructionofdwellings inBurkinaFaso,becauseof itsabundance,successfulperformance in the climate, and its familiaritywithin the culture.Ourmethodinvolvedcarryingouton-sitefieldobservationsoflocalbrickmakingmethodsandbuildingpractices;visuallyandexperientiallyexaminingtwoexistingpilothouses;carryingoutarchitecturalanalysesoftheirdrawingsandspecifications;anddoingmaterial characterization testsof clay, concrete, and xyzbrick samplesused inbuilding.Wefoundthatthoughinsulationofthebuildingenvelopewasaddressedthroughtheunitofbrick(clay),otherarchitecturalissuessuchasroofdesignandconstruction, ventilation, and shading, to name a few,were not addressed toachievethermalcomfortinthepilothomes.Basedontheseresultsournextstepsshall include: (1) Evaluating and analyzing the current building and designstrategies of the pilot houses in Ouagadougou, Burkina Faso; (2) Developingarchitecturaldesignstrategiestoaddressthermalcomfortinthepilothomes;(3)Experimenting with engineered clay-based blocks for the creation of thermalperformance figures of merit; and (4) Developing an “architectural designstrategiesguide”forsustainabledwellingsintheregionthattakesthepeople,thecontext,andtheirresourcesintoconsideration.

98 Point-of-careMicrofluidicPlatformUsingZnONanowireTemplateforVirusDetectionbyPlasmonicColorimetricReaction

Y.Xia,Y.Chen,G.Cheng,X.Yu,Z.Liu,S.-Y.Zheng

Here,wereportapointofcare(POC)microfluidicplatformforvirusdetectionbyplasmoniccolorimetricreaction.ThesizeofPDMS-baseddeviceisabout2cm×2cm × 0.5 cm, which is portable, cheap, and disposable. The integration ofnanowiresintomicrofluidicfabricationandtheincorporationofnanoparticlesfordevice operation ensure high virus capture efficiency, ultrafast and sensitivedetection, and easy operation for multiplex virus detection. Plasmoniccolorimetricreactionallowstheestimateofvirusconcentrationwithnakedeyesdirectlyorbyacellphone-basedimagingsystemforquantitativemeasurement.ThisPOCplatformenablesfastdetectionofvirusesoutdoorsinmedicalresourcelimitedregions.

An antibody-virus-antibody ‘sandwich’ structure is utilized to detect virus.Antibodies conjugated on the surface of the device capture viruses, whileantibodiesconjugatedwith13nmgoldnanoparticlestargetcapturedvirusesfordetection. Silver enhancer forms thick silver shells outside of the goldnanoparticles, allowing colorimetric reaction, which can be directly read withnaked eyes or quantitatively analyzed by the greyscale of images. These greyvalues of the colorimetric reaction can reflect the concentration of virus. AcellphoneimagingsystemscontainsacamerasurroundedwithLEDlights,andonepair of perpendicular polarizers, which helps eliminate specular reflection andenhancesignal-to-noiseratio.

A novel process of replica molding of polymer polydimethylsiloxane (PDMS)directlyfromzincoxide(ZnO)nanowireforestsisinventedtocreateanallPDMSdevice, which is highly biocompatible, has much large surface area and cansignificantlyimproveviruscapturingefficiencyanddetectionlimit.UtilizingPDMSwith uniform ZnO nanowires as the replica allows much larger rough surface

74

insidethechannels,significantlyimprovingviruscapturingefficiencyandpushingdetectionlimit.Themaximumheightandroughnessofthesurfaceislargerthan1128nmand163nm,respectively,withanincreaseofover43%insurfacearea.The design of meandering channels and herring bone structures inside thechannelsincreasesthechanceofinteractionbetweenantibodiesonthesurfaceandvirusinthesolution,whichfurtherraisestheviruscaptureefficiency.

H5N2avianinfluenzavirus(AIV)solutionswithconcentrationsfrom2700to8×105EID50/mlareusedtocalibrate thestandardcurveofvirusconcentrationversusgreyvaluesofthecolorimetricreaction.Thesystempushesthedetectionlimitofthevirustoaslowas~8000EID50/ml,whichis~10timesmoresensitivethantheconventional enzyme-linked immunosorbent assay (ELISA) with fluorescence.Whatismore,theentireviruscaptureanddetectionprocesscanbecompletedin1.5hourswithaprogrammedsyringepumponly.Allofthesemakethedeviceauserfriendlyplatformwithhighersensitivityandeasydetection.

99 ExpandingtheCapacitytoConfronttheGlobalWaterCrisis:ExploringAffordablePossibilitiesandIncreasedEffectivenessofPointofUseCeramicWaterFilterswithMetallicNanoparticles

I.Dabo,Z.Ounaies,S.Carpenter,II,S.Weitzner,F.Rodriguez

This study of ceramic water filters with metallic nanoparticles is aninterdisciplinarycollaborativeeffort,fundedbytheMRIHumanitarianMaterialsInitiative.Theprojectseekstoadvanceamaterials-enabledlow-costapproachtoprovidecleanwaterinremoteareas.Ourapproachiscomprisedofacombinationof computational, experimental, and testing capabilities to modify, adapt, oraugment currentpoint-of-use ceramicwater filters to enable awider rangeoffiltration capabilities through the development ofmetal nanoparticle-modifiedceramicmaterials.Thepoint-of-useceramicwaterfiltersaredesignedasafirstresponseandtemporarysolutiontoprovidecleanwaterinremoteareaswhere,althoughwaterisamplyaccessible, it iscontaminatedwithwaterbornediseaseandthereforeunsuitableforconsumption.

In this poster, we focus on the following research tasks: (1) experimentalinvestigationsoftheeffectsofsilvermorphology,sizeandfabricationstepsontheeffectivenessofwaterfilterstoremovepathogensandmetalimpurities;and(2)first-principlesmodelingtounderstandthestabilityofactivefacetsasafirststepinpredictingandevaluating the formof synthesizednanoparticles.Thisposteralso reports on the following outreach and education tasks: (3) engaging onegraduatestudentfromMaterialsScienceandEngineering,onegraduatestudentfromArtEducation;twoundergraduatestudentsfromMechanicalEngineering;twoundergraduate students fromMaterials Science and Engineering; andonevisitinginternationalundergraduatestudentinEngineering;and(4)developinganinterdisciplinaryhypertext curriculum forK12 learners andan interactiveweb-based literature review and timeline of key concepts and developments inresearch and application of nanoparticle silver enhanced point of use ceramicwaterfilters.

