33
Materials Characterization at the 3 MV Tandetron Accelerator and at the 9 MV Tandem Accelerator

Materials Characterization at the 3 MV Tandetron Accelerator and at the 9 MV Tandem Accelerator

  • Upload
    kelii

  • View
    47

  • Download
    0

Embed Size (px)

DESCRIPTION

Materials Characterization at the 3 MV Tandetron Accelerator and at the 9 MV Tandem Accelerator. ERDA, RBS, NRBS RBS/C F. Negoita, P. Ionescu, N. Scintee, G. Velisa, H. Petrascu, Cristina Roxana Nita, D. Pantelica. (1). (2) For M 2

Citation preview

Page 1: Materials Characterization at the 3 MV  Tandetron  Accelerator and at the 9 MV Tandem Accelerator

Materials Characterization at the 3 MV Tandetron Accelerator

and at the 9 MV Tandem Accelerator

Page 2: Materials Characterization at the 3 MV  Tandetron  Accelerator and at the 9 MV Tandem Accelerator

ERDA, RBS, NRBSRBS/CF. Negoita, P. Ionescu, N. Scintee, G. Velisa, H. Petrascu, Cristina Roxana Nita, D. Pantelica

Page 3: Materials Characterization at the 3 MV  Tandetron  Accelerator and at the 9 MV Tandem Accelerator

1

2

3

4

5

6 7

8 9 10 11

13

1 - Window 2 - Cathode 3 - Frish Grid 4 - Anode 5 - Teflon Insulator 6 - Si Detector 7 - Getter Space 8 - Anode HV 9 - Grid HV10 - Si Det HV11 - Vacuum and Gas Fill-in Outlet12 - Metallic Mesh13 - Chamber Support

12

Page 4: Materials Characterization at the 3 MV  Tandetron  Accelerator and at the 9 MV Tandem Accelerator

OUTCH.1

BIAS

TEST

+12V

-12VGND

L1

L2

1pF500V

1 2

34

56

789

10

CS AMP-3

2pF2kV

0.012kV

0.012kV

OUTCH.2

1pF500V

1 2

34

56

789

10

CS AMP-3

2pF2kV

0.012kV

Input fromanode

Page 5: Materials Characterization at the 3 MV  Tandetron  Accelerator and at the 9 MV Tandem Accelerator
Page 6: Materials Characterization at the 3 MV  Tandetron  Accelerator and at the 9 MV Tandem Accelerator
Page 7: Materials Characterization at the 3 MV  Tandetron  Accelerator and at the 9 MV Tandem Accelerator
Page 8: Materials Characterization at the 3 MV  Tandetron  Accelerator and at the 9 MV Tandem Accelerator
Page 9: Materials Characterization at the 3 MV  Tandetron  Accelerator and at the 9 MV Tandem Accelerator
Page 10: Materials Characterization at the 3 MV  Tandetron  Accelerator and at the 9 MV Tandem Accelerator
Page 11: Materials Characterization at the 3 MV  Tandetron  Accelerator and at the 9 MV Tandem Accelerator
Page 12: Materials Characterization at the 3 MV  Tandetron  Accelerator and at the 9 MV Tandem Accelerator
Page 13: Materials Characterization at the 3 MV  Tandetron  Accelerator and at the 9 MV Tandem Accelerator

Energy (keV)400 500 600 700 800 900 1000

Nor

mal

ized

Yie

ld

0

20

40

60

80

100

120

140

Ar (x10)

axis, virginaxis, Ar-irradiatedaxis, He-irradiatedrandom, Ar-irradiated

Al

Mg

O

C

Page 14: Materials Characterization at the 3 MV  Tandetron  Accelerator and at the 9 MV Tandem Accelerator

Ar

Depth (nm)0 100 200 300 400

Acc

umul

ated

dam

age

0.0

0.2

0.4

0.6

0.8

1.0

He

0 100 200 300 4000

2

4

6

8

10

12

He

0 100 200 300 4000.0

0.2

0.4

0.6

0.8

1.0

Ar

Depth (nm)0 100 200 300 400

Con

cent

ratio

n (a

t.%)

