14
water Article Machine Learning-Based Water Level Prediction in Lake Erie Qi Wang 1 and Song Wang 2, * 1 Department of Civil Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada; [email protected] 2 Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada * Correspondence: [email protected]; Tel.: +1-416-736-2100 (ext. 33939) Received: 15 August 2020; Accepted: 21 September 2020; Published: 23 September 2020 Abstract: Predicting water levels of Lake Erie is important in water resource management as well as navigation since water level significantly impacts cargo transport options as well as personal choices of recreational activities. In this paper, machine learning (ML) algorithms including Gaussian process (GP), multiple linear regression (MLR), multilayer perceptron (MLP), M5P model tree, random forest (RF), and k-nearest neighbor (KNN) are applied to predict the water level in Lake Erie. From 2002 to 2014, meteorological data and one-day-ahead observed water level are the independent variables, and the daily water level is the dependent variable. The predictive results show that MLR and M5P have the highest accuracy regarding root mean square error ( RMSE) and mean absolute error (MAE). The performance of ML models has also been compared against the performance of the process-based advanced hydrologic prediction system (AHPS), and the results indicate that ML models are superior in predictive accuracy compared to AHPS. Together with their time-saving advantage, this study shows that ML models, especially MLR and M5P, can be used for forecasting Lake Erie water levels and informing future water resources management. Keywords: machine learning; water levels; Lake Erie 1. Introduction Water level plays an important part in the community’s well-being and economic livelihoods. For example, water level changes can impact physical processes in lakes, such as circulation, resulting in changes in water mixing and bottom sediment resuspension, and thus could further aect water quality and aquatic ecosystems [1,2]. Hence, water level prediction attracts more and more attention [3,4]. For example, the International Joint Commission (IJC) suggests more eorts should be implemented to improve the methods of monitoring and predicting water level [5]. Water-level change is a complex hydrological phenomenon due to its various controlled factors, including meteorological conditions, as well as water exchange between the lake and its watersheds [6,7]. Thus, many tools used to forecast water levels, while considering influencing factors, have been developed, such as process-based models [8]. For example, Gronewold et al. showed that the advanced hydrologic prediction system (AHPS) can be used to capture seasonal and inter-annual patterns of Lake Erie water level from 1997 to 2009 [9]. However, the eectiveness of process-based models mainly depends on the accuracies of the models to represent the aquatic conditions and the abilities of the models in describing the variabilities in the observations [10,11]. In addition, process-based models are often time-consuming [12], so numerous studies have proposed using statistical models to predict water level, e.g., autoregressive integrated moving average model [13], artificial neural network [14], genetic programming [15], and support vector machine [16]. These studies mainly focused on leveraging historical water level without considering the physical process driven by meteorological conditions [6,17,18]. Water 2020, 12, 2654; doi:10.3390/w12102654 www.mdpi.com/journal/water

Machine Learning-Based Water Level Prediction in Lake Erie · 2020. 9. 23. · 1. Introduction Water level plays an important part in the community’s well-being and economic livelihoods

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Machine Learning-Based Water Level Prediction in Lake Erie · 2020. 9. 23. · 1. Introduction Water level plays an important part in the community’s well-being and economic livelihoods

water

Article

Machine Learning-Based Water Level Prediction inLake Erie

Qi Wang 1 and Song Wang 2,*1 Department of Civil Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada; [email protected] Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada* Correspondence: [email protected]; Tel.: +1-416-736-2100 (ext. 33939)

Received: 15 August 2020; Accepted: 21 September 2020; Published: 23 September 2020�����������������

Abstract: Predicting water levels of Lake Erie is important in water resource management as well asnavigation since water level significantly impacts cargo transport options as well as personal choicesof recreational activities. In this paper, machine learning (ML) algorithms including Gaussian process(GP), multiple linear regression (MLR), multilayer perceptron (MLP), M5P model tree, random forest(RF), and k-nearest neighbor (KNN) are applied to predict the water level in Lake Erie. From 2002 to2014, meteorological data and one-day-ahead observed water level are the independent variables,and the daily water level is the dependent variable. The predictive results show that MLR and M5Phave the highest accuracy regarding root mean square error (RMSE) and mean absolute error (MAE).The performance of ML models has also been compared against the performance of the process-basedadvanced hydrologic prediction system (AHPS), and the results indicate that ML models are superiorin predictive accuracy compared to AHPS. Together with their time-saving advantage, this studyshows that ML models, especially MLR and M5P, can be used for forecasting Lake Erie water levelsand informing future water resources management.

Keywords: machine learning; water levels; Lake Erie

1. Introduction

Water level plays an important part in the community’s well-being and economic livelihoods.For example, water level changes can impact physical processes in lakes, such as circulation, resulting inchanges in water mixing and bottom sediment resuspension, and thus could further affect water qualityand aquatic ecosystems [1,2]. Hence, water level prediction attracts more and more attention [3,4].For example, the International Joint Commission (IJC) suggests more efforts should be implemented toimprove the methods of monitoring and predicting water level [5].

Water-level change is a complex hydrological phenomenon due to its various controlled factors,including meteorological conditions, as well as water exchange between the lake and its watersheds [6,7].Thus, many tools used to forecast water levels, while considering influencing factors, have beendeveloped, such as process-based models [8]. For example, Gronewold et al. showed that the advancedhydrologic prediction system (AHPS) can be used to capture seasonal and inter-annual patterns ofLake Erie water level from 1997 to 2009 [9]. However, the effectiveness of process-based modelsmainly depends on the accuracies of the models to represent the aquatic conditions and the abilitiesof the models in describing the variabilities in the observations [10,11]. In addition, process-basedmodels are often time-consuming [12], so numerous studies have proposed using statistical modelsto predict water level, e.g., autoregressive integrated moving average model [13], artificial neuralnetwork [14], genetic programming [15], and support vector machine [16]. These studies mainlyfocused on leveraging historical water level without considering the physical process driven bymeteorological conditions [6,17,18].

Water 2020, 12, 2654; doi:10.3390/w12102654 www.mdpi.com/journal/water

Page 2: Machine Learning-Based Water Level Prediction in Lake Erie · 2020. 9. 23. · 1. Introduction Water level plays an important part in the community’s well-being and economic livelihoods

Water 2020, 12, 2654 2 of 14

In this paper, six machine learning methodologies [19], with fast leaning speed, are applied topredict daily Lake Erie water level. And then the ML model predictive performance is comparedto the process-based model (i.e., AHPS). ML models are established by considering not only theimpacts of the historical water-level changes but also meteorological factors. Overall, there are threeinnovations of this work. First, it is the first work to take account of both historical water level andmeteorological conditions in water level prediction for Lake Erie. Second, it is the first study to applyvarious ML models to forecast Lake Erie water level and compare the performance among various MLmodels. Third, it is the first work to compare the predictive performance between ML models and theprocess-based model AHPS.

The following parts of this paper are divided into four sections. Section 1 introduces theexperimental area of this study. Section 2 describes various ML algorithms and the model performanceassessment metrics. Section 3 presents the independent variables selection and performance comparisonresults for ML models. Section 4 discusses the forecasting results of various ML predicting models,and the performance comparisons between ML models and the process-based prediction system AHPS(Figure 1).

