24
Bibliography [1] F. Ren, J. Zhang, T. He, C. Lin, and S. Ren, “EBRP: Energy-balanced routing pro- tocol for data gathering in wireless sensor networks,” Parallel and Distributed Sys- tems, IEEE Transactions on, vol. 22, no. 12, pp. 2108 –2125, Dec. 2011. [2] A. Wheeler, “Commercial applications of wireless sensor networks using Zigbee,” Communications Magazine, IEEE, vol. 45, no. 4, pp. 70 –77, Apr. 2007. [3] S. Roundy, D. Steingart, L. Frechette, P. Wright, and J. Rabaey, “Power sources for wireless sensor networks,” in Wireless Sensor Networks, ser. Lecture Notes in Computer Science, H. Karl, A. Wolisz, and A. Willig, Eds., vol. 2920. Springer Berlin Heidelberg, 2004, pp. 1–17. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-24606-0 1 [4] J. Li and G. Al-Regib, “Distributed estimation in energy-constrained wireless sensor networks.” IEEE Transactions on Signal Processing, vol. 57, no. 10, pp. 3746–3758, 2009. [Online]. Available: http://dblp.uni-trier.de/db/journals/tsp/ tsp57.html#LiA09a [5] G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella, “Energy Conservation in Wireless Sensor Networks: A Survey,” Ad Hoc Netw., vol. 7, no. 3, pp. 537–568, May 2009. [Online]. Available: http://dx.doi.org/10.1016/j.adhoc.2008.06.003 [6] A. Manjeshwar and D. P. Agrawal, “TEEN: A routing protocol for enhanced efficiency in wireless sensor networks,” in Proceedings of the 15th International Parallel & Distributed Processing Symposium, ser. IPDPS ’01. Washington, 91

Masters Dissertation - J. Doe

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Masters Dissertation - J. Doe

Bibliography

[1] F. Ren, J. Zhang, T. He, C. Lin, and S. Ren, “EBRP: Energy-balanced routing pro-

tocol for data gathering in wireless sensor networks,” Parallel and Distributed Sys-

tems, IEEE Transactions on, vol. 22, no. 12, pp. 2108 –2125, Dec. 2011.

[2] A. Wheeler, “Commercial applications of wireless sensor networks using Zigbee,”

Communications Magazine, IEEE, vol. 45, no. 4, pp. 70 –77, Apr. 2007.

[3] S. Roundy, D. Steingart, L. Frechette, P. Wright, and J. Rabaey, “Power

sources for wireless sensor networks,” in Wireless Sensor Networks, ser. Lecture

Notes in Computer Science, H. Karl, A. Wolisz, and A. Willig, Eds.,

vol. 2920. Springer Berlin Heidelberg, 2004, pp. 1–17. [Online]. Available:

http://dx.doi.org/10.1007/978-3-540-24606-0 1

[4] J. Li and G. Al-Regib, “Distributed estimation in energy-constrained wireless

sensor networks.” IEEE Transactions on Signal Processing, vol. 57, no. 10, pp.

3746–3758, 2009. [Online]. Available: http://dblp.uni-trier.de/db/journals/tsp/

tsp57.html#LiA09a

[5] G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella, “Energy Conservation

in Wireless Sensor Networks: A Survey,” Ad Hoc Netw., vol. 7, no. 3, pp. 537–568,

May 2009. [Online]. Available: http://dx.doi.org/10.1016/j.adhoc.2008.06.003

[6] A. Manjeshwar and D. P. Agrawal, “TEEN: A routing protocol for enhanced

efficiency in wireless sensor networks,” in Proceedings of the 15th International

Parallel & Distributed Processing Symposium, ser. IPDPS ’01. Washington,

91

Page 2: Masters Dissertation - J. Doe

DC, USA: IEEE Computer Society, 2001, pp. 189–. [Online]. Available:

http://dl.acm.org/citation.cfm?id=645609.663269

[7] D. Pediaditakis, S. H. Mohajerani, and T. Boulis, “Poster abstract: Castalia: the dif-

ference of accurate simulation in WSN,” The 4th European conference on Wireless

Sensor Networks, (EWSN 2007), Delft/The Netherlands, Jan. 2007.