75

100 Smartphone-basedOpticalSpectrometerforEarlyPlantDiseaseDetectionandQuantification

C.Zhou,V.Bucklew,P.Edwards,C.Zhang,D.Hughes,X.Qu,Z.Liu

Developing low-cost, practical and accurate methods for early detection andquantification of plant diseases is a critical step toward achieving global foodsecurity. Here we demonstrate a solution for detecting plant diseases, inparticular,thepotatolateblightdiseasebyutilizingasmartphonebasedopticalspectroscopicsensor.WemeasureddiffusereflectancespectrumdatausingaG-FresnelsmartphonespectrometeratPennStateAgriculturalExperimentStation,andperformedanalysisbasedonmachinelearningalgorithmsincludingkmeanandartificialneuralnetwork.Over99%accuracyforquantifyingthepotatolateblightdiseasewasdemonstrated in thispreliminary study.Our results indicatethat the mobile optical spectroscopic sensor platform provides a promisingapproachtoearlydetectionandquantificationofplantdiseasenon-invasively,atlowcost,andwithhighthroughput.

101 ThePerceptionsandFeasibilityof3DPrintedSpectacleDesigninArusha,Tanzania

A.Cronin,M.Freeman,J.Rong,D.Zaremsky,E.Obonyo,S.Ritter,E.Park

The objective is to investigate the feasibility of increasing accessibility toprescription glasses in a resource-constrained context via the production anddisseminationof3Dprintedglasses.Eventually,wewouldliketoproducedurableandaffordable3Dprintedreadingandprescriptionglasses.Peopleinresource-constrained contexts are not receiving enough help with their vision issues.According to the World Health Organization, in 2014, 285 million people areestimated to be visually impaired worldwide, with 90% of them living in low-income settings. Forty-three percent of vision impairment is caused byuncorrected refractiveerrors,which canbecorrectedwithprescription lenses.We believe 3D printing will increase accessibility to glasses by allowing bothoptometrist and consumer to operate in the eyewearmarketmore efficientlythroughmasscustomization.Forourobjective,wesoughttoprototype3Dprintedlensesandfindout if thecontexthas theresourcesandpeopletosupport theglasses.Wehavebeenabletoprinttranslucentlenses,butwestillneedtoprocesstheminordertomakethemclear.

Weconducted30 interviews inperson in theArushaarea inTanzania to learnabout perceptions on eyewear and 3D printing. We interviewed workers andoptometristsinthreeopticalshopstolearnaboutthepriceofreceivingglassesalongwith the frameoptions.Fromthepeople interviewed,73%stated thatabarrier to accessible glasses is the cost. Out of those people, 30% say thatawareness of vision problems and locational access are also barriers. Seventy-sevenpercent state that the cost of glasses is toohigh.Misconceptions aboutvision can be another barrier. Only half of the people interviewed stated thatchildrenwhohavevisionproblemsshouldbegivenglasses.Somewhodisagreedbelieved thatwearingglasses couldbringharm to thechildren’seyesight. Lessthanhalfwereawareofwhat3Dprintingis,though80%werewillingtopurchase3Dprintedglassesdependingonfactorssuchasthecost,availability,andquality.Newprescriptionglasseswerepurchasedforpricesbetween$30and$60.

Inorderfor3Dprintedglassestobeafeasibleproduct,werecommendthattheglassesnotbemoreexpensivethanthecostofglassescurrentlyinthemarketandthat the 3D printed glasses have good quality and durability. Additionally, wewould need to find a way to bring the glasses to rural areas and correct themisconceptionsaboutvisionimpairment.

76

102 ThePeanutShell

M.K.Kenneh,E.Obonyo

Inthelastcoupleofweeks,Ihavebeenblessedtobepartofsomethingbiggerthanmyself.MycolleagueandIareconsideringtheusefulness,orratherthelackofusefulness,ofthepeanutshellinthedevelopingworld.WechoosetozoneinonanareanearLakeVictoriasimplybecauseithadfertileandfavorablesoilforthepeanutplanttodwellin.Giventhisfact,werealizedthat92%ofpeanutshellobtained from the peanut were discarded as trash. Within this we saw anopportunity to investigate the feasibility of creating a desirable ceiling boardmateriallocally.Keepinginmindthattheseweren’tveryhigh-incomepeople,ourobjectivewastocreatelowcostandlowtechproductionlocally,byturningtheshellofapeanutfromshelltopowder,thentoceilingboard.Ourintentionistobuildavaluechainoutofamaterial that iscurrentlybeingregardedaswaste,theneventuallymovingintotheformalconstructionsector.Indoingso,wewillhelpalleviatesomeoftheimpoverishedpeasantfarmersbygivingthemmoreoutofthepeanutstheyproducealready.

103 MRSECIRG2:ActiveMatterSystemsattheNanoscale

P.Butler,S.Cochran,P.Cremer,V.Crespi,C.Demore,R.Golestanian,T.J.Huang,M.MacDonald,T.Mallouk,A.Sen,S.Trolier-McKinstry,D.Velegol

Wepresentanoverviewof IRG2,oneoffour InterdisciplinaryResearchGroupswhich comprise the Center for Nanoscale Science, Penn State’sMRSEC. IRG2synthesizes and studies active matter at the nano- scale. These nanomotorsconsume energy to move through their environment – in this respect theyresemblebiologicalsystems.TheobjectsstudiedbyIRG2aremuchsimplerthanliving systems; nonetheless, these synthetic motors exhibit many behaviorspreviouslyuniquetolivingmatter.