0.0

0.5

1.0

1.5

Page 15: Materials Characterization at the 3 MV  Tandetron  Accelerator and at the 9 MV Tandem Accelerator
Page 16: Materials Characterization at the 3 MV  Tandetron  Accelerator and at the 9 MV Tandem Accelerator
Page 17: Materials Characterization at the 3 MV  Tandetron  Accelerator and at the 9 MV Tandem Accelerator

a) b)

Fig 3. RBS spectra of the specimen 1, measured with: a) a 4He beam (E = 3.065 MeV);

b) a 10B beam (E = 8 MeV)

Page 18: Materials Characterization at the 3 MV  Tandetron  Accelerator and at the 9 MV Tandem Accelerator

In Fig. 3a a NRA spectrum of the specimen 1, measured with a 4He beam

(E = 3.065 MeV) is presented.

An enhanced O peak at channel 160 is due to the oxygen contained in the PZT

film. The result of a simulation using the RUMP code is presented with

continuous line. The simulated and experimental curves show good agreement.

The compositions and thicknesses of layers found in specimen 1 are the

following:

- PZT layer (composition: Pb0.78Zr0.25Ti0.50O3; thickness: 1340 at/cm2)

- interfacial layer 1 (composition: Ti0.02O0.1Pt0.5; thickness: 870 at/cm2)

- interfacial layer 2 (composition: TiO2; thickness: 45 at/cm2)

- interfacial layer 3 (composition: SiO2; thickness: 3850 at/cm2)

Page 19: Materials Characterization at the 3 MV  Tandetron  Accelerator and at the 9 MV Tandem Accelerator
Page 20: Materials Characterization at the 3 MV  Tandetron  Accelerator and at the 9 MV Tandem Accelerator

Activitatea de caracterizare a straturilor subtiri utilizind metode IBA s-a concretizat atit in participari la proiecte PNCDI cat si in participari la colaborari internationale:

• Contract CERES 88 “Cercetari interdisciplinare folosind fascicule de particule accelerate” Responsabil proiect: Dr. Dan Pantelica;

• Colaborare cu INCDFM, subcontract CERES 10/2001 “Caracterizarea microstructurala avansata si prepararea unor straturi feroelectrice PZT cu orientari cristalografice selectate” Responsabil proiect din partea IFIN-HH: Dr Dan Pantelica;

• Colaborare cu INCDFM, subcontract CERES 8/2001 “Structuri cuantice semiconductoare” Responsabil proiect din partea IFIN-HH: Dr.Dan Pantelica;

• Colaborare cu INCDFM, subcontract CERES 15/2001 “Efecte cuantice de interfata in nanostructuri metal/C60” Responsabil proiect din partea IFIN-HH: Dr. Dan Pantelica;

• Colaborarea 02-32 cu CSNSM-Orsay (Franta) “Characterization of nuclear ceramics using Ion Beam Analysis Techniques”;

• WP8 „Characterization of surface layers of materials using RBS and ERDA techniques” in cadrul Centrului de Excelenta IDRANAP al EU (FP5).

Page 21: Materials Characterization at the 3 MV  Tandetron  Accelerator and at the 9 MV Tandem Accelerator

Lucrari recente, contributii la conferinte:

1. M.Balaceanu, E.Grigore, F.Truica-Marasescu, D.Pantelica, F.Negoita, G.Pavelescu, F.Ionescu, Deposition of amorphous hydrogenated carbon nitride films by hollow cathode discharge process, Romanian Reports in Physics, Vol.51, Nos.7-8-9-10, P. 781–788, 1999.