[8] H. N. Pham, D. Pediaditakis, and A. Boulis, “From simulation to real deployments

in WSN and back,” in World of Wireless, Mobile and Multimedia Networks, 2007.

WoWMoM 2007. IEEE International Symposium on a, 2007, pp. 1–6.

[9] P. Hurni and T. Braun, “Calibrating wireless sensor network simulation

models with real-world experiments.” in Networking, ser. Lecture Notes in

Computer Science, L. Fratta, H. Schulzrinne, Y. Takahashi, and O. Spaniol,

Eds., vol. 5550. Springer, 2009, pp. 1–13. [Online]. Available: http:

//dblp.uni-trier.de/db/conf/networking/networking2009.html#HurniB09

[10] C. Newport, D. Kotz, Y. Yuan, R. S. Gray, J. Liu, and C. Elliott, “Experimental

evaluation of wireless simulation assumptions.” ACM Press, 2004, pp. 78–82.

[11] M. Ferreira, “Testbed implementation of QoS routing enhancements for wireless

ad hoc networks,” Master’s thesis, North-West University, 2009.

[12] J. A. Stankovic, “Wireless sensor networks,” Computer, vol. 41, pp. 92–95, 2008.

[13] A. Boukerche, M. Ahmad, B. Turgut, and D. Turgut, “A taxonomy of Routing Pro-

tocols in Sensor Networks,” in Algorithms and Protocols for Wireless Sensor Networks,

A. Boukerche, Ed. Wiley, 2008, ch. 6, pp. 129–160.

[14] T. Watteyne, A. Molinaro, M. Richichi, and M. Dohler, “From MANET to IETF

ROLL standardization: A paradigm shift in WSN routing protocols,” Communica-

tions Surveys Tutorials, IEEE, vol. 13, no. 4, pp. 688–707, 2011.

[15] H. Zimmermann, “OSI reference model–the ISO model of architecture for open

systems interconnection,” Communications, IEEE Transactions on, vol. 28, no. 4, pp.

425 – 432, Apr 1980.

92

Page 3: Masters Dissertation - J. Doe

[16] B. A. Forouzan, Data Communications and Networking, 3rd ed. New York, NY,

USA: McGraw-Hill, Inc., 2003.

[17] “IEEE standard for information technology - telecommunications and informa-

tion exchange between systems - local and metropolitan area networks specific

requirements part 15.4: Wireless medium access control (MAC) and physical layer

(PHY) specifications for low-rate wireless personal area networks (LR-WPANs),”

IEEE Std 802.15.4-2003, pp. 1–670, 2003.

[18] Y. Yang, “Microchip Wireless Media Access Controller (MiMAC) - Application

Note,” Microchip Technology Inc.

[19] Z. Alliance, ZigBee specification, Std., Jun. 2005.

[20] D. Goyal and M. Tripathy, “Routing protocols in wireless sensor networks: A

survey,” in Advanced Computing Communication Technologies (ACCT), 2012 Second

International Conference on, Jan. 2012, pp. 474 –480.

[21] J. Moy, “OSPF version 2,” RFC 2328, 1998. [Online]. Available: www.ietf.org/rfc/

rfc2328.txt

[22] T. Clausen and P. Jacquet, “Optimized Link State Routing Protocol (OLSR),” RFC

3626 (Experimental), Internet Engineering Task Force, October 2003. [Online].

Available: http://www.ietf.org/rfc/rfc3626.txt

[23] C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distance vector routing,” in

IEEE WORKSHOP ON MOBILE COMPUTING SYSTEMS AND APPLICATIONS,

1999, pp. 90–100.

[24] A. Bhatia and P. Kaushik, “A cluster based minimum battery cost AODV rout-

ing using multipath route for zigbee,” in Networks, 2008. ICON 2008. 16th IEEE

International Conference on, Dec. 2008, pp. 1 –7.

[25] M. Haneef and Z. Deng, “Comparative analysis of classical routing protocol

(LEACH) and its updated variants that improved network life time by addressing

93

Page 4: Masters Dissertation - J. Doe

shortcomings in wireless sensor network,” in Mobile Ad-hoc and Sensor Networks

(MSN), 2011 Seventh International Conference on, Dec. 2011, pp. 361 –363.