Systems studied represent a range of design (single enzymes, bi-metallic rods,light sensitive microparticles, functionalized polymer spheres …) and motivemechanisms (self-electrophoresis, acoustic propulsion, light-activated catalysis,thermal gradients …). Many of these self-propelling systems have dualapplications as micro-pumps, generating flows in their environments whenimmobilized.

WepresentanoverviewoftheIRG’sworksfromthepastyear.Amongtheseareoscillatory and swarming behavior in silver phosphate colloids, preferentialupstreammovement(rheotaxis),small-moleculechemotaxis,andbiocompatiblepropulsionmechanisms.

104 NewAutomatedImagingCapabilitiesatMCL

E.Bazilevskaya,N.Wonderling

TheMalvernMorphologi G3SE, recently acquired byMCL, is a high resolutionmicroscope-based automated imaging system that can characterize particlesrangingfrom0.5micronstoseveralmillimetersinsize.Individualparticleimagesarecapturedfromdispersedsampleandscannedacrosssampleareaunderneaththemicroscopeopticswhilekeepingtheparticlesinfocus.Asaresult,particlesizedistributionandparticlemorphologyaredetermined.Oneofthemainadvantagesofautomatedimagingisthatitprovidesstatisticallyrepresentativedistributionsby measuring 10’s to 100’s of thousands of particles per measurement. Thistechnique can be used in conjunction with laser diffraction to gain a deeperunderstandingofthesampleortovalidatethelaserdiffractionmethod.

Proper sampledispersion is crucial forMorphologimeasurements. This canbeachieved by several dispersion accessories available in our lab including: (1)

77

software controlled dry powder sample dispersion unit (SDU) when sample isdispersedbyaninstantaneouspulseofcompressedairwithcontrolleddispersionpressureandinjectionandsettlingtime;(2)4-slideplatewheresamplescanbedispersedbyevaporativedispersionoftenusedforhighlycohesiveparticles;(3)glasswetcellthatisdesignedtomeasure>15micronparticlesinsuspension,and(4)25mmfilterplatesuitabletostudyfilteredmaterial.

ThepurposeofthisposteristoshowthecapabilitiesofMorphologiandhowtheyhavebeenusedtosolveresearchproblems.TheinstrumentislocatedinN-001MillenniumScienceComplex.

105 CRAFT:CenterforResearchonAdvancedFiberTechnologies

M.Demirel

CRAFTisthefirstmultidisciplinarycenterdevotedtoadvancedfibertechnologiesatPennState.Thecenterproposestoestablishthefoundationofnextgenerationprogrammable, flexible,biocompatible,optically superior,energyefficient, andmechanically strong fibers. The research center is committed to educatinginternationally competitive scientists in fiber science and technology throughcutting edge, interdisciplinary research programs. Penn State faculty from theCollegeofEngineering,EberlyCollegeof Science,CollegeofEarthandMineralSciences,andtheCollegeofAgriculturalScienceareinvolvedintheCRAFTcenter,whichiscoordinatedbytheMRI.TheCenterservesasthehubtoattractdiversePennStatefacultyandobtainsubstantialstate,federal,andindustrialfundinginthe new field of multi-functional advanced fiber technologies. The mission ofCRAFTistobecomeaninternationalleaderinresearchonnewphenomenaandapplicationsofprogrammablesmartcompositefibersthatcouldbetransformedinto high impact functional textile products in medicine, automobile, energy,biotechnology, and cosmetic industries. The Center also provides a unique,verticallyintegratedresearcheducationtograduateandundergraduatestudents,with extremely valuable components, including state-of-the-art infrastructureandresearchenvironment. 

106 TheTwo-dimensionalCrystalConsortium-MaterialsInnovationPlatform

K.A.Dressler,J.M.Redwing,N.Samarth,V.H.Crespi,E.W.Hudson

TheTwo-DimensionalCrystalConsortium-MaterialsInnovationPlatform(2DCC-MIP) is an NSF-funded national user facility (cooperative agreement DMR-1539916)focusedonthedevelopmentoftwodimensional(2D)chalcogenidesforapplicationsinnextgenerationelectronics.Thesematerialsinclude2Dtransitionmetaldichalcogenidefilmsthatareonlyafewatomsthick,topologicalinsulatorbismuthchalcogenidefilmsthatonlyconductonthe2Dsurface,andmultilayersofdissimilarchalcogenidefilms.TherearethreemaincomponentsofaMIP:In-houseResearch,User Facility, anda focusedEducationandOutreachprogramrelatedtotheresearch.

The2DCCuserprogramfocusesonthreemainfacilitycomponents:

1. SynthesisandInsituCharacterizationofThinFilmsThisfacilityisfocusedondevelopingadvancedsynthesistoolsforchemicalvapordepositionandhybridmolecularbeamepitaxyequippedwithreal-time,insitucharacterizationtoolsthatprobethegrowth,electronicstructure,andmaterialspropertiesofatomicallythinfilms.

78

2. BulkCrystalGrowthThisfacilityisfocusedonthebulkgrowthoflayeredchalcogenidestoprovidehighqualitycrystalsgrownundernear-equilibriumconditions.

3. Theory/SimulationThisfacilityisfocusedonsupportingtheexperimentalworkwiththeoreticaltechniquesincludingmoleculardynamicssimulationsandreactiveforce-fieldmodelingtoaddressthecomplexkineticissuessurroundingmaterialssynthesis.

Researchersfromacademia,government,andindustryinterestedinparticipatingin the 2DCC User Program can access the specialized samples, synthesisequipment,andsimulationtoolsthroughseveralmodesofinteraction.Userscanrequestalimitednumberofwell-characterizedsamplesfreeofchargethroughabriefon-lineapplicationwhichdescribestheirneedsandresearchinterests.Alistofavailablesamplesispostedonthe2DCCwebsite.Usersinterestedinaccessingthecapabilitiesofthe2DCCformoreextensiveresearchprojectscandosoviathesubmissionofabriefresearchproposalwhichisevaluatedbyresearchersexternaltoPennState.