2. M.Balaceanu,E.Grigore, F.Truica-Marasescu, D.Pantelica, F.Negoita, G.Pavelescu, F.Ionescu, Characterization of carbon nitride films deposited by hollow cathode discharge process. Prezentata la IBA–14 International Conference on Ion Beam Analysis, 26–30 Iulie 1999 Dresden, Germany. Nucl. Instrum. and Meth. in Physics Research B161–163 (2000) 1002–1006. 3. A. Crunteanu, M.Charbonnier, M.Romand, F.Vasiliu, D.Pantelica, F.Negoita, R..Alexandrescu, Synthesis and characterization of carbon nitride thin films obtained by laser induced chemical vapor deposition. Prezentata la E-MRS (European-Materials Research Society) 1999 Spring Meeting Strasbourg, France, June 1-4, 1999. Surface and Coating Technology 125 (2000) 301–307.

4. A. Crunteanu,M.Charbonnier,M.Romand,J.Mugnier,R.Alexandrescu,F.Negoita, D.Pantelica, Structural and vibrational characterization of hydrogenated carbon nitride thin films obtained by laser–induced CVD. Prezentata la E-MRS (European-Materials Research Society) 2000 Conference, Strasbourg, France, May 31-June 2, 2000 Applied Surface Science 6422 (2000) 1– 4.

Page 22: Materials Characterization at the 3 MV  Tandetron  Accelerator and at the 9 MV Tandem Accelerator

5. R.V.Ghita, D.Pantelica, F.Negoita, S.Lazanu Characterization of anodic oxide for GaAs based laser diodes, Prezentata la ROMOPTO 2000: Sixth Conference on Optics, Bucharest, Romania, September 4-7, 2000 Proceedings of SPIE 4430,736 (2001).

6. A.Goldemblum, V.Teodorescu, F.Wagner, R.Manaila, G.Filoti, J.Deville, D.Pantelica, F.Negoita, A.Belu-Marian, N.Scintee, Structural properties of sputtered ZnO: Au films, Philosophical Magazine A82,193(2002).

7. M.F.Lazarescu, D.Pantelica, A.S.Manea, R.V.Ghita, F.Negoita Investigation of semi-insulating oxygen-doped GaAs, Prezentata la Thirteenth International Conference on Crystal Growth (ICCG-13) in conjunction with The Eleventh International Conference on Vapor Growth and Epitaxy (ICVGE-11), Doshisha University, Kyoto, Japan, 30 July-4 August, 2001 Journal of Crystal Growth 240,401 (2002).

8. E.A.Preoteasa, C.Ciortea, B.Constantinescu, D.Fluerasu, S.-E.Enescu, D.Pantelica, F.Negoita, E.Preoteasa Analysis of composites for restorative dentistry by PIXE, XRF and ERDA, Prezentata la The Ninth International Conference on Particle-Induced X-ray Emission (PIXE) and its Analytical Applications, Guelph, Canada, June 8-12, 2001 Nuclear Instruments and Methods in Physics Research B 189,426(2002).

9. L.E.Dinca, L.Gheorghe, A.Lupei, D.Pantelica, N.Scintee Growth, RBS-ERDA characterization and modelling in Nd3+-doped calcium-lithium-niobium- gallium garnett (CLNGG:Nd) crystal, Nuclear Instruments and Methods in Physics Research A 486, 93 (2002).

Page 23: Materials Characterization at the 3 MV  Tandetron  Accelerator and at the 9 MV Tandem Accelerator

10. M.Balaceanu, M.Braic, D.Macovei, M.J.Genet, A.Manea, D.Pantelica, V.Braic, F.Negoita Properties of titanium based hard coatings deposited by cathodic arc method Journal of Optoelectronics and Advanced Materials, 4,107 (2002).

11. D.Pantelica, L.Thomé, S.E.Enescu, F.Negoita, P.Ionescu, I.Stefan, A.Gentils Ion beam characterization of He implanted into nuclear matrices Prezentata la IBA 16, Albuquerque, New Mexico, USA, June 29-July 4, 2003 Nucl. Instr. and Meth., B219-220, 373 (2004).

12. D.Pantelica, F.Vasiliu, P.Ionescu, F.Negoita RBS, ERDA, TEM and SAED characterisation of sol-gel PZT films Prezentata la ECAART8 Conference 20-24 September2004, Paris, France Acceptata spre publicare in Nucl. Instr. and Methods in Phys. Res. B.