[26] M. Tekaya, N. Tabbane, and S. Tabbane, “Comparison of MTPR, AODVM and

DRE-AOMDV routing protocols with energy constraint,” in Mobile IT Convergence

(ICMIC), 2011 International Conference on, Sept. 2011, pp. 5 –8.

[27] C.-K. Toh, H. Cobb, and D. Scott, “Performance evaluation of battery-life-aware

routing schemes for wireless ad hoc networks,” in Communications, 2001. ICC 2001.

IEEE International Conference on, vol. 9, 2001, pp. 2824 –2829 vol.9.

[28] H.-C. Wang and Y.-H. Wang, “Energy-efficient routing algorithms for wireless ad-

hoc networks,” in Personal, Indoor and Mobile Radio Communications, 2007. PIMRC

2007. IEEE 18th International Symposium on, Sept. 2007, pp. 1 –5.

[29] J. Zhu and X. Wang, “Model and protocol for energy-efficient routing over mobile

ad hoc networks,” IEEE Transactions on Mobile Computing, vol. 10, no. 11, pp. 1546–

1557, 2011.

[30] D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris, “A High-Throughput Path

Metric for Multi-Hop Wireless Routing,” 2003.

[31] H. Hellbrck, M. Pagel, A. Krller, D. Bimschas, D. Pfisterer, and S. Fischer, “Using

and operating wireless sensor network testbeds with WISEBED.” in Med-Hoc-Net.

IEEE, 2011, pp. 171–178.

[32] TWIST: a scalable and reconfigurable testbed for wireless indoor experiments with sensor

networks, ser. REALMAN ’06. New York, NY, USA: ACM, 2006. [Online].

Available: http://doi.acm.org/10.1145/1132983.1132995

[33] L. P. Steyn and G. Hancke, “A survey of wireless sensor network testbeds,” in

AFRICON, 2011, 2011, pp. 1–6.

[34] C. des Roziers, G. Chelius, T. Ducrocq, E. Fleury, A. Fraboulet, A. Gallais, N. Mit-

ton, T. Noel, E. Valentin, and J. Vandaele, “Two demos using SensLAB: Very large

94

Page 5: Masters Dissertation - J. Doe

scale open WSN testbed,” in Distributed Computing in Sensor Systems and Workshops

(DCOSS), 2011 International Conference on, 2011, pp. 1–2.

[35] P. Ballal, V. Giordano, P. Dang, S. Gorthi, J. Mireles, and F. Lewis, “A LabVIEW

based test-bed with off-the-shelf components for research in mobile sensor net-

works,” in Computer Aided Control System Design, 2006 IEEE International Confer-

ence on Control Applications, 2006 IEEE International Symposium on Intelligent Con-

trol, 2006 IEEE, 2006, pp. 112–118.

[36] A. Achtzehn, E. Meshkova, J. Ansari, and P. Mahonen, “MoteMaster: A Scalable

Sensor Network Testbed for Rapid Protocol Performance Evaluation,” in Sensor,

Mesh and Ad Hoc Communications and Networks Workshops, 2009. SECON Workshops

’09. 6th Annual IEEE Communications Society Conference on, 2009, pp. 1–3.

[37] W. Huangfu, L. Sun, and J. Liu, “A high-accuracy nonintrusive networking

testbed for wireless sensor networks,” EURASIP J. Wirel. Commun. Netw., vol.

2010, pp. 2:1–2:15, Feb. 2010. [Online]. Available: http://dx.doi.org/10.1155/

2010/642531

[38] X. Jiang, P. Dutta, D. Culler, and I. Stoica, “Micro power meter for energy

monitoring of wireless sensor networks at scale,” in Proceedings of the 6th

International Conference on Information Processing in Sensor Networks, ser. IPSN

’07. New York, NY, USA: ACM, 2007, pp. 186–195. [Online]. Available:

http://doi.acm.org/10.1145/1236360.1236386

[39] J.-P. Sheu, C.-C. Chang, and W.-S. Yang, “A distributed wireless sensor network

testbed with energy consumption estimation.” IJAHUC, vol. 6, no. 2, pp. 63–74,

2010. [Online]. Available: http://dblp.uni-trier.de/db/journals/ijahuc/ijahuc6.