107 InvestigationofSurfaceConditionsontheCoolingofNuclearFuelRodsPSUGlobalNuclearPowerSafety(GNPS)CenterS.Ebrahim,F-B.Cheung

This research investigates the influence of surface conditions on the coolingprocess of nuclear fuel rods. Specifically, material characterization of CRUDformedonthefuelrodsurfacesisperformedanditseffectsonthecoolingoffuelrodsarestudied.ThetermCRUD(ChalkRiverUnidentifiedDeposits) isusedtodescribethedepositedcorrosionproductsonthesurfaceofthefuelcladdingrodsduringtheoperationofPressurizesWaterReactor(PWR).ThePennsylvaniaStateUniversityhasconstructedandoperateda7x7rodbundletestfacilityundertheRodBundleHeatTransfer (RBHT)ProgramsponsoredbyUnitedStatesNuclearRegulatoryCommission(NRC).Inconeltype600rodswiththedimensionsof9.5mmdiameterand3.657mheatedlengthareusedinthetestfacility.Theyhaveexperiencedanapproximateof200totalheatingandcoolingcyclesundersystempressureandcladdingtemperaturerangesbetween0.138–0.414MPaand315–1093°C,respectively.Material characterization has been performed on test samples collected atdifferentelevationsoftheheatedrodstoidentifythemicrostructuresoftheCRUDlayersbyusing fieldemissionscanningelectronmicroscopy (FE-SEM), scanningelectronmicroscopy(SEM),energydispersivex-rayspectroscopy(EDS),andx-raydiffraction (XRD). Additionally, an automated goniometer and opticalprofilometryareused tomeasure, respectively, the surface roughnessand thewatercontactangleofselectedrodsurfaceswithandwithoutCRUDformation.The goal is to correlate the surface conditions of the rods such as the surfaceroughness, the water contact angle, and the thickness, porosity and chemicalcompositionoftheCRUDlayeronthecoolingbehavioroftherodsunderPWRaccidentconditions.Aheattransfercorrelationhasbeendevelopedfromthedatawhichpredictstheenhancementofthecoolingprocessofthefuelrodsfollowingasevereaccidentsuchas loss-of-coolant-accident(LOCA)resulted in improvingthesafetyofthePWR.

79

108 ThePennsylvaniaStateUniversityNanofabricationLaboratory

K.A.Gehoski,G.P.Lavallee,W.R.Drawl,S.Trolier-McKinstry,C.M.Eichfeld

The Penn State Nanofabrication Laboratory (Nanofab) is a fully staffed userresearchfacilityofferingmorethan70nanofabricationandcharacterizationtoolsthatenablefabricationandcharacterizationofawiderangeofdevicestosupportfundamental and applied research. Researchers from Penn State, otheruniversities,governmentlabs,andindustrytakeadvantageoftheexpertiseandworld-class facilities of the Materials Research Institute’s NanofabricationLaboratory.

Located in the Millennium Science Complex, the Nanofab provides faculty,students,andindustryresearchersaccesstosophisticatedinstrumentsformicro-and nanofabrication. The Nanofab’s 10,000-square-foot state-of-the-artcleanroomissupportedby6,000squarefeetofspaceforutilitiesinthesubfab.ThePennStateNanofaboffersexpertisein“top-down”(e.g.deposition,etching)and“bottomup”(e.g.self-assemblingfilms)nanofabrication.Thetechnicalstaffprovides extensive support and training or can perform research on behalf ofindustrypartners.Morethan70+materialscanbedepositedanddryetchedinthesuiteoftoolsinthefacility.TheLithographytoolsarecapableofwritingsubnanometer features on a variety of substrates, including curved surfaces. Thelaboratory isopen24hours aday, 7days aweek, 365days a year for trainedusers.

Thisposterhighlightsthestate-of-the-artequipmentthatresidesinthe10,000-square-foot cleanroom and the unique capabilities of the equipment. Recentadditions to the lab include the highest resolution commercially available 3Dprinter;NanoscribePhotonicProfessionalGTandthesoon-to-be-installedlatestgenerationSUSSMicroTecMA/BA6Gen4semi-automatedmaskaligner.

109 MRSECIRG4-MulticomponentAssembliesforCollectiveFunction

C.D.Keating,Z.Liu,D.Werner,M.Rechtsman,D.Christodoulides,R.Schaak,K.Fichthorn,L.Q.Chen,T.S.Mayer

IRG4 seeks to understand and control the organization of particles and theirmixturestogeneratearchitecturesinwhichnon-additivefunctionsareimpartedby the collective properties of the array. Our multidisciplinary team ofinvestigators includes experimental and theoretical expertise and spansengineering (Electrical, Chemical, Materials) and science (Chemistry, Physics,Materials). Several classes of assemblies are under investigation; theseincorporate distinct types of functional particles and span a range oforganizational ordering schemes for photonic applications ranging frommetamaterials,whosefunctiondependsoncontrolledplacementofmetallicanddielectric components, to random lasers, which take advantage of disorder.Fabricationbysolution-phasedirectedassemblyofparticlesratherthantop-downmethods enables reorganization to switch between different functional forms.Learninghowtoachievedesiredassemblyoutcomesforfunctionalparticlesandtheirmixtures,andtoreconfiguretheseassembliesinreal-time,willsetthestageforaneweraofnanomaterial-enableddeviceapplications.

80

110 CenterforInnovativeSinteredProducts–FundamentalandAppliedResearchinSinteredMaterials

T.A.Palmer

TheCenterforInnovativeSinteredProducts(CISP)isanacademiccenterfocusedon the development of cutting-edge technology for the processing of sinteredmaterial,particulates,refractory,andhardmaterials.CISPhasfocusedonusingresearch as aneducational tool to involve students in contemporaryproblemsassociatedwithsinteredmaterials.CISPresearchincludeslong–andshort–termprecompetitiveandproprietaryprojects.Areasofemphasisincludepowderandparticulatematerialcharacterization,sinteringprocessdevelopment,tailoredandfunctionallydesignedhardmaterials,thermalprocessingandmeasurement,andsparkplasmasinteringservices.