Water 2020, 12, x FOR PEER REVIEW  2  of  14 

In this paper, six machine learning methodologies [19], with fast leaning speed, are applied to 

predict daily Lake Erie water level. And then the ML model predictive performance is compared to 

the process‐based model (i.e., AHPS). ML models are established by considering not only the impacts 

of  the  historical  water‐level  changes  but  also  meteorological  factors.  Overall,  there  are  three 

innovations of this work. First, it is the first work to take account of both historical water level and 

meteorological conditions in water level prediction for Lake Erie. Second, it is the first study to apply 

various ML models to forecast Lake Erie water level and compare the performance among various 

ML models. Third, it is the first work to compare the predictive performance between ML models 

and the process‐based model AHPS. 

The  following  parts  of  this  paper  are  divided  into  four  sections.  Section  1  introduces  the 

experimental  area  of  this  study.  Section  2  describes  various  ML  algorithms  and  the  model 

performance  assessment  metrics.  Section  3  presents  the  independent  variables  selection  and 

performance comparison results for ML models. Section 4 discusses the forecasting results of various 

ML predicting models, and the performance comparisons between ML models and the process‐based 

prediction system AHPS (Figure 1). 

 

Figure 1. Flow chart of this paper. 

2. Materials and Methods 

2.1. Study Area 

Lake Erie is the southernmost, shallowest, and smallest part of the Great Lakes System and its 

mean  depth,  surface  area,  and  volume  are  18.9 m,  25,657  km2,  and  484  km3  [20].  It  has  three 

distinguishing basins including western, central, and eastern basins, with average depths of 7.4 m, 

19 m,  and  28.5 m  [21,22].  The western  basin  is  separated  from  the  central  basin  by  the  islands 

extending from Point Pelee in Ontario to Marblehead in Ohio, and the eastern basin is separated from 

the central basin by the Pennsylvania Ridge from Long Point extending to Erie Pennsylvania [21]. 

There are five major inflows (Detroit River, Maumee River, Sandusky River, Cuyahoga River, and 

Grand River), and one outflow (Niagara River) for Lake Erie. The water retention capacity of Lake 

Erie is 2.76 years [20,23]. Figure 2 is generated based on GLERL (Great Lakes Environmental Research 

Laboratory) data and the identifiers represent the meteorological stations (red stars) and water level 

measuring stations (black circles). 

Input data: Independent 

variables: meteorological data 

and one‐day ahead observed water 

level; Dependent variable: water 

level 

Statistic models: GP; MLR; MLP; 

M5P; RF; KNN Process‐based model: 

AHPS 

Performance evaluation: RMSE; 

MAE; r; MI 

Performance evaluation: forecasting bias   

Figure 1. Flow chart of this paper.

2. Materials and Methods

2.1. Study Area

Lake Erie is the southernmost, shallowest, and smallest part of the Great Lakes System andits mean depth, surface area, and volume are 18.9 m, 25,657 km2, and 484 km3 [20]. It has threedistinguishing basins including western, central, and eastern basins, with average depths of 7.4 m, 19 m,and 28.5 m [21,22]. The western basin is separated from the central basin by the islands extending fromPoint Pelee in Ontario to Marblehead in Ohio, and the eastern basin is separated from the central basinby the Pennsylvania Ridge from Long Point extending to Erie Pennsylvania [21]. There are five majorinflows (Detroit River, Maumee River, Sandusky River, Cuyahoga River, and Grand River), and oneoutflow (Niagara River) for Lake Erie. The water retention capacity of Lake Erie is 2.76 years [20,23].Figure 2 is generated based on GLERL (Great Lakes Environmental Research Laboratory) data and

Page 3: Machine Learning-Based Water Level Prediction in Lake Erie · 2020. 9. 23. · 1. Introduction Water level plays an important part in the community’s well-being and economic livelihoods

Water 2020, 12, 2654 3 of 14

the identifiers represent the meteorological stations (red stars) and water level measuring stations(black circles).Water 2020, 12, x FOR PEER REVIEW  3  of  14 

 

Figure 2. Lake Erie bathymetric plan view (generated from GLERL data); Meteorological stations (red 

stars); Water level stations (black circles): Toledo, Port Stanley, Buffalo, and Cleveland; A~F represent 

Detroit, Maumee, Sandusky, Cuyahoga, Grand, and Niagara Rivers. 

2.2. Data Source 

Following existing studies, e.g., Bucak et al. (2018), who use various meteorological variables to 

simulate  the  water  level  of  Lake  Beysehir  in  Turkey,  this  study  also  considers meteorological 

variables  including precipitation, air  temperature, shortwave radiation,  longwave radiation, wind 

speed, and relative humidity. The average daily measured water level data at four stations including 

St. Toledo, Port Stanley, Buffalo, and Cleveland are regarded as the observed daily water  level of 

Lake Erie (Table 1). 

Table 1. Summary of sources of meteorological and water level data. 

Parameter  Source and Location  Frequency 

Air temperature  US National Data Buoy Center (NDBC) buoys (western basin, station 

45005); 

Environment and Climate Change Canada (ECCC) lake buoy data (central 

basin, Port Stanley 45132; eastern basin, Port Colborne 45142); 

Great Lakes Environmental Research Laboratory (GLERL) land stations 

(station THLO1); 

US NDBC land stations (stationGELO1, DBLN6) 

Hourly 

Wind speed 

Longwave 

radiation 

Shortwave 

radiation 

Relative 

humidity 

Precipitation National Oceanic and Atmospheric Administration (NOAA)  Daily 

Water level 

The  independent  variables  are  selected  in  terms  of  the  relevance  degree  between  the 

meteorological  variables  (daily,  one‐day‐,  two‐day‐,  and  three‐day‐ahead  observed  average, 

minimum, and maximum values of air temperature, shortwave radiation, longwave radiation, wind 

speed,  and  relative  humidity;  daily,  one‐day‐,  two‐day‐,  and  three‐day‐ahead  observed  average 

precipitation values) (Table 2) and the water level. The correlation function has been typically applied 

in  previous  studies  [17,24], measuring  the  linear  dependence  between  two  variables. When  the 

relatedness  is not  linear,  it  is not appropriate  to apply  this method.  In  this study, we use mutual 

information  (MI)  instead  of  correlation  function  since MI  can measure  the  general  dependence 

between two variables [25]. 

MI, i.e., Equation (1), measures the relevance degree between two variables according to the joint 

probability distribution function  p(x,y)  [26]. 

MI Y;X  =  p x,y logp x,y

p x ‐p yy∈Yx∈X

  (1) 

 

Figure 2. Lake Erie bathymetric plan view (generated from GLERL data); Meteorological stations(red stars); Water level stations (black circles): Toledo, Port Stanley, Buffalo, and Cleveland; A~Frepresent Detroit, Maumee, Sandusky, Cuyahoga, Grand, and Niagara Rivers.

2.2. Data Source

Following existing studies, e.g., Bucak et al. (2018), who use various meteorological variables tosimulate the water level of Lake Beysehir in Turkey, this study also considers meteorological variablesincluding precipitation, air temperature, shortwave radiation, longwave radiation, wind speed,and relative humidity. The average daily measured water level data at four stations includingSt. Toledo, Port Stanley, Buffalo, and Cleveland are regarded as the observed daily water level of LakeErie (Table 1).

Table 1. Summary of sources of meteorological and water level data.