html#SheuCY10

[40] Tinynode 584 fact sheet v.1.1 25.01.2011 PCA. Shockfish. [Online]. Available:

www.tinynode.com

[41] BTnode datasheet. ETH Zurich. [Online]. Available: www.btnode.ethz.ch

95

Page 6: Masters Dissertation - J. Doe

[42] M. Baar, H. Will, B. Blywis, T. Hillebrandt, A. Liers, G. Wittenburg, and

J. Schiller, “The ScatterWeb MSB-A2 Platform for Wireless Sensor Networks,” no.

TR-B-08-15, 09 2008. [Online]. Available: ftp://ftp.inf.fu-berlin.de/pub/reports/

tr-b-08-15.pdf

[43] TelosB datasheet. Crossbow Technology.Inc . [Online]. Available: www.willow.

co.uk

[44] LOTUS datasheet. Mesmic. [Online]. Available: www.memsic.com

[45] Tmote Sky datasheet. [Online]. Available: www.moteiv.com

[46] MICAz datasheet. Crossbow Technology, Inc. [Online]. Available: www.bullseye.

xbow.com

[47] G-Node G301 whitepaper. SOWNet Technologies. [Online]. Available: www.

sownet.nl/download/G301Web.pdf

[48] SUN Spot technical datasheet. Oracle. [Online]. Available: http://www.

sunspotworld.com/docs/Yellow/eSPOT8ds.pdf

[49] iSense core module 3 datasheet. Coalesenses. [Online]. Available: www.

coalesenses.com

[50] M. Leopold, “Sensor network motes: Portability & performance,” Ph.D. disser-

tation, Department of Computer Science Faculty of Science University of Copen-

hagen, 2007.

[51] TinyOS homepage. [Online]. Available: www.tinyos.net

[52] FreeRTOS Homepage. Real Time Engineers Ltd. [Online]. Available: www.

freertos.org

[53] Microchip, “MCP37833 datasheet,” 2009.

[54] Electromagnetic compatibility and Radio spectrum Matters (ERM); Wideband

transmission systems; Data transmission equipment operating in the 2,4 GHz ISM

96

Page 7: Masters Dissertation - J. Doe

band and using wide band modulation techniques; Harmonized EN covering essential

requirements under article 3.2 of the R&TTE Directive, European Telecommunications

Standards Institute (ETSI) Std. [Online]. Available: http://www.etsi.org/deliver/

etsi en/300300 300399/300328/01.07.01 60/en 300328v010701p.pdf

[55] C. Balanis, Antenna Theory: Analysis and Design, ser. Harper & Row

series in electrical engineering. Wiley, 1982. [Online]. Available: http:

//books.google.co.za/books?id=wARTAAAAMAAJ

[56] H. Huo, Y. Xu, C. Bilen, and H. Zhang, “Coexistence issues of 2.4ghz sensor net-

works with other RF devices at home,” in Sensor Technologies and Applications,

2009. SENSORCOMM ’09. Third International Conference on, 2009, pp. 200–205.

[57] N. Tas, C. Sastry, and Z. Song, “IEEE 802.15.4 throughput analysis under IEEE

802.11 interference,” in International Symposium on Innovations and Real Time Appli-

cations of Distributed Sensor Networks, 2007.

[58] W. S. Wang, R. OKeeffe, N. Wang, M. Hayes, B. OFlynn, and C. OMathuna,

“Practical wireless sensor networks power consumption metrics for building

energy management applications,” University College Cork, Cork, Ireland, 2011.

[Online]. Available: http://hdl.handle.net/10468/557

[59] J. Zhu, C. Qiao, and X. W. 0001, “A comprehensive minimum energy routing

scheme for wireless ad hoc networks.” in INFOCOM, 2004. [Online]. Available:

http://dblp.uni-trier.de/db/conf/infocom/infocom2004.html#ZhuQW04

[60] D. Kim, J. J. G. luna aceves, K. Obraczka, J. carlos Cano, and P. Manzoni, “Power-

aware routing based on the energy drain rate for mobile ad hoc networks,” 2002.

[61] H.-R. Gil, J. Yoo, and J.-W. Lee, “An On-Demand Energy-Efficient Routing

Algorithm for Wireless Ad Hoc Networks.” in Human.Society@Internet 2003, ser.

Lecture Notes in Computer Science, C.-W. Chung, C. kwon Kim, W. Kim, T. W.