111 ATOMIC

M.Terrones,J.Robinson,N.Simonson,F.Zhang,K.Zhang,YLei

ATOMIC (the Center for Atomically ThinMultifunctional Coatings) is an IUCRC(Industry/University Collaborative Research Center) is led by Penn State incollaboration with Rice University. It is a collaboration between the NationalScienceFoundation,ahostofmembercompanies,andPennStateandRice todevelop and apply two-dimensional materials (such as graphene, hexagonalboronnitride,andtransitionmetaldichalcogenides)ascoatingsinawidevarietyoffields.

The six main thrusts of ATOMIC are: Scalable Routes for ATOMIC, ProtectiveCoatings, Energy Conversion & Storage, Reliability & Multifunctionality,Toxicology & Biocompatibility, and Water - Purification, Desalination, &Monitoring.Currently,mostofthesethrustshaveatleastoneprojectexploringthepotentialof2Dmaterialsforthesetechnologicalchallenges.

TheIUCRCintegratesacademia,industry,andgovernment/nationallabstoensurethehighestqualityofrelevantresearchledbyprofessorssuchasJoshuaRobinson(PSU),MauricioTerrones(PSU),JunLou(Rice),andPulickelAjayan(Rice)aswellasindustryleaderssuchasCorning,Honda,MorganAdvancedMaterials,andtheAirForceResearchLaboratory.

112 3DMetalPrintinginPennState’sCenterforInnovativeMaterialsProcessingThroughDirectDigitalDeposition(CIMP-3D)

T.Simpson

Penn State’s Center for InnovativeMaterials Processing through Direct DigitalDeposition (CIMP-3D) serves as the Additive Manufacturing DemonstrationFacilityforDARPA’sOpenManufacturing.Thefacilityoffersstate-of-the-artmetal3D printing capabilities in powder bed fusion and directed energy depositionalong with hybrid manufacturing technology and computed tomography (CT)scanning. CIMP-3D’s mission is three-fold: (1) advance enabling technologiesrequiredtosuccessfully implementAMtechnologyforengineeredcomponentsand structures; (2) provide technical assistance to industry through selection,demonstration,andvalidationofAMtechnologyasan“honestbroker”;and(3)promote the potential of AM technology through training, education, andoutreach. Withmorethan45facultyaffiliatesspanningfivecolleges,CIMP-3Duniquely positions Penn State as a “one-stop shop” for all aspects of additivemanufacturing, includingdesign,materials,modeling,simulation,sensing,post-processing, characterization, testing, inspection, and data management forqualificationandcertification.CIMP-3Dofferstourstomorethan1000visitorseach year andprovidesPennState’s interface toAmericaMakes, theNationalAdditiveManufacturingInnovationInstitute(NAMII).

81

113 CenterforDielectricsandPiezoelectrics(CDP)

S.Trolier-McKinstry,C.A.Randall

The CDP aims to provide international leadership and train next-generationscientistsinthefundamentalscienceandengineeringthatunderpindielectricandpiezoelectricmaterials. The center supports industries based on capacitor andpiezoelectricmaterialsanddevicesthroughthedevelopmentofnewmaterials,processing strategies, electrical testing, and nanoscale characterization andmodelingmethodologies.

Innovationsinthedielectricsandpiezoelectricsindustrialsectorsoftenarisefromresearchadvancesinmaterialschemistry,synthesis,and/ormanufacturingthatenablenewmaterialsanddevice functionality.Abroadanddiversenumberofmaterialchallengesacrossthecapacitor-andpiezoelectric-based industriesareaddressedbyresearchthrustswithintheCDP. Inmanyoftheseareas,theCDPfacultymembersareinternationalleadersandhaveuniquecapabilitiestodriveresearch innovations for next-generationmaterials and devices. Our aim is toengagecompaniesacrossthesupplychain,i.e.onesthatmanufacturedielectricandpiezoelectricmaterials,componentmanufacturers,andendusers,whowillprovidethetechnologicalpullforCDPresearchactivities.

CDP is a joint collaboration between North Carolina State University (NCSU)and The Pennsylvania State University (PSU) and is supported by the NationalScienceFoundationandCDPmembers

114 TheMaterialsComputationCenter -AHighlyVersatileFacultyCollaborativeforComputationalSupportofMaterialsResearch

C.Ashraf,D.Akbarian,R.Lotfi,D.Yilmaz,Y.K.Shin,M.Singul,A.vanDuin

TheMaterial ComputationCenter (MCC) represents around20 faculty atPennStateinvolvedinmaterialssimulations,spanningmanylengthscales–fromhighlyaccurate,small(<500atoms)abinitiosimulationsallthewaytoCFD-simulationsthatdirectlyaffectmacroscopiclength-andtimescales.Ateverysize-andlengthscale MCC provides world-class capability – thus providing a highly versatileconnection with the experimental capabilities in the other MRI centers. ThisposterhighlightsMRI-relevantresearchandfeaturesoneoftheuniquemethodswithinMCC-theReaxFFmethod,whichprovidesahighlytransferablesimulationmethodforatomisticscalesimulationsonchemicalreactionsatthenanosecondandnanometerscale.Itcombinesconceptsofbond-order-basedpotentialswithapolarizablechargedistribution.

The ReaxFF concept is transferable to applications to elements all across theperiodic table, including all first row elements, metals, ceramics and ionicmaterials.

For all these elements and associated materials, we have demonstrated thatReaxFFcanaccuratelyreproducequantummechanics-basedstructures,reactionenergies,andreactionbarriers,enablingthemethodtopredictreactionkineticsincomplicated,multi-materialenvironmentsatarelativelymodestcomputationalexpense.

Recently,wehavebeendevelopingandimprovingReaxFFdescriptionsforvariousmaterialsrelevanttotheMaterialsComputationCenterandprojectswithinthe

82

Materials Research Institute (MRI). These include a capability to describeferroelectric materials, simulation tools for CVD and ALD synthesis ofchalcogenides and semiconductors, and supercritical water mixtures- withapplicationstocoldsinteringofzincoxidesandmorecomplexoxidematerials.Inthis poster we will highlight these new applications and their connections toongoingMRIprojects.