Parameter Source and Location Frequency

Air temperature US National Data Buoy Center (NDBC) buoys (western basin,station 45005);

Environment and Climate Change Canada (ECCC) lake buoy data(central basin, Port Stanley 45132; eastern basin, Port Colborne 45142);Great Lakes Environmental Research Laboratory (GLERL) land stations

(station THLO1);US NDBC land stations (stationGELO1, DBLN6)

HourlyWind speed

Longwave radiation

Shortwave radiation

Relative humidity

Precipitation National Oceanic and Atmospheric Administration (NOAA) DailyWater level

The independent variables are selected in terms of the relevance degree between the meteorologicalvariables (daily, one-day-, two-day-, and three-day-ahead observed average, minimum, and maximumvalues of air temperature, shortwave radiation, longwave radiation, wind speed, and relative humidity;daily, one-day-, two-day-, and three-day-ahead observed average precipitation values) (Table 2) andthe water level. The correlation function has been typically applied in previous studies [17,24],measuring the linear dependence between two variables. When the relatedness is not linear, it is notappropriate to apply this method. In this study, we use mutual information (MI) instead of correlationfunction since MI can measure the general dependence between two variables [25].

Page 4: Machine Learning-Based Water Level Prediction in Lake Erie · 2020. 9. 23. · 1. Introduction Water level plays an important part in the community’s well-being and economic livelihoods

Water 2020, 12, 2654 4 of 14

Table 2. Summary of variables.

Variable Description Variable Description Variable Description Variable Description Variable Description Variable Description

X1Wind

speed(dailyave.)

X2Air

temperature(daily ave.)

X3Relative

humidity(daily ave.)

X4ShortwaveRadiation

(daily ave.)X5

Longwaveradiation

(daily ave.)X6 Precipitation

(daily ave.)

X7 Wind speed(daily max) X8

Airtemperature(daily max)

X9Relative

humidity(daily max)

X10ShortwaveRadiation

(daily max)X11

Longwaveradiation

(daily max)X12 Wind speed

(daily min)

X13Air

temperature(daily min)

X14Relative

humidity(daily min)

X15ShortwaveRadiation

(daily min)X16

Longwaveradiation

(daily min)X17 Wind speed

(2-day ave.) X18Air

temperature(2-day ave.)

X19Relative

humidity(2-day ave.)

X20ShortwaveRadiation

(2-day ave.)X21

Longwaveradiation

(2-day ave.)X22 Precipitation

(2-day ave.) X23 Wind speed(2-day max) X24

Airtemperature(2-day max)

X25Relative

humidity(2-day max)

X26ShortwaveRadiation

(2-day max)X27

Longwaveradiation

(2-day max)X28 Wind speed

(2-day min) X29Air

temperature(2-day min)

X30Relative

humidity(2-day min)

X31ShortwaveRadiation

(2-day min)X32

Longwaveradiation

(2-day min)X33 Wind speed

(3-day ave.) X34Air

temperature(3-day ave.)

X35Relative

humidity(3-day ave.)

X36ShortwaveRadiation

(3-day ave.)

X37Longwaveradiation

(3-day ave.)X38 Precipitation

(3-day ave.) X39 Wind speed(3-day max) X40

Airtemperature(3-day max)

X41Relative

humidity(3-day max)

X42ShortwaveRadiation

(3-day max)

X43Longwaveradiation

(3-day max)X44 Wind speed

(3-day min) X45Air

temperature(3-day min)

X46Relative

humidity(3-day min)

X47ShortwaveRadiation

(3-day min)X48

Longwaveradiation

(3-day min)

MI, i.e., Equation (1), measures the relevance degree between two variables according to the jointprobability distribution function p(x, y) [26].

MI(Y; X) =∑x∈X

∑y∈Y

p(x, y) log(

p(x, y)p(x)−p(y)

)(1)

2.3. Machine Learning Algorithms

This study adopts six widely used ML methods, including Gaussian process, multiple linearregression, multilayer perceptron, M5P model tree, random forest, and k-nearest neighbors.

2.3.1. Gaussian Process

Gaussian process (GP) [27] can be applied to settle two categories of problems: (1) Regression,where the data are continuous, and optimization of study can provide a close prediction for most ofthe time; (2) Classification, where the datasets are discrete and the predictions end up with a discreteset of classes [28]. In this work, we adopt the same algorithm of GP from existing studies [27–29].Taking account of the noise of observation y, the Gaussian process is shown below:

y = f(x) + ε (2)

f(x) = g(m (x), k(x)) (3)

where x and y represent the input and output, respectively, f is a multi-dimensional Gaussiandistribution determined by m(x) (mean function) and k(x,x’) (covariance matrix), x and x’ are theinput values at two points, and ε (~N(0,σ 2)) is the independent white Gaussian noise. To makechoosing an appropriate noise level easier, this study applies normalization to the target attribute aswell as the other attributes. If the data can be scaled properly, the mean could be zero. A functionproducing a positive semi-definite covariance matrix with elements [K]i,j = k(x i, xj

)is applied as

the covariance function, so f is expressed as p(f|x) = N(0, K). Based on previous noise assumptions,p(y

∣∣∣f) = N(f,σ 2 I) is obtained, and I is the unit matrix.

p(y∣∣∣X) =∫

p(y∣∣∣f)p(f|x)df = N(0, K + σ

2 I) (4)

Page 5: Machine Learning-Based Water Level Prediction in Lake Erie · 2020. 9. 23. · 1. Introduction Water level plays an important part in the community’s well-being and economic livelihoods

Water 2020, 12, 2654 5 of 14

The prediction y∗

is the output corresponding to the input x∗:

p(y∗

∣∣∣x, y, x∗

)= N(

(y∗|µ ∗,σ

2y∗

)(5)

µ∗ = kT∗ (K + σ

2 I)−1

y (6)

σ2y∗= k∗∗ − kT

∗ (K + σ2 I)−1

k∗ (7)

where k∗ can be obtained from x and x∗ through [k∗] = k(x, x

), and k∗∗ can be obtained from x∗

through [k∗∗] = k(x

∗, x∗). µ∗ and σ2

y∗

represent expectation and variance. The Gaussian covariancefunction is:

k(xi, xj

)= υe

[− 12

m∑d=1

ωd(xdi −xd

j )2]

(8)

where [υ,ω 1,ω2, . . . ,ωm] represent a parameter vector, called hyperparameters. The simplestexpression can be shown as follows:

logp(y∣∣∣x) = 1

2yT(K + σ

2 I)−1

y −12

log(∣∣∣K + σ2I

∣∣∣) − n2

log(2π) (9)

2.3.2. Multiple Linear Regression

The multiple linear regression (MLR) method describes the linear relationship between thedependent and independent variables. In this work, we adopt the same MLR algorithm as existingstudies [30–32].

Yi = β0 + β1X1,i + β2X2,i + . . . + Xk,i + εi (10)

where X1,i, X2,i, . . . , Xk,i and Yi are the ith observations of the independent and dependent variables,respectively; β0, β1, . . . , βk are regression coefficients; and εi is the residual for the ith observations.

2.3.3. Multilayer Perceptron

An artificial neural network (ANN) mimics human brain functioning, processing informationthrough a single neuron. In this work, we adopt the same MLP algorithm as existing studies [33–36].Multiplayer perceptron (MLP), a class of feedforward ANN, has three layers including input, hidden,and output layers. The hidden layers receive the signals from the nodes of the input layer andtransform them into signals that are sent to all output nodes, transforming them into the last layer ofoutputs. The weights between the adjacent layers are adjusted automatically while minimizing theerrors between the simulations and observations by using the backpropagation algorithm.

2.3.4. M5P Model Tree

There is a collection of training samples (T); each training sample is featured by a fixed set ofattributes, which are input values, and has a corresponding target, which is the output value. In thiswork, we adopt the same M5P algorithm from existing studies [37–39]. In the beginning, T is associatedwith a leaf storing linear regression function or split into subsets accounting for the outputs, and thenthe same process is recursive for the subsets.