Ling, and K. H. Song, Eds., vol. 2713. Springer, 2003, pp. 302–311. [Online].

Available: http://dblp.uni-trier.de/db/conf/human/human2003.html#GilYL03

97

Page 8: Masters Dissertation - J. Doe

[62] A. Misra and S. Banerjee, “MRPC: Maximizing network lifetime for reliable rout-

ing in wireless environments,” 2002.

98

Page 9: Masters Dissertation - J. Doe

Appendix A

Conference Contributions

• J. G. J. Krige, M. J. Grobler and H. Marais “A Test-bed Implementation of Energy

Efficient Wireless Sensor Network Routing Protocols, Southern African Telecommu-

nications and Networks Access Conference (SATNAC), George, South Africa, Sept.

2012.

• J. G. J. Krige, M. J. Grobler and H. Marais “A Novel Energy Consumption As-

certaining Wireless Sensor Network Routing Protocol Test-bed, Southern African

Telecommunications and Networks Access Conference (SATNAC), Stellenbosch, South

Africa, Sept. 2013.

• J. G. J. Krige, M. J. Grobler and H. Marais “A Novel Wireless Sensor Network

Test-bed Sensor Node, IEEE Africon, Port Louis, Mauritius, Sept. 2013.

99

Page 10: Masters Dissertation - J. Doe

Appendix B

Sensor Node Design Schematics

100

Page 11: Masters Dissertation - J. Doe

1 1

2 2

3 3

4 4

DD

CC

BB

AA

Title

Num

berR

evisionSize

A4

Date:

12/11/2013Sheet of

File:C

:\Users\..\C

harger_&_Pow

er_Supply.SchDocDraw

n By:

D2

LE

D0

PG7

VB

AT

9V

DD

1

VSS

5

TH

ER

M8

STA

T1

3

STA

T2

4PR

OG

6

VB

AT

10

VD

D2

U1

MC

P73833-AM

I/UN

GN

D1

VO

UT

2V

IN3

U2

MC

P1700 - 3.0 V1100m

Ah

Battery

470

R1

R1

1

2

3

4

5

6

7

8

9

11

10

J1D C

onnector 9

VIN

4.7K

R5

Rprog

D3

LE

D1

D4

LE

D2

470

R2

R2

470

R3

R3

GN

D

4.7uF

C1

Cap

GN

D

4.7uF

C2

Cap

1uF

C3

Cap

1uF

C4

Cap

VD

D 3.0 V

10K

R4

Res3

GN

D

GN

D

10 K

R7

Rt2

Rprog = 1K

Charge current = 1A

470

R6

Rt1

10 K

R8

NT

C

231

S1

SW-SPD

T

VB

AT

+

Charger &

Power Supply

J.G.J. K

rige

Rprog = 4.7K

Charge current = 212.77m

A

The tem

perature control circuit is available on the PCB

, however it is not im

plemented.

R6 is shorted and the N

TC

is not connected.

S1b

S1bS1c

S1l

Page 12: Masters Dissertation - J. Doe

1 1

2 2

3 3

4 4

DD

CC

BB

AA

Title

Num

berR

evisionSize

A4

Date:

07/10/2013Sheet of

File:C

:\Users\..\A

nalog_Front_End.SchD

ocD

rawn B

y:

5.1 K 1%

R13

Res2

1 K 1%

R14

Res2

5.1:1 ratio for voltage dividerV

oltage channel 540mV

- MA

X 68nF

C7

Cap

33nF

C10

Cap

33nF

C9

Cap

1 2

Y1

4 MH

Z

35pFC

5C

ap

35pF

C6

Cap

RE

SET

#1

DV

DD

2

AV

DD

3

CH

0+4

CH

0-5

CH

1-6

CH

1+7

AG

ND

8

RE

Fin+/out9

RE

Fin-10

DG

ND

11

MD

AT

112

MD

AT

013

DR

#14

OSC

1/CL

KI

15

OSC

216

CS#

17SC

K18

SDO

19

SDI

20

U?