115 e-Bio-eLab@PSUataGlance:Point-of-CareSystemsforReal-timeBiochemicalAnalysis

A.Ebrahimi

The21stCenturyisfacingseveralgrandchallengesinhealthcare(suchasantibioticresistance issue, integrated diagnostics, etc.), sustainable energy, cleanwater,andfoodsupply.Inordertoaddressthesechallenges,weneedtomakeprogressin multiple directions by understanding, predicting, and utilizing the involvedparameters. Achieving so is only possible by a collaborative effort betweencommunitiesindifferentareasofscienceandengineering.

Ate-Bio-elab,weworkattheintersectionoffundamentalsciences(frommaterialpropertiestocellularbiophysics involvedindiseases)withengineeringofnovelminiaturized systems to create point-of-care biochemical diagnostics andscreeningmethods thatareaccessible toeveryone,especially the low- tomid-incomepopulations.

Towardthesegoals,weareinterestedin:

(i) Developing low-cost, array-formatted electrochemical devices on glass orplasticsfordetectionofphysiologicalandenvironmentalfactorsincomplexmedia(such as blood, urine, drinking water, etc.). We are particularly interested inhealthcare application, including pathogen detection, antibiotic susceptibilitytesting,waterqualityscreening,etc.(ii)Exploringdifferentbiomarkers(suchasmetabolites, reactive oxygen species, etc.) and novel materials (such as 2Dmaterials,nanoparticles,porousmaterials,etc.)forenhancingthesensitivity.Inthis regard, we investigate the biocompatibility or toxicity of engineerednanomaterials,suchasdopedTMDs.(iii)On-chipdevicesforreal-timestudyofcellular response to external input (such as light, chemical compounds,osmotic/electric/heat stress,etc.) andapplying the findingsasabasis to studydiseases. (iv) Probing cell-cell communication with high temporal and spatialresolution.Someapplicationsincludemonitoringthedynamicsoflateraltransferof antibacterial resistance genes, host-pathogen interaction via organ-on-chipdevices,etc.

We look forward to collaborationwith other academic and industrial partnerswhoareinvolvedwith:materialsengineering(nanomaterials,organicmaterials,substrate materials, etc.), biological and medical sciences (cancer research,microbiology, tissue engineering, etc.), spectroscopy methods (fluorescence,Raman,etc.),surfacechemistry(functionalization,biorecognitionelements,etc.),system integration (microfluidics, ICdesign,wirelesscommunication,etc.), anddevicemodeling.

83

116 GlassResearch@PSU

J.C.Mauro

GlassResearchatPennStateUniversitycoversawiderangeoffundamentalandappliedglassscienceandtechnology.Topicsinclude:

• MultiscaleModelingofGlass• ViscosityandFragility• GlassTransitionandRelaxation• GlassStructure-PropertyRelationships• ThermodynamicsandStatisticalMechanicsofNonequilibriumSystems• DecodingtheGlassGenome• High-StrengthGlasses• GlassMeltingandCharacterization• BioactiveGlasses• ExploratoryGlassCompositions

Thispostergivesanoverviewoftheseresearchactivitiesinfundamentalglassscienceandadvancedglassengineering.

117 AdditiveManufacturingofMetallicMaterials

T.A.Palmer,Z.Khayat,S.Meredith,A.Iams,M.Brennan

AdditiveManufacturing(AM)isaniterativeprocessthatinvolvesthefabricationofincrementallayersdirectlyfromaComputerAidedDesign(CAD)model.WhileAM has the potential to revolutionize material production through thedevelopment of innovative materials and the creation of parts with complexinternal structures that are not practical using conventional methods,advancementofthetechnologywillrelyuponcontinuouseffortstoimprovethereliabilityandreproducibilityofAMcomponents.ThegoalofthePalmerResearchGroup is to establish greater process control through the development of afundamental understanding of the governing process-structure-propertyrelationshipsinadditivelymanufacturedmetallicsystems.

118 PolyampholytesinElectricFields

C.W.Pester

Many diseases of the human nervous system occur as a result ofneurodegenerative processes. Charged proteins – naturally occurringpolyelectrolytesandpolyampholytes–havebeenidentifiedaskeyfactorsintheprogression of diseases like Parkinson’s and Alzheimer’s. Research interestspresentedonthisposterarefocusedonsyntheticallymimickingandstudyingthecomplex electrostatic interactions of such polyelectrolyte and polyampholytearchitectures. Both provide a powerful platform for fundamental studies andsimultaneously open new routes towards advanced materials that can beregulatedviaexternalstimuli,inbothtwoandthreedimensions,andforavarietyofapplications.

119 RamanandNear-fieldCharacterizationofGrapheneHeterostructures

M.Blades,X.Li,S.V.Rotkin

Micro-Raman and scattering-type Scanning Near-field Optical Microscopy (s-SNOM)arewellestablishednanocharacterizationmethods thatcangobeyondimaging mode: thorough analysis of the signals obtained can provide directmapping of materials properties of 2D layered materials (graphene in thisparticularwork).Single-andmulti-layergraphenematerialshavebeenstudiedbyRaman methods quite intensively, and good understanding of physics behindmicro-Raman hyperspectral imagingwas achieved. Current research expandedbeyond bulk materials by studying heterostructures combining “infinite” 2D-layerswith confined1D-or 0D-objects (wiresor dots).Herewepresent a fewexamples of such structures that hybridize the high quality CVD graphene,

84

transferred toother substrates, – a seriesof islandsof a second layer,makingnatural bilayer heterostructures, or titania microcrystallites, or photonicmetasurfaces.Bothpropertiesdeterminedbygraphene itselfandby theothermaterialinheterostructuresinfluencetheopticalresponse,potentiallyresultinginplasmonicquantization,rotationalincommensurability,straininducedeffects–allattractiveforfutureapplications.