13. D.Pantelica, P.Ionescu, F.Negoita, N.Scintee, L.Thome, S.Enescu, J.Jagielski Complementary use of ERDA and RBS/C for the determination of implanted atom and damage distribution in spinel. Prezentata la ECAART8 Conference 20-24 September 2004, Paris, France Acceptata spre publicare in Nucl. Instr. and Methods in Phys. Res. B.

14. D. Pantelica, M. Petrascu, F. Negoita, N. Scintee, H. Petrascu, A. Isbasescu, I. Stefan, P. Ionescu Characterization of CNx and CNx:H thin layers using ERDA with heavy ions Proceedings of the International Conference on Applications of High Precision Atomic and Nuclear Methods, Neptun, Romania, 2-6 September 2002.

15. E. A. Preoteasa, C. Ciortea, D. Fluerasu, D. Pantelica, F. Negoita, L. Haragus, A. Iordan, E. Preoteasa, M. Moldovan PIXE and ERDA analysis of composites for restorative dentistry Proceedings of the International Conference on Applications of High Precision Atomic and Nuclear Methods, Neptun, Romania, 2-6 September 2002.

Page 24: Materials Characterization at the 3 MV  Tandetron  Accelerator and at the 9 MV Tandem Accelerator

Energy calibration. Comparison method.

1670

4He+ +C

Au

Si

D

bNaEKE CCC

bNaEKE AuAuAu

bNaE

fB 2103487.2

222 21

Mc

E

fZ

MEK

Page 25: Materials Characterization at the 3 MV  Tandetron  Accelerator and at the 9 MV Tandem Accelerator

Simulation of the experimental spectrum (previous measurements: January 2010)

Page 26: Materials Characterization at the 3 MV  Tandetron  Accelerator and at the 9 MV Tandem Accelerator

K=27.742 ± 0.004 keV·amu/e2·MHz2

The calibration constant obtained from previous measurements

January 2010 and March 2011July 1975-May 1976; December 1999(*)January 2010; March 2011

* K=27.720 ± 0.003 keV·amu/e2·MHz2

Page 27: Materials Characterization at the 3 MV  Tandetron  Accelerator and at the 9 MV Tandem Accelerator

Growth and characterisation of SrCuO2 thin films

C. N. Mihailescu1,3

D. Pantelica4, H.Petrascu4, P. Ionescu4, Cristina Roxana Nita4

I. Athanasopoulos1, R. Saint-Martin2, A. Revcolevschi2, J. Giapintzakis1

1 Department of Mechanical and Manufacturing Engineering, University of Cyprus,75 Kallipoleos Av., PO Box 20537, 1678 Nicosia, Cyprus

2 LPCES - ICMMO - Bât 410, Université Paris-Sud XI, 15 Georges Clémenceau St.,91405 Orsay Cedex, France

3 National Institute for Lasers, Plasma and Radiation Physics, Lasers Department

4 Horia Hulubei National Institute for Research and Development in Physics and Nuclear Engineering

Page 28: Materials Characterization at the 3 MV  Tandetron  Accelerator and at the 9 MV Tandem Accelerator

Transition metal oxides (TMOs) exhibit a rich variety of novel properties, which can be exploited for a wide range of applications including ultra-high-density magnetic data storage, spintronics, quantum computing and more recently thermal management applications. Thin films of TMOs offer enormous opportunities to explore intriguing physics and also practical applications. The discovery of high Tc superconductivity in cuprates has increased in recent years the interest for low-dimensional Heisenberg magnetic systems.

Among these, the compound SrCuO2 (SCO) has drawn much attention. SCO in the orthorhombic structure, consisting of zigzag chains of Cu2+ ions, has been recently shown to exhibit sizeable magnetic heat transport; while SCO in the tetragonal structure exhibits the simplest structure with superconducting CuO2 planes (so called infinite layer compound).

Depending on the phase and the orientation, SCO can then be used for different applications. While it has been possible to obtain bulk SCO only in the orthorhombic structure, in the thin film form this compound has only been stabilized in the tetragonal structure.