In this process, choosing appropriate attributes to split T, in order to minimize the expected errorat a particular node, requires a splitting criterion, and standard deviation reduction is the expectederror reduction, calculated by Equation (11).

SDR = s d(T) −∑

I

|Ti|

|T|sd(Ti) (11)

where T is a group of samples that achieves the node; Ti is the result of splitting the node in terms ofthe chosen attribute. The model finally chooses the split that maximizes the expected error reduction.

Page 6: Machine Learning-Based Water Level Prediction in Lake Erie · 2020. 9. 23. · 1. Introduction Water level plays an important part in the community’s well-being and economic livelihoods

Water 2020, 12, 2654 6 of 14

2.3.5. Random Forest

In this work, we adopt the same random forest (RF) algorithm from existing studies [40,41].Unlike random tree (RT), instead of choosing features, RF can determine the most important onesamong all the features after training. It combines many binary decision trees and each tree learns froma random sample of the observations without pruning. In RF, bootstrap samples are drawn to buildmultiple trees, which means that some samples will be used multiple times in a single tree, and eachtree grows with a randomized subset of features from the total number of features. Finally, the outputrepresenting the average of each single-tree methodology is generated. Since RF contains a lot of trees,handling a larger number of data, limited generalization errors occur, avoiding overfitting.

2.3.6. K-Nearest Neighbor

Generally, the above machine learning methods can be regarded as eager methods, which meansthese methods start learning when they receive the data and create a global approximation. On theother hand, k-nearest neighbor (KNN) belongs to lazy learning, which creates a local approximation.In this work, we adopt the same KNN algorithm from existing studies [42–44]. It simply stores thetraining data without learning until it is given a test set, and calculates in terms of the current data setinstead of coming up with an algorithm based on historic data. KNN is a method that can be usedfor either classification or regression, while distributing the attribute values for a target, which is theaverage of the values of its k nearest neighbors.

2.4. Model Performance Evaluation

The outputs of each ML model are daily water levels of Lake Erie. Then, these predictions arecompared against the observations, which are the average measured water levels at the four stationsmentioned above. The model performance evaluation criteria selected include root means squareerror (RMSE), mean absolute error (MAE), correlation coefficient (r), and mutual information (MI)mentioned in Section 2.2.

RMSE shows the residual value between the predictions and the observations, thus a smallerRMSE value represents a better fit between observations and predictions.

RMSE =

√∑ni=1 (O i − Pi)

2

n(12)

The mean absolute error (MAE) can be also applied to access the accuracy of fitting time-seriesdata. Similar to RMSE, a smaller MAE value represents a better fit.

MAE =1n

n∑i=1

|Oi − Pi| (13)

The correlation coefficient (r) describes the weight of the relationship between observations andpredictions and ranges from−1 to 1. The closer to 0, the weaker linear relationship between observationsand predictions. For example, a value of zero represents no linear relationship, −1 represents a strongnegative linear relationship, and 1 represents a strong positive linear relationship.

r =

∑ni=1(O i − Oi)(P i − Pi

)√∑n

i=1 (O i − Oi)2 ∑n

i=1 (P i − Pi)2

(14)

where Oi and Pi represent the observations and predictions at the ith time step, Oi and Pi are the meansof observations and predictions, and n represents total time step numbers.

Page 7: Machine Learning-Based Water Level Prediction in Lake Erie · 2020. 9. 23. · 1. Introduction Water level plays an important part in the community’s well-being and economic livelihoods

Water 2020, 12, 2654 7 of 14

RMSE and MAPE describe the overall accuracy of the models, while r and MI describe thedifferences between the observations and the predictions [19].

3. Results

3.1. Input Selection

A MI value of zero represents zero relatedness between two variables, and the larger valuerepresents stronger relatedness [45]. All meteorological variables except one-day-, two-day-,and three-day-ahead observed minimum shortwave radiation (15×, 31×, and 47×) show a strongrelevance to water level (Figure 3), so this study uses daily, one-day-, two-day-, and three-day-aheadobserved average, minimum, and maximum values of air temperature, longwave radiation,relative humidity, and wind speed; daily, one-day-, two-day-, and three-day-ahead observed averageand maximum values of shortwave radiation; daily, one-day-, two-day-, and three-day-ahead observedaverage values of precipitation as independent variables. One-day-ahead observed water level is alsoconsidered as an independent variable since it can also impact water level changes the next day [46].

Water 2020, 12, x FOR PEER REVIEW  7  of  14 

average, minimum, and maximum values of air temperature, longwave radiation, relative humidity, 

and wind speed; daily, one‐day‐, two‐day‐, and three‐day‐ahead observed average and maximum 

values of  shortwave  radiation; daily, one‐day‐,  two‐day‐,  and  three‐day‐ahead observed  average 

values  of  precipitation  as  independent  variables.  One‐day‐ahead  observed  water  level  is  also 

considered as an independent variable since it can also impact water level changes the next day [46]. 

 

Figure 3. Mutual information of all variables. 

Following a previous study [47], we split the whole dataset from 2002 to 2014 into two sections, 

including the training set (approximately 84% observations) from 2002 to 2012, aiming to establish 

the model and adjust the weights, as well as the testing set (approximately 16% observations) from 

2013 to 2014, aiming to assess the model performance. 

3.2. Model Performance Comparison 

Table 3 shows the performance of ML models for predicting water level by RMSE, MAE, r, and 

MI. MLR and M5P provide the most reliable predictions of water level during the testing period from 

2013 to 2014 with RMSE and MAE values of 0.02 and 0.01, respectively. 

Table 3. Summary of performance for multiple ML models. 

Model  RMSE  MAE  r  MI 

Gaussian process  0.07  0.06  0.94  8.45 

Multiple linear regression  0.02  0.01  0.99  8.54 

Multiple Perceptron  0.03  0.02  0.99  8.57 

M5P Model Tree  0.02  0.01  0.99  8.53 

Random Forest model tree  0.05  0.04  0.97  8.43 

KNN  0.10  0.09  0.83  8.25 

The RMSE values for different ML models in this study are also comparable to previous studies 

on water‐level prediction, e.g., Khan et al. (2006) found RMSE values for the time horizon of 1 to 12 

months of 0.057–0.239, 0.085–0.246, and 0.068–0.304 by applying SVM, MLP, and SAR models to Lake 

Erie [16]. 

4. Discussion 

4.1. Multiple ML Models Comparison 

Based on RMSE and MAE (Table 3), the predictions of ML models are acceptable compared to 

previous studies. For example, Bazartseren et al. predicted water levels with RMSE values of 1.39 and 

3.40 for the Oder and Rhein River in Germany by using artificial neural networks [48]. Yoon et al. 

Figure 3. Mutual information of all variables.

Following a previous study [47], we split the whole dataset from 2002 to 2014 into two sections,including the training set (approximately 84% observations) from 2002 to 2012, aiming to establish themodel and adjust the weights, as well as the testing set (approximately 16% observations) from 2013 to2014, aiming to assess the model performance.

3.2. Model Performance Comparison

Table 3 shows the performance of ML models for predicting water level by RMSE, MAE, r, and MI.MLR and M5P provide the most reliable predictions of water level during the testing period from 2013to 2014 with RMSE and MAE values of 0.02 and 0.01, respectively.