MC

P3911

1K R9

Res2

1K R11

Res2

68nF

C8

Cap

GN

D

GN

D

300mA

- 50ohm

L1

FER

RIT

E B

EA

D

GN

D

GN

D

GN

DG

ND

100nF

C12

Cap

100nF

C13

Cap

GN

D

GN

D

VD

D 3.3 V

PIC - SD

I

PIC - SD

O

PIC I/O

PIC - SC

LK

PIC I/O

reset

100nF

C11

Cap

GN

D

GN

D

VD

D 3.3 V

300 m 1%

R10

Res2

VD

D 3.3 V

SYSTE

M L

OA

D

CH

1 - RA

NG

E +-0.6V

@ 0 G

AIN

300mA

- 150ohm

L2

FER

RIT

E B

EA

D

1 K 1%

R12

Res2

@ 0.25 A

CH

0 input = 0.075VC

H 0 - R

AN

GE

+-0.075V @

8 GA

IN

@ 0.175 A

CH

0 input = 0.075Vfor 430 m

Ohm

for 300 mO

hm

GN

D

PIC - D

R

AV

DD

AV

DD

VD

D 3.3 V

10uF

C14

Cap

Analog Front E

nd

J.G.J. K

rigeSN

AFE

Page 13: Masters Dissertation - J. Doe

1 1

2 2

3 3

4 4

DD

CC

BB

AA

Title

Num

berR

evisionSize

A4

Date:

07/10/2013Sheet of

File:C

:\Users\..\SN

_Main.SchD

ocD

rawn B

y:

PMD

5/RE

51

PMD

6/RE

62

PMD

7/RE

73

PMA

5/SCK

2/CN

8/RG

64

PMA

4/SDI2/C

N9/R

G7

5

PMA

3/SDO

2/CN

10/RG

86

MC

LR

7

PMA

2/SS2/CN

11/RG

98

VSS

9V

DD

10

C1IN

+/AN

5/CN

7/RB

511

C1IN

-/AN

4/CN

6/RB

412

C2IN

+/AN

3/CN

5/RB

313

C2IN

-/AN

2/SS1/CN

4/RB

214

PGC

1/EM

UC

1/VR

EF-/A

N1/C

N3/R

B1

15PG

D1/E

MU

D1/PM

A6/V

RE

F+/AN

0/CN

2/RB

016

PGC

2/EM

UC

2/AN

6/OC

FA/R

B6

17

PGD

2/EM

UD

2/AN

7/RB

718

AV

DD

19A

VSS

20

U2C

TS/C

1OU

T/A

N8/R

B8

21

PMA

7/C2O

UT

/AN

9/RB

922

TM

S/PMA

13/CV

RE

F/AN

10/RB

1023

TD

O/PM

A12/A

N11/R

B11

24

VSS

25V

DD

26

TC

K/PM

A11/A

N12/R

B12

27

TD

I/PMA

10/AN

13/RB

1328

PMA

1/U2R

TS/B

CL

K2/A

N14/R

B14

29

PMA

0/AN

15/OC

FB/C

N12/R

B15

30

PMA

9/U2R

X/SD

A2/C

N17/R

F431

PMA

8/U2T

X/SC

L2/C

N18/R

F532

U1T

X/SD

O1/R

F333

U1R

X/SD

I1/RF2

34

INT0/R

F635

SDA

1/RG

336

SCL

1/RG

237

VD

D38

OSC

1/CL

KI/R

C12

39

OSC

2/CL

KO

/RC

1540

VSS

41

IC1/R

TC

C/IN

T1/R

D8

42

IC2/U

1CTS/IN

T2/R

D9

43IC

3/PMC

S2/INT

3/RD

1044

IC4/PM

CS1/IN

T4/R

D11

45

OC

1/RD

046

SOSC

I/CN

1/RC

1347

SOSC

O/T1C

K/C

N0/R

C14

48

OC

2/RD

149

OC

3/RD

250

PMB

E/O

C4/R

D3

51

PMW

R/O

C5/IC

5/CN

13/RD

452

PMR

D/C

N14/R

D5

53

CN

15/RD

654

CN

16/RD

755

VC

AP/V

DD

CO

RE

56

EN

VR

EG

57

RF0

58

RF1

59

PMD

0/RE

060

PMD

1/RE

161

PMD

2/RE

262

PMD

3/RE

363

PMD

4/RE

464

U?