Page 29: Materials Characterization at the 3 MV  Tandetron  Accelerator and at the 9 MV Tandem Accelerator

SrCuO2 (SCO) thin films were grown on (100) SrTiO3 and (100) MgO substrates. SrTiO3 substrates were treated with BHF etching to obtain a clean surface with TiO2termination layer.

Orthorhombic Structure

Tetragonal Structure

Page 30: Materials Characterization at the 3 MV  Tandetron  Accelerator and at the 9 MV Tandem Accelerator

Letter of Intentfor

Using the 3 MV and 9MV TandemsApril 14, 2012

It is proposed to study the elemental composition depth profile, thickness and lattice defects inthin films of novel materials by ion beam techniques such as Rutherford BackscatteringSpectroscopy (RBS), Elastic Recoil Detection Analysis (ERDA), Nuclear Reaction Analysis(NRA) and Proton Induced X-ray Emission (PIXE), taking advantage of both the existing 9MVTandem and the new 3MV Tandem facilities present at the Horia Hulubei National Institute ofPhysics and Nuclear Engineering. The materials include mainly oxides such as LiCoO2, SrCuO2,

La5Ca9Cu24O41, VO2 etc.

Ioannis Giapintzakis, ProfessorDirector of Nanotechnology Research Unit

Department of Mechanical & Manufacturing EngineeringSchool of EngineeringUniversity of Cyprus75 Kallipoleos Av., PO Box 205371678 Nicosia, Cyprus

E-mail: [email protected].: +357 22892283Fax: +357 22895381

Page 31: Materials Characterization at the 3 MV  Tandetron  Accelerator and at the 9 MV Tandem Accelerator

Letters of Intent INCDFM-Tandem Accelerators

Corneliu Ghica (lab. 50)

Comparison between quantitative analysis results obtained by analytical techniques in our laboratory (e.g. EDS, EELS) and complementary Ion Beam Analysis techniques:

-thin films (mono- or multilayers) and nanopowders with low doping (<1%) or containing low atomic number Z (Z<11) elements;

- concentration profiles in the case of thin films.

Sergiu Nistor ( lab. 50)

Ion beam analysis on:

-ultrapure Si single crystal (FZ-floating zone) (platelets 20 x 20 x 0.3 mm3 - orientation <100>) implanted with ions 13C and 17O;

- cubic boron nitride single crystals (0.4 x 0.4 x 0.2 mm3) for detection of the presence and concentration of natural impurities (Ca, Ba, Si, C) by microPIXE si PIGE techniques.

Ion implantation of transition group elements (iron and rare earths) in single crystals and thin films pf boron nitride (cubic and/or hexagonal).

Page 32: Materials Characterization at the 3 MV  Tandetron  Accelerator and at the 9 MV Tandem Accelerator

Letters of Intent INCDFM-Tandem Accelerators

Ovidiu Crisan, (lab. 20) Florin Vasiliu

Ion beam analysis for estimation of nitrogen and boron content in melt spun ribbons (system FePtNbB).

Cristian M. Teodorescu (lab. 50)

Ion beam analysis of metals deposited on semiconductor wafers at high temperature.

Metal: Mn, Fe, Co, Co, Cu, Sm, Gd.

Semiconductor: Si(001), Si(111), Ge(001), Ge(111), GaAs(001), rutile TiO2(011).

Quantity deposited: 2-200 nm of equivalent bulk metal. Expected concentrations: 5-50 %.

Aim of the study: identification of interface alloys with ferromagnetic properties.

Complementary method for composition and concentration profile validation: XPS/AES with depth profiling.

Other studies: electron diffraction (LEED, RHEED), angle-resolved ultraviolet photoelectron spectroscopy (ARUPS), yielding experimental band structure, spin-resolved UPS, MOKE, SQUID (collaboration with Lab. 20), STM, HRTEM (collaboration with Lab. 50).

Page 33: Materials Characterization at the 3 MV  Tandetron  Accelerator and at the 9 MV Tandem Accelerator