The RMSE values for different ML models in this study are also comparable to previous studieson water-level prediction, e.g., Khan et al. (2006) found RMSE values for the time horizon of 1 to12 months of 0.057–0.239, 0.085–0.246, and 0.068–0.304 by applying SVM, MLP, and SAR models toLake Erie [16].

Page 8: Machine Learning-Based Water Level Prediction in Lake Erie · 2020. 9. 23. · 1. Introduction Water level plays an important part in the community’s well-being and economic livelihoods

Water 2020, 12, 2654 8 of 14

Table 3. Summary of performance for multiple ML models.

Model RMSE MAE r MI

Gaussian process 0.07 0.06 0.94 8.45Multiple linear regression 0.02 0.01 0.99 8.54

Multiple Perceptron 0.03 0.02 0.99 8.57M5P Model Tree 0.02 0.01 0.99 8.53

Random Forest model tree 0.05 0.04 0.97 8.43KNN 0.10 0.09 0.83 8.25

4. Discussion

4.1. Multiple ML Models Comparison

Based on RMSE and MAE (Table 3), the predictions of ML models are acceptable comparedto previous studies. For example, Bazartseren et al. predicted water levels with RMSE values of1.39 and 3.40 for the Oder and Rhein River in Germany by using artificial neural networks [48].Yoon et al. predicted groundwater levels in the coastal aquifer in Donghae City, Korea, through twowells with average RMSE values of 0.13 and 0.136 by applying ANN and SVM (support vector machine),respectively [49].

The predicted water levels agree with the observations qualitatively (Figure 4). Due to the longperiod of testing time (2013–2014), we will divide it into three periods for each year to discuss thepredictions in detail. In Figure 5a,b, both observations and predictions show the increasing trends,from January to March in 2013 and 2014, due to low precipitation frequency, the water levels arerelatively stable and become lowest during the whole year. Beginning from April, the water level riseswith frequent rainfall. From May to August (Figure 5c,d), the water level continues increasing to reacha peak in July in 2013 and 2014, showing the significant effects of precipitation on water level changes.From September to December, with precipitation reducing, the water level decreases.

Water 2020, 12, x FOR PEER REVIEW  8  of  14 

predicted groundwater levels in the coastal aquifer in Donghae City, Korea, through two wells with 

average RMSE values of 0.13 and 0.136 by applying ANN and SVM (support vector machine), respectively 

[49]. 

The predicted water levels agree with the observations qualitatively (Figure 4). Due to the long 

period of testing time (2013–2014), we will divide it into three periods for each year to discuss the 

predictions in detail. In Figure 5a,b, both observations and predictions show the increasing trends, 

from  January  to March  in 2013 and 2014, due  to  low precipitation  frequency,  the water  levels are 

relatively stable and become  lowest during the whole year. Beginning from April, the water  level 

rises with frequent rainfall. From May to August (Figure 5c,d), the water level continues increasing 

to reach a peak in July in 2013 and 2014, showing the significant effects of precipitation on water level 

changes. From September to December, with precipitation reducing, the water level decreases. 

 

Figure 4. Time series of predicted and observed water level of Lake Erie during the testing period 

from January 1st 2013 to December 31st 2014. 

 

Figure 5. Comparisons between the predictions of six ML models and observations for water level 

from: (a) January to April 2013; (b) January to April 2014; (c) May to August 2013; (d) May to August 

2014; (e) September to December 2013; (f) September to December 2014. 

Figure 6 shows that the predicted water levels agree with the observations quantitatively. The 

slopes are close to 1, indicating that the predictions from ML models show a strong correlation with 

the observed water levels even though there is a small difference between them. The dots in the KNN 

Figure 4. Time series of predicted and observed water level of Lake Erie during the testing period fromJanuary 1st 2013 to December 31st 2014.

Page 9: Machine Learning-Based Water Level Prediction in Lake Erie · 2020. 9. 23. · 1. Introduction Water level plays an important part in the community’s well-being and economic livelihoods

Water 2020, 12, 2654 9 of 14

Water 2020, 12, x FOR PEER REVIEW  8  of  14 

predicted groundwater levels in the coastal aquifer in Donghae City, Korea, through two wells with 

average RMSE values of 0.13 and 0.136 by applying ANN and SVM (support vector machine), respectively 

[49]. 

The predicted water levels agree with the observations qualitatively (Figure 4). Due to the long 

period of testing time (2013–2014), we will divide it into three periods for each year to discuss the 

predictions in detail. In Figure 5a,b, both observations and predictions show the increasing trends, 

from  January  to March  in 2013 and 2014, due  to  low precipitation  frequency,  the water  levels are 

relatively stable and become  lowest during the whole year. Beginning from April, the water  level 

rises with frequent rainfall. From May to August (Figure 5c,d), the water level continues increasing 

to reach a peak in July in 2013 and 2014, showing the significant effects of precipitation on water level 

changes. From September to December, with precipitation reducing, the water level decreases. 

 

Figure 4. Time series of predicted and observed water level of Lake Erie during the testing period 

from January 1st 2013 to December 31st 2014. 

 

Figure 5. Comparisons between the predictions of six ML models and observations for water level 

from: (a) January to April 2013; (b) January to April 2014; (c) May to August 2013; (d) May to August 

2014; (e) September to December 2013; (f) September to December 2014. 

Figure 6 shows that the predicted water levels agree with the observations quantitatively. The 

slopes are close to 1, indicating that the predictions from ML models show a strong correlation with 

the observed water levels even though there is a small difference between them. The dots in the KNN 

Figure 5. Comparisons between the predictions of six ML models and observations for water levelfrom: (a) January to April 2013; (b) January to April 2014; (c) May to August 2013; (d) May to August2014; (e) September to December 2013; (f) September to December 2014.

Figure 6 shows that the predicted water levels agree with the observations quantitatively.The slopes are close to 1, indicating that the predictions from ML models show a strong correlationwith the observed water levels even though there is a small difference between them. The dots inthe KNN comparison figure seem scattered, showing that the predictions are smaller/larger thanthe observations.

Water 2020, 12, x FOR PEER REVIEW  9  of  14 

comparison  figure  seem  scattered,  showing  that  the  predictions  are  smaller/larger  than  the 

observations. 

 

Figure 6. Scatter plots of the observations and predictions from GP, MLR, MLP, M5P, RF, and KNN 

models during the testing period from January 1st 2013 to December 31st 2014. 

Among these six models, the MLR and M5P models show better performance than others with 

only a 0.003% difference in capturing the peak values. The KNN model underestimates the peaks in 

2013 and 2014 (Figure 4) and overestimates the lowest level in winter 2014, which may be due to the 

k value selection. Choosing small values  for k can be noisy and  impact  the predictions, while  the 

large values can lead to smooth decision boundaries, resulting in low variance but increased bias and 

expensive computation. In this study, the value of k is set to 69, which is the square root of the total 

number of samples based on a previous study [50]. 