120 Electronic,Optical,andCeramicMaterialsResearchforInfra-redSystems,NanoenergeticSystems,NewMaterialsDiscovery,andAdvancedSynthesisScience

J.P.MariaResearchGroup

The Maria research group focuses on electronic materials belonging to theceramicandsemiconductorfamilies.Historically,groupresearchfocusedonnon-lineardielectricsandinsulators,buthasbroadenedtocovernitrides,transparentconductingoxides,metallization,andcarbides.Current“hottopics”intheMariagroup include semiconductors for IR optoelectronics, entropy-stabilized oxidesand carbides, reactive nanomaterials, oxide-nitride interfaces, and ultra-lowtemperaturesintering.Mariagroupresearchisstronglyapplication-inspiredwithan overarching focus on synthesis science. Active research areas in synthesisscience include explorations of high power impulse magnetron sputtering,creating perfectly flat surface, near room temperature sintering, and entropicstabilization.

TheapplicationspaceofinteresttotheMariagroupincludesmid-waveinfraredoptical devices, including imagers, sensors, and overall improved “situationalawareness”; tunable optoelectronic devices that merge ferroelectricity withtransparent conductors; nanoenergetic materials that become components ofadvancedandsafermilitaryweaponssystems;newapproachestopulsedpowersputtering that enable improved film growth and coating; new platforms fortunablehighmobilityinterfaceconduction;extremehightemperaturematerialsdevelopment; and new materials for energy technologies based on entropicstabilization.

This posterwill provide a summaryof theMaria group research activities, thetechnologiesofinterest,ourcollaborations,andourlaboratoryinfrastructurethatwillbedevelopedatPennState.

121 PhotonicsTechnologiesbyEngineeringNon-HermiticityinOptics:FromControllingLightTransporttoOpticalSensingandOptomechanics S.OzdemirResearchGroup

Non-Hermiticity in optics is associated with the presence of loss and/or gain.Engineeringtheinterplaybetweengain,loss,andcouplingstrengthamongopticalstructuresallowsengineeringtheirnon-Hermiticity,andcreatesavarietyofnovelopportunities in photonics to generate,manipulate, and transmit light, and tocontrol its interaction with matter. Using whispering-gallery-mode (WGM)microresonators as a platform, we have been investigating non-Hermiticity,includingparity-time(PT)symmetry, inopticsbothforunderstandingthebasicphysics of non-Hermitian systems and the emerging degeneracies known asexceptional points (EPs) and for developing novel optical devices. Using theconceptsofPT-symmetryandEPs,wehavedemonstrated(i)nonlinearity-basednonreciprocallighttransmissioninbroken-PTregimewithrecordlowlevelopticalpower (ii) loss-induced suppression and revival of lasing, (iii) on-demandbidirectional and unidirectional emission in WGM resonators at EPs, and (iv)

85

enhanced optical sensing at EP beyond what is achievable in conventionalresonator-basedsensors.

ThisposterwillpresentabriefoverviewoftheOzdemirResearchGroup’seffortsinthefieldofnon-Hermiticityinopticsanddiscussfuturestudiesandpotentialapplications. Theposterwill alsopresentotherphotonic technologies that arebeing researched in the group, including the fields such as optomechanics(enhancementofamplificationandcoolingratesofmechanicalmotion),phononamplification and cooling at EPs, quantum plasmonics, and singlenanoparticle/moleculedetection.

122 GreenAdhesivesforIndustrialPaperProductsBasedonPolysaccharidePolyelectrolyteComplexes(PPC)

T.A.Strickland,S.Basu,J.M.Catchmark

Withplasticpollutionontherise,itiscriticalthatwefindsustainablealternativesinordertoprotectournaturalresources.Replacingpetroleum-basedmaterialswithlowcost,biodegradablematerialscouldhaveatremendousimpactonourenvironmentandhelpthe21stcenturyfamilygogreen.

Recent research at Penn State has demonstrated the ability of a PPC ofcarboxylmethylcelluloseandchitosantobeusedasaneffectivebarriercoatingmaterial. However, little is known about the adhesive properties of thisbiocomposite. This work assesses the mechanical properties of bondedpaperboard interfacesunderbothdryandsubmergedconditions. Initial resultsfromsingle-lapsheartestsundertensileforceindicatesconsiderablepotentialforthisCMC-CSPPCasanaturaladhesive.

123 HighSpatio-temporalResolutionMeasurementwithQuantitativeFlowVisualization

C.H.Teoh,R.Ni,A.SalibindlaA.Masuk

Inthemanufactureofpetroleum-basedfuelsandproducts,intherefiningofores,in the production of pharmaceuticals, polymers, and other materials, themultiphase flow plays an important role. During the manufacturing process,multiphaseflowisthesimultaneousflowofmaterialswithdifferentphases,whichis commonly found to be turbulent flow. Understanding the fluid dynamic ofturbulentflowandknowingtheoptimumconditionstosetforproducingdesiredflow can improve production efficiency and quality control of the industry.Lagrangianparticletracking(LPT)isaflowvisualizationtechniqueforflowanalysisandisfrequentlybeingusedtoforerunsophisticatedquantitativemeasurements.Theprocessofflowvisualizationoftenisthefirststepofobtainingadetailedflowanalysis.Itiscrucialtohaveprecisecalibrationtogetanaccuratemeasurement.Volume self-calibration and non-uniform optical transfer functions (OTF) areimplemented in calibration to account for the adverse effects of opticaldistortions on tomographic reconstruction. The reconstruction calibrated toimaging conditions shows significant improvement regarding ghost particleintensityreductionandpeakpositionaccuracytocorrectthemappingfunctionsfor all the cameras. These calibration techniques are integratedwith iterativeparticle reconstruction (IPR), Shake-the-Box methods to enhance currentLagrangianparticletracking.Thisapproachprovideshigheraccuracybyvirtuallycapturing more real particles and efficiently suppressing ghost particlesformation.Morereliableresultsupto0.05pppcanbegeneratedwithagreater

86

leveloftargetparticles.LPTtechniquecanalsosolveabroadvarietyofproblemsencompassingbiomedicalengineering,insectlocomotion,andnaturalbehaviors,energy dissipation analysis, uncertainty quantification,material behaviors, andglobalclimatesimulationssuchasoceanmixing.