PIC24FJ128G

A006-I/PT

A0

1

SDA

5A

23

A1

2W

P7

VSS

4

SCL

6

VC

C8

U2

24LC

1025-I/P

GN

D

GN

D

VD

D 3.3 V

100nF

C20

Cap

GN

D1

INT

4

WA

KE

3

SCK

6

SDI

5

RE

SET

2

SDO

7

CS

8

NC

9

VIN

10

GN

D11

GN

D12

U?

MR

F24J40MC

GN

D2

SCL

K4

AL

ER

T3

VD

D1

SDA

5U

?

MC

P9800A0T

-M/O

T

100nF

C21

Cap

4.7 K

R16

Res3

4.7 K

R17

Res3

4.7 K

R18

Res3

4.7 K

R19

Res3

VD

D 3.3 V

GN

D

VD

D 3.3 V

100nF

C26

Cap

100nF

C17

Cap

VD

D 3.3 V

12

32MH

zX

TA

L

12

32.768 kHz

XT

AL

GN

D

22pF

C24

Cap

22pF

C22

Cap

22pF

C23

Cap

100nF

C16

Cap

100nF

C15

Cap

10uF

C19

Cap

22pF

C25

Cap

100nF

C18

Cap

GN

D

123456

P1Header 6

VD

D 3.3 V

MC

P3911 SDO

MC

P3911 SDI

MC

P3911 SCK

SM SD

OSM

SDI

SM SC

K

RX

TX

221

R22

Res3

221

R23

Res3

MC

P3911 CS

MC

P3911 RST

U2- T

XU

2 - RX

RE

MA

PPED

UA

RT

2

PRO

GR

AM

ME

R

300mA

- 50ohm

L3

FER

RIT

E B

EA

D

1

2

3

4

5

6

7

8

9

11

10

J1D C

onnector 9

U2 - R

X

U2 - T

X

LE

D6

221

R20

Res3

LE

D7

221

R21

Res3

STA

TU

S1ST

AT

US2

STA

TU

S1

STA

TU

S2

TX

/RX

LE

DS

6.8K

R24

Res3

10K

R25

Res3

GN

D

VB

AT

+

MC

P3911 DR

MC

P3911 SDI

MC

P3911 SDO

MC

P3911 SCK

VB

AT

ME

ASU

RE

ME

NT

GN

D

GN

D

GN

D

1 K

R26

Res3

SM U

AR

T R

XSM

UA

RT

TX

SM I/O

SM I/O

MC

LR

PGD

PDC

SN M

icrocontroller ConnectionJ.G

.J. Krige

Microcontroller C

onnection

GN

D

Page 14: Masters Dissertation - J. Doe

Appendix C

Sensor Node Connection Diagram

104

Page 15: Masters Dissertation - J. Doe

Figure C.1: Sensor Node Connection Diagram

105

Page 16: Masters Dissertation - J. Doe

Appendix D

Shortest Hop Path and MTTP

Experiment Data

106

Page 17: Masters Dissertation - J. Doe

Figure D.1: A 3D Contour Plot of the Node Energy Consumption (J) of the ShortestHop Path Routing Scheme (Experiment 1) Versus the Node Deployment (x,y)

107

Page 18: Masters Dissertation - J. Doe

Figure D.2: A 3D Contour Plot of the Node Energy Consumption (J) of the ShortestHop Path Routing Scheme (Experiment 2) Versus the Node Deployment (x,y)

108

Page 19: Masters Dissertation - J. Doe

Figure D.3: A 3D Contour Plot of the Node Energy Consumption (J) of the ShortestHop Path Routing Scheme (Experiment 3) Versus the Node Deployment (x,y)

109

Page 20: Masters Dissertation - J. Doe

Figure D.4: A 3D Contour Plot of the Node Energy Consumption (J) of the MTTPRScheme (Experiment 1) Versus the Node Deployment (x,y)

110

Page 21: Masters Dissertation - J. Doe

Figure D.5: A 3D Contour Plot of the Node Energy Consumption (J) of the MTTPRScheme (Experiment 2) Versus the Node Deployment (x,y)

111

Page 22: Masters Dissertation - J. Doe

Figure D.6: A 3D Contour Plot of the Node Energy Consumption (J) of the MTTPRScheme (Experiment 3) Versus the Node Deployment (x,y)

112

Page 23: Masters Dissertation - J. Doe

Appendix E

Statistical Consultation Service Letter

113

Page 24: Masters Dissertation - J. Doe