4.2. Comparison between ML Models and AHPS 

An advanced hydrologic prediction system (AHPS) is a web‐based suite of forecast products, 

and it has been widely used in predicting the water levels and hydrometeorological variables of the 

Laurentian Great Lakes  [51].  In AHPS,  the  spatial meteorological  forcing data obtained  from  the 

National Climatic Data Center  (NCDC)  for  sub‐basins  and  over‐lakes  are  averaged  by Thiessen 

Polygon Software, and  the results are regarded as  the  inputs of  the  lake  thermodynamics model, 

calculating heat storage, and the large basin runoff model, calculating moisture storage, and the net 

basin supply is calculated based on water balance. Finally, the net basin supplies are translated to 

water levels and joint flows by the lake routing and regulation model [52]. Gronewold et al. predicted 

the water  level of Lake Erie by using AHPS. He compared 3‐month and 6‐month mean predicted 

water  level values to the monthly averaged water  level observations for 13 years (1997–2009) and 

assessed AHPS predictive performance by  forecasting bias  (the averaged differences between  the 

median value of predictions and monthly averaged observations) [9]. In this part, we also compare 

ML models and AHPS predictive performance in terms of forecasting bias. 

All absolute values of  forecasting bias based on ML models during  the  testing period  (2013–

2014) are smaller than those in AHPS from 1997 to 2009 (Table 4), showing that the predicted median 

water level values in ML models are much closer to the monthly average observations than AHPS, 

even though both AHPS and the five ML models (MLR, MLP, M5P, RF, and KNN) underestimate 

observations with negative forecasting bias. Table 5 indicates the time consumed during training and 

testing periods in ML models, which are all less than one minute except for the GP model. This is 

much faster than AHPS. ML models are more accurate than process‐based AHPS in forecasting water 

level, and can also save computational time and expense.   

Figure 6. Scatter plots of the observations and predictions from GP, MLR, MLP, M5P, RF, and KNNmodels during the testing period from January 1st 2013 to December 31st 2014.

Among these six models, the MLR and M5P models show better performance than others withonly a 0.003% difference in capturing the peak values. The KNN model underestimates the peaksin 2013 and 2014 (Figure 4) and overestimates the lowest level in winter 2014, which may be due tothe k value selection. Choosing small values for k can be noisy and impact the predictions, while thelarge values can lead to smooth decision boundaries, resulting in low variance but increased bias andexpensive computation. In this study, the value of k is set to 69, which is the square root of the totalnumber of samples based on a previous study [50].

Page 10: Machine Learning-Based Water Level Prediction in Lake Erie · 2020. 9. 23. · 1. Introduction Water level plays an important part in the community’s well-being and economic livelihoods

Water 2020, 12, 2654 10 of 14

4.2. Comparison between ML Models and AHPS

An advanced hydrologic prediction system (AHPS) is a web-based suite of forecast products,and it has been widely used in predicting the water levels and hydrometeorological variables ofthe Laurentian Great Lakes [51]. In AHPS, the spatial meteorological forcing data obtained fromthe National Climatic Data Center (NCDC) for sub-basins and over-lakes are averaged by ThiessenPolygon Software, and the results are regarded as the inputs of the lake thermodynamics model,calculating heat storage, and the large basin runoff model, calculating moisture storage, and the netbasin supply is calculated based on water balance. Finally, the net basin supplies are translated towater levels and joint flows by the lake routing and regulation model [52]. Gronewold et al. predictedthe water level of Lake Erie by using AHPS. He compared 3-month and 6-month mean predicted waterlevel values to the monthly averaged water level observations for 13 years (1997–2009) and assessedAHPS predictive performance by forecasting bias (the averaged differences between the median valueof predictions and monthly averaged observations) [9]. In this part, we also compare ML models andAHPS predictive performance in terms of forecasting bias.

All absolute values of forecasting bias based on ML models during the testing period (2013–2014)are smaller than those in AHPS from 1997 to 2009 (Table 4), showing that the predicted medianwater level values in ML models are much closer to the monthly average observations than AHPS,even though both AHPS and the five ML models (MLR, MLP, M5P, RF, and KNN) underestimateobservations with negative forecasting bias. Table 5 indicates the time consumed during training andtesting periods in ML models, which are all less than one minute except for the GP model. This ismuch faster than AHPS. ML models are more accurate than process-based AHPS in forecasting waterlevel, and can also save computational time and expense.

Table 4. Performance comparisons between AHPS and multiple ML models.

MethodBias in Median Water Level Forecast (cm)

3-Month Forecast 6-Month Forecast

AHPS −5.50 −5.40Gaussian Process 1.81 2.58

Multiple Linear Regression −2.05 −3.31Multilayer Perceptron −3.64 −4.57

M5P Model Tree −2.05 −3.31Random Forest Model Tree −1.97 −4.25

KNN −2.42 −3.60

Table 5. Time to train and test multiple ML models.

Model Train Time Test Time

Gaussian Process 156.0 s 35.39 sMultiple Linear Regression 0.28 s 0.61 s

Multilayer Perceptron 53.78 s 0.49 sM5P Model Tree 2.48 s 0.51 s

Random Forest Model Tree 5.83 s 0.73 sKNN <0.1 s 2.35 s

4.3. Impact of Training and Testing Data Selection

In this study, following existing studies [18,53], we used 84% of the total dataset (years 2002–2012)as the training data and the remaining 16% (years 2013–2014) as the testing data. The performanceof ML models can vary with different sizes of training data. To explore the impact of the trainingand testing data selection, we further examined these ML models with different sizes of trainingdata. Specifically, we built ML-based prediction models with different training data and tested theirperformance on the same set of testing data (years 2013–2014). The detailed results are shown in

Page 11: Machine Learning-Based Water Level Prediction in Lake Erie · 2020. 9. 23. · 1. Introduction Water level plays an important part in the community’s well-being and economic livelihoods

Water 2020, 12, 2654 11 of 14

Tables 6–11 (training data are from years 2008–2012, 2007–2012, 2006–2012, 2005–2012, 2004–2012,and 2003–2012, respectively). We observed consistent performance of these ML models with differenttraining data, i.e., MLR and M5P are the best ML models for predicting the water level of Lake Erie.

Table 6. Summary of performance of multiple ML models with training data from 2008 to 2012.

Model RMSE MAE r MI

Gaussian process 0.09 0.07 0.91 8.43Multiple linear regression 0.02 0.01 0.99 8.52

Multiple Perceptron 0.03 0.02 0.99 8.52M5P Model Tree 0.02 0.01 0.99 8.54

Random Forest model tree 0.06 0.05 0.95 8.42KNN 0.10 0.08 0.83 8.17

Table 7. Summary of performance of multiple ML models with training data from 2007 to 2012.

Model RMSE MAE r MI

Gaussian process 0.09 0.07 0.91 8.45Multiple linear regression 0.02 0.01 0.99 8.42

Multiple Perceptron 0.02 0.01 0.99 8.59M5P Model Tree 0.02 0.01 0.99 8.50

Random Forest model tree 0.06 0.05 0.95 8.41KNN 0.11 0.09 0.80 8.21

Table 8. Summary of performance of multiple ML models with training data from 2006 to 2012.

Model RMSE MAE r MI

Gaussian process 0.08 0.07 0.92 8.50Multiple linear regression 0.02 0.01 0.99 8.52

Multiple Perceptron 0.02 0.02 0.99 8.56M5P Model Tree 0.02 0.01 0.99 8.50

Random Forest model tree 0.05 0.04 0.96 8.44KNN 0.11 0.09 0.81 8.19

Table 9. Summary of performance of multiple ML models with training data from 2005 to 2012.

Model RMSE MAE r MI

Gaussian process 0.08 0.06 0.93 8.45Multiple linear regression 0.02 0.01 0.99 8.53

Multiple Perceptron 0.03 0.02 0.99 8.57M5P Model Tree 0.02 0.01 0.99 8.53

Random Forest model tree 0.06 0.05 0.95 8.39KNN 0.11 0.09 0.79 8.21

Table 10. Summary of performance of multiple ML models with training data from 2004 to 2012.