124 CircularPolarizationFiltersforMid-IRLightusingChiralSculpturedThinFilms

V.Vepachedu,A.Lakhtakia

Achiralsculpturedthinfilm(ChiralSTF)consistsofanarrayofhelicoidalcolumnswithfixedpitch.Suchfilmswerefabricatedoutofzincselenideusingresistive-heatingphysicalvapordeposition.Duringthedeposition,thesubstratewastiltedatanangleof20°withrespecttotheincidentvaporfluxandrotatedaspertheasymmetric serial bideposition (ASBD) technique. The pitch of each successivechiralSTFwasmadetobedoublethatofthepreviouschiralSTFresultinginatotalof five samples which act as polarization filters between around 732 nm and11,712nm.Thesesampleswereshowntoreflectrightcircularlypolarized lightandtransmitleftcircularlypolarizedlightaroundacertainwavelength.

Misc. 1CoolRoomDesignedforsub-SaharanAfricaFarmStorage

A.Bailey,E.Obonyo

Post-harvest losses are amajor threat to food and financial security formanycountriesinsub-SaharanAfrica.InTanzania,20%ofgraincropsand50%offruitsandvegetablesspoilbeforetheycanbesoldinthemarket.Accordingtothe2007-08 Tanzania National Sample Census of Agriculture, Tanzania saw a totalproductionof18,866tonsoftomatoes,contributingthemost(26%)tothefruitand vegetable sector of the market. However, between 20-50% of tomatoesharvestedarewastedduetoinadequatestorageandtransportationtechniques.Refrigerationistheidealsolutiontoelongatetheshelf-lifeofproduce,specificallytomatoes.However,only7%oftheruralpopulationiselectrifiedwithavariableelectricsource,leavingmostfarmerstoturntoalternative,lesseffectivestoragemethods.Wehaveaddressedthisproblemwiththeconstructionofacoldroomdesigned with appropriate materials, utilizing both active and passive coolingtechniques.

Misc. 2RemotelyAccessibleInstrumentsforNanotechnology(RAIN)Network

R.Ehrmann

ThePennStateCenterforNanotechnologyEducationandUtilization(CNEU)hasestablished the Remotely Accessible Instruments for Nanotechnology (RAIN)Network. This growing group currently consists of 10 Universities, sevencommunitycolleges,andonesecondaryschooldistrictwhicharenowprovidingeffectual outreach and education activities via distance technology. A RAINsession allows students the ability to access and control characterizationequipment, like field emission scanning electron microscopes (FESEM), andanalytical tools, suchasenergydispersivespectroscopy (EDS), to lookatnano-sized materials from the ease of classrooms all across the country. Studentscontrol the tools over the internet in real-time and with the assistance of anexperiencedexpertadvisingovervideoconferencingsoftware.

Misc. 3PowerElectronics:EfficientEnergyConversionSolidStateSwitches/WideBand-gapSemiconductorMaterialsS.A.Suliman

Power electronics aim at efficient energy conversion and regulation. Powersemiconductor devices, PSDs, are at the heart of power electronics, enablingadvanced distributed switch-mode power-supplies and increasingly replacingtraditionaldevices.Likemostsolid-statedevices,PSDsareusedforrectification,amplification, and switching, with the major difference being handling highcurrents,highvoltages,andtypicallyoperatinginhigh-temperatureenvironment.PSD applications range from hand-held devices to traction to high-voltage DCtransmission.AspecialclassofPSDistheMOS-controlleddevice.Thesedevices

87

areadvantageousintermsoftheirsimplevoltagecontrol,highinputimpedance,andthermalstabilities.ThesiliconMOS-controlledpowerdevicesarethemetaloxide semiconductor field effect transistor, MOSFETS, insulated gate bipolarjunctiontransistor,IGBT,andThyristor,dominatingthelowvoltage,intermediatevoltageandhighvoltagerangesrespectively.Thelatestindeviceevolutionoflowvoltage MOS-PSDs is the vertical U-shaped trench–gated MOSFET, UMOSFET,introducedin1998byFairchildSemiInc.andintensivelyresearchedatPennState.Asaswitch,ithandleshighcurrentintheON-state,andhighblockingvoltageinthe OFF-state. On one hand, the ON-state vertical current is tailored by thenumberofsourcesat topandflowstoacommondrainat thebottom.Ontheother,theblockingvoltageisachievedthroughavalanchebreakdownatthep-njunctionregionknownasthedriftregion.Thewidthofdriftregion isvariedtotailortheblockingvoltagevalue.Onthefabricationside,thetrench-gatedregionis formed by reactive ion etching of crystalline silicon wafer that result inbombardmentdamageattheSi/SiO2interface.Electricalstressesareappliedthatmimicslong-termdeviceperformance.Studiesofpre-andpost-hotcarrierandFowler-Nordheim electrical stresses are applied, in addition to trench physicalparametersvariation.Moreover,then-UMOSFET,underpostpackagingexhibitsNegativeBiasThermalInstabilities,NBTI.Thelatterbehavioristypicalofdigitalp-MOSFET.Uponcloserscrutiny,aparasiticP-MOSFETisindeedembeddedinthestructureoftheoptimizedn-MOSFET.TheengineeringscienceoftheUMOSFETenablesthecontrolledperformance,andistodayisthedeviceofchoicefortheMOS-regions within the IGBTs and Thyristors intermediate and high voltagedomaindevices.Ostensibly,forsiliconpowerdevicesanumberofresearchissuesremain.On theotherhand,wideband-gapsemiconductormaterialswith theirhighoperatingtemperature,criticalelectricfield,thermalconductivitiesaretheprimematerialsforpowerPSDs.Wideband-gapmaterialsledtoadvancementsintermsoflowcost,size,weight,andhighenergydensityforPSDs.Finally,asaconsequenceofthehighperformancedemandfortheseengineering-featdevices,thearchitectureiscomplexandreliabilityisthemainresearchthrust.

88

NOTES

89

NOTES

90

NOTES

91

NOTES

92

NOTES

This publication is available in alternative media on request.The Pennsylvania State University is committed to affirmative action, equal opportunity, and the diversity of its workforce. U.Ed. RES 00-00.

Thank you

SPONSORS

Keynote Reception

Breakout Session:Electronics and Photonics on the Horizon

Breakout Session:2D Materials