Model RMSE MAE r MI

Gaussian process 0.08 0.06 0.94 8.44Multiple linear regression 0.02 0.01 0.99 8.54

Multiple Perceptron 0.03 0.02 0.99 8.57M5P Model Tree 0.02 0.01 0.99 8.54

Random Forest model tree 0.06 0.04 0.96 8.39KNN 0.10 0.09 0.82 8.19

Page 12: Machine Learning-Based Water Level Prediction in Lake Erie · 2020. 9. 23. · 1. Introduction Water level plays an important part in the community’s well-being and economic livelihoods

Water 2020, 12, 2654 12 of 14

Table 11. Summary of performance of multiple ML models with training data from 2003 to 2012.

Model RMSE MAE r MI

Gaussian process 0.08 0.06 0.94 8.47Multiple linear regression 0.02 0.01 0.99 8.53

Multiple Perceptron 0.02 0.01 0.99 8.56M5P Model Tree 0.02 0.01 0.99 8.53

Random Forest model tree 0.05 0.04 0.97 8.44KNN 0.10 0.08 0.84 8.26

5. Conclusions

Considering multiple independent variables including meteorological data and one-day-aheadobserved water level, this study developed multiple ML models to forecast Lake Erie water level andcompared the performance among ML models by RMSE and MAE. MLR and M5P, among all MLmodels, had the best performance in capturing the variations of water level with the smallest RMSE andMAE, which were 0.02 and 0.01, respectively. Furthermore, this paper also compared the performanceof process-based AHPS and ML models, showing that ML models have higher accuracy than AHPSin predicting water level. Based on the advantages of high accuracy and short computational cost,ML methods could be used for informing future water resources management in Lake Erie.

Author Contributions: Conceptualization, Q.W. and S.W.; methodology, Q.W. and S.W.; software, Q.W. and S.W.;validation, Q.W. and S.W.; formal analysis, Q.W. and S.W.; investigation, Q.W.; resources, Q.W.; data curation, Q.W.;writing—original draft preparation, Q.W.; writing—review and editing, S.W.; visualization, Q.W.; supervision,S.W.; project administration, S.W.; funding acquisition, S.W. All authors have read and agreed to the publishedversion of the manuscript.

Funding: This research is partially supported by Natural Sciences and Engineering Research Council of Canada.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Håkanson, L.; Parparov, A.; Hambright, K. Modelling the impact of water level fluctuations on water quality(suspended particulate matter) in Lake Kinneret, Israel. Ecol. Model. 2000, 128, 101–125. [CrossRef]

2. Oganesian, R.; Parparov, A. The problems of Lake Sevan and ways of solution. In Proceedings ofthe Symposium Biologica Hungarica, Conservation and Management of Lakes, Budapest, Hungary,11–17 September 1989; Akademiai Kiado: Budapest, Hungary, 1989.

3. Grima, A.; Wilson-Hodges, C. Regulation of Great Lakes water levels: The public speaks out. J. GreatLakes Res. 1977, 3, 240–257. [CrossRef]

4. International Joint Commission. Living with the Lakes: Challenges and Opportunities-Annex G Public InformationProgram; International Joint Commission: Windsor, ON, Canada, 1989.

5. International Joint Commission. Levels Reference Study: Great Lakes-St. Lawrence River Basin; The Board:Windsor, ON, Canada, 1993.

6. Altunkaynak, A. Forecasting surface water level fluctuations of Lake Van by artificial neural networks.Water Resour. Manag. 2007, 21, 399–408. [CrossRef]

7. Karimi, S.; Shiri, J.; Kisi, O.; Makarynskyy, O. Forecasting water level fluctuations of Urmieh Lake using geneexpression programming and adaptive neuro-fuzzy inference system. IJOCS 2012, 3, 109–125. [CrossRef]

8. Marchand, D.; Sanderson, M.; Howe, D.; Alpaugh, C. Climatic change and great lakes levels the impact onshipping. Clim. Chang. 1988, 12, 107–133. [CrossRef]

9. Gronewold, A.D.; Clites, A.H.; Hunter, T.S.; Stow, C.A. An appraisal of the Great Lakes advanced hydrologicprediction system. J. Great Lakes Res. 2011, 37, 577–583. [CrossRef]

10. Arhonditsis, G.B.; Brett, M.T. Evaluation of the current state of mechanistic aquatic biogeochemical modeling.Mar. Ecol. Prog. Ser. 2004, 271, 13–26. [CrossRef]

11. Beck, M.B.; Ravetz, J.R.; Mulkey, L.; Barnwell, T.O. Hydraulics. On the problem of model validation forpredictive exposure assessments. Stoch. Hydrol. Hydraul. 1997, 11, 229–254. [CrossRef]

Page 13: Machine Learning-Based Water Level Prediction in Lake Erie · 2020. 9. 23. · 1. Introduction Water level plays an important part in the community’s well-being and economic livelihoods

Water 2020, 12, 2654 13 of 14

12. Yu, P.S.; Chen, S.T.; Chang, I.F. Support vector regression for real-time flood stage forecasting. J. Hydrol. 2006,328, 704–716. [CrossRef]

13. Yu, Z.; Lei, G.; Jiang, Z.; Liu, F. ARIMA modelling and forecasting of water level in the middle reach of theYangtze River. In Proceedings of the 2017 4th International Conference on Transportation Information andSafety (ICTIS), Banff, AB, Canada, 8–10 August 2017.

14. Alvisi, S.; Mascellani, G.; Franchini, M.; Bardossy, A. Water level forecasting through fuzzy logic and artificialneural network approaches. Hydrol. Earth Syst. Sci. 2006, 10, 1–17. [CrossRef]

15. Ghorbani, M.A.; Khatibi, R.; Aytek, A.; Makarynskyy, O.; Shiri, J. Sea water level forecasting using geneticprogramming and comparing the performance with artificial neural networks. Comput. Geosci. 2010, 36,620–627. [CrossRef]

16. Khan, M.S.; Coulibaly, P. Application of support vector machine in lake water level prediction. J. Hydrol. Eng.2006, 11, 199–205. [CrossRef]

17. Buyukyildiz, M.; Tezel, G.; Yilmaz, V. Estimation of the change in lake water level by artificial intelligencemethods. Water Resour. Manag. 2014, 28, 4747–4763. [CrossRef]

18. Coulibaly, P. Reservoir computing approach to Great Lakes water level forecasting. J. Hydrol. 2010, 381,76–88. [CrossRef]

19. Meinshausen, M.; Smith, S.J.; Calvin, K.; Daniel, J.S.; Kainuma, M.L.T.; Lamarque, J.F.; Matsumoto, K.;Montzka, S.A.; Raper, S.C.B.; Riahi, K.; et al. The RCP greenhouse gas concentrations and their extensionsfrom 1765 to 2300. Clim. Chang. 2011, 109, 213. [CrossRef]

20. Bolsenga, S.J.; Herdendorf, C.E. Lake Erie and Lake St. Clair Handbook; Wayne State University Press: Detroit,MI, UAS, 1993.

21. Boyce, F.M.; Chiocchio, F.; Eid, B.; Penicka, F.; Rosa, F. Hypolimnion flow between the central and easternbasins of Lake Erie during 1977 (interbasin hypolimnion flows). J. Great Lakes Res. 1980, 6, 290–306. [CrossRef]

22. Conroy, J.D.; Boegman, L.; Zhang, H.; Edwards, W.J.; Culver, D.A. “Dead Zone” dynamics in Lake Erie:The importance of weather and sampling intensity for calculated hypolimnetic oxygen depletion rates.Aquat. Sci. 2011, 73, 289–304. [CrossRef]

23. Bocaniov, S.A.; Scavia, D. Temporal and spatial dynamics of large lake hypoxia: Integrating statistical andthree-dimensional dynamic models to enhance lake management criteria. Water Resour. Res. 2016, 52,4247–4263. [CrossRef]

24. Kisi, O.; Shiri, J.; Nikoofar, B. Forecasting daily lake levels using artificial intelligence approaches.Comput. Geosci. 2012, 41, 169–180. [CrossRef]

25. Li, W. Mutual information functions versus correlation functions. J. Stat. Phys. 1990, 60, 823–837. [CrossRef]26. Ross, B.C. Mutual information between discrete and continuous data sets. PLoS ONE 2014, 9, e87357.

[CrossRef] [PubMed]27. Grbic, R.; Sliškovic, D.; Kadlec, P. Adaptive soft sensor for online prediction and process monitoring based

on a mixture of Gaussian process models. Comput Chem Eng. 2013, 58, 84–97. [CrossRef]28. Rasmussen, C.E. Gaussian processes in machine learning. In Proceedings of the Summer School on Machine

Learning, Canberra, Australia, 2–14 February 2003; Springer: Berlin/Heidelberg, Germany, 2003.29. Sun, A.Y.; Wang, D.; Xu, X. Monthly streamflow forecasting using Gaussian process regression. J. Hydrol.

2014, 511, 72–81. [CrossRef]30. Makridakis, S.; Wheelwright, S.C.; Hyndman, R.J. Forecasting Methods and Applications; John Wiley & Sons:

Toronto, ON, Canada, 2008.31. Piasecki, A.; Jurasz, J.; Skowron, R. Forecasting surface water level fluctuations of lake Serwy (Northeastern

Poland) by artificial neural networks and multiple linear regression. J. Environ. Eng. Landsc. Manag. 2017, 25,379–388. [CrossRef]

32. Kadam, A.K.; Wagh, V.M.; Muley, A.A.; Umrikar, B.N.; Sankhua, R.N. Environment. Prediction of waterquality index using artificial neural network and multiple linear regression modelling approach in ShivgangaRiver basin, India. Model Earth Syst. Environ. 2019, 5, 951–962. [CrossRef]

33. Singh, A.; Imtiyaz, M.; Isaac, R.K.; Denis, D.M. Comparison of soil and water assessment tool (SWAT)and multilayer perceptron (MLP) artificial neural network for predicting sediment yield in the Nagwaagricultural watershed in Jharkhand, India. Agric. Water Manag. 2012, 104, 113–120. [CrossRef]

34. Hertz, J.A. Introduction to the Theory of Neural Computation; CRC Press: Boca Raton, FL, USA, 2018.

Page 14: Machine Learning-Based Water Level Prediction in Lake Erie · 2020. 9. 23. · 1. Introduction Water level plays an important part in the community’s well-being and economic livelihoods

Water 2020, 12, 2654 14 of 14

35. Lekkas, D.F.; Onof, C.; Lee, M.J.; Baltas, E.A. Application of artificial neural networks for flood forecasting.Glob. Nest J. 2004, 6, 205–211.

36. Ghorbani, M.A.; Deo, R.C.; Karimi, V.; Kashani, M.H.; Ghorbani, S. Design and implementation of a hybridMLP-GSA model with multi-layer perceptron-gravitational search algorithm for monthly lake water levelforecasting. Stoch. Environ. Res. Risk Assess. 2019, 33, 125–147. [CrossRef]

37. Quinlan, J.R. Learning with continuous classes. In Proceedings of the 5th Australian Joint Conference onArtificial Intelligence, Hobart, Tasmania, 16–18 November 1992; World Scientific: Singapore, 1992.

38. Solomatine, D.P.; Siek, M.B.L. Flexible and optimal M5 model trees with applications to flow predictions.In Proceedings of the 6th International Conference on Hydroinformatics, Singapore, 21–24 June 2004;World Scientific: Singapore, 2004.

39. Solomatine, D.P.; Dulal, K.N. Model trees as an alternative to neural networks in rainfall—Runoff modelling.Hydrol. Sci. J. 2003, 48, 399–411. [CrossRef]

40. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]41. Wang, X.; Liu, T.; Zheng, X.; Peng, H.; Xin, J.; Zhang, B. Short-term prediction of groundwater level using improved

random forest regression with a combination of random features. Appl. Water Sci. 2018, 8, 125. [CrossRef]42. Bremner, D.; Demaine, E.; Erickson, J.; Iacono, J.; Langerman, S.; Morin, P.; Toussaint, G. Output-sensitive

algorithms for computing nearest-neighbour decision boundaries. Discrete. Comput. Geom. 2005, 33,593–604. [CrossRef]

43. Atkeson, C.G.; Moore, A.W.; Schaal, S. Locally Weighted Learning; Springer: Dordrecht, The Netherlands,1997; pp. 11–73.

44. Poul, A.K.; Shourian, M.; Ebrahimi, H. A comparative study of MLR, KNN, ANN and ANFIS models withwavelet transform in monthly stream flow prediction. Water Resour. Manag. 2019, 33, 2907–2923. [CrossRef]

45. Kinney, J.B.; Atwal, G.S. Equitability, mutual information, and the maximal information coefficient. Proc. Natl.Acad. Sci. USA 2014, 111, 3354–3359. [CrossRef]

46. Choi, C.; Kim, J.; Han, H.; Han, D.; Kim, H.S. Development of Water Level Prediction Models Using MachineLearning in Wetlands: A Case Study of Upo Wetland in South Korea. Water 2020, 12, 93. [CrossRef]

47. Goodfellow, I.; Bengio, Y.; Courville, A. Machine learning basics. In Deep Learning; Kaiser, D.I., Weck, O.L.D.,Eds.; MIT Press: Cambridge, MA, USA, 2016; Volume 1, pp. 98–164.

48. Bazartseren, B.; Hildebrandt, G.; Holz, K.P. Short-term water level prediction using neural networks andneuro-fuzzy approach. Neurocomputing 2003, 55, 439–450. [CrossRef]

49. Yoon, H.; Jun, S.C.; Hyun, Y.; Bae, G.O.; Lee, K.K. A comparative study of artificial neural networks and supportvector machines for predicting groundwater levels in a coastal aquifer. J. Hydrol. 2011, 396, 128–138. [CrossRef]

50. Nadkarni, P. Clinical Research Computing: A Practitioner’s Handbook; Academic Press: Cambridge, MA, USA, 2016.51. Croley II, T. Using climate predictions in Great Lakes hydrologic forecasts. In Climate Variations, Climate Change,

and Water Resources Engineering; Garbrecht, J.D., Piechota, T.C., Eds.; American Society of Civil Engineers:Arlington, VA, USA, 2006; pp. 166–187.

52. Croley II, T.E.; Hartmann, H.C. Resolving thiessen polygons. J. Hydrol. 1985, 76, 363–379. [CrossRef]53. Deo, R.C.; Sahin, M. An extreme learning machine model for the simulation of monthly mean streamflow

water level in eastern Queensland. Environ. Monit. Assess. 2016, 188, 90. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open accessarticle distributed under the terms and conditions of the Creative Commons Attribution(CC BY) license (http://creativecommons.org/licenses/by/4.0/).