23
MABMEM-A Toolbox for High Performance UF-Membranes Martin Weber, BASF SE MABMEM Team

MABMEM-A Toolbox forHigh Performance UF-Membranes · Polymer Dope PESU, PVP, NMP, additives Coagulation Extraction, post treatment Air Gap Coagulation Bath Pore size ... Membrane

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • MABMEM-A Toolbox for HighPerformance UF-Membranes

    Martin Weber, BASF SEMABMEM Team

  • Outline

    • Introduction

    • Objectives – Relation to MachWas Program

    • Team/Workflow

    • Results

    • Conclusions

    • Acknowledgements

  • Socio Economic Megatrends

    Source: EV/BS, ZZS forecast, UN, Lux Research

    PopulationGrowth

    +1.1% p.a.

    Urbanization+50% 2008-30

    Industrialization+3.2% p.a.

    Resource Contamination-5% usable water by 2030

    Energy Demand Efficiency

    2005 202020156.5bn 7.6bn7.2bn

    Water Supply & Demand Balance 2030Km³, based on 154 basins/regions

    1) Agricultural production projections from IFPRI 2) Based on GDP, population projections and agricultural production projections

    from IFPRI; no water productivity gains considered between 2005-20303) Existing supply which can be provided at 90% reliability, based on historical

    hydrology and infrastructure investments through 2010Source: Charting our Water Future, 2009

    900

    600

    3.500

    7004,200

    Agriculture

    Industry

    Municipal &Domestic

    SurfaceWater

    GroundWater

    Existing accessible, sustainable

    supply3)

    2030 withdrawals2)

    6,900

    4,500

    1,500

    Existing withdrawals1)

    4,500

    3,100

    800

    -39%2%

    CAGR 2010-30

    IntroductionMegatrends and Water Industry Challenges

  • IntroductionMembrane Separation Technologies

    Pressure [bar]

    102

    101

    100

    10-1 10-1110102103104105

    102 10 1 10-1 10-2 10-3 10-4

    [nm]

    [µm]

    FiltrationMicrofiltration

    Ultrafiltration

    Nanofiltration

    Reverse Osmosis

    Pollen Yeast Virus Atoms

    Protozoa Bakteria Aqu. Salts

    Colloids Org. Compounds

    Organic Macromolecules

    Porediameter

  • IntroductionUltrafiltration in Water Treatment

    Ultrafiltration

    Ground, Lake & Surface Water

    Industrial Treatment

    Municipal Treatment

    Sea Water Waste Water

    Local

    PoU PoE PoU = Point of UsePoE = Point of Entry

  • IntroductionInfluence of Fouling

    • Performance of UF-membranes limited by fouling issues• Hydrophilic membrane materials show lower fouling tendency• Additional functionalities of UF-membranes possible?

  • IntroductionHollow Fiber Spinning Process

    Bore Fluidwater / solvent

    Polymer DopePESU, PVP,

    NMP, additives

    Coagulation Extraction, post treatment

    Air Gap

    Coagulation Bath

    Pore size ~ 30 nm

    Multibore® Fiber

  • IntroductionModification of the Membrane Surface

    Membrane formation process

    hydrophilic surface

    „matrix“

    Precipitation(Vitrification in a few seconds!!)

    „matrix“-approach- low Tg of PESU-PEO!!

    „additive“-approach- higher Tg- Mobility of additive

    - hydrophilicity- mobility- miscibility- ...

  • Objectives of MABMEMRelation to MachWas Program

    • Improve permeability of UF-membranes• Improve chemical resistance of UF-

    membranes• Create basic knowledge for the design of

    appropriate additives

    • Integrate additional functionality forion removal

  • Approach of MABMEMA Toolbox for Membranes

    Toolbox

    Base Polymers

    PESU

    PPSU

    -“high flux“- high porosity- PWP > 1500 l/m² h bar- MWCO < 100 kD

    -“chemical resistant“- PPSU based- PWP > 500l/m² h bar - MWCO < 50 kD

    - „tight UF- PWP > 400l/m² h bar- MWCO < 10 kD

    - UF + selective adsor-ption of heavy metals

    - PESU-PEO- PESU-PPO- PESU-PEO-PPO

    - PPSU-PEO- PPSU-PEO-PPO-PEO

    - PEI-PSU-PEI- PPO/PEO-PSU

    - Coating of membranestructure

    Additives

    +

    UF/MF - Membranes

  • Team/Workflow

    Start: 01.05.2016; duration 3 years

  • ResultsAdditive Synthesis

    Y = H: PESU multiblock copolymer

    X: PEO

    X: PPO

    X: Poly THF

    X: PIB

    Hyd

    roph

    ilici

    ty

    Flex

    ibili

    ty

    Miscible with PESU: Tg decrease

    Not Miscible with PESU: Tg of PESU almost constant

    n n-x x HO - (EO)n - X - (EO)n - O-Y

    Y = Me, R: PESU triblock copolymer

    “blocky“-structure due toreactivity difference

  • ResultsAdditive Synthesis – PEO-PESU-PEO

    + + HO - X - O-Alkyl

    PESU-Multiblock-Copolymer

    X: PEO

    • Variation of PESU block length by stoichiometry

    • Composition can be tuned by amount andblock length of hydrophilic unit

    • Variation molecular weight possible

    • High conversion allows direct use of additive solution

  • ResultsViscosity Functions of Solutions

    • Cox-Merz Rulevalid

    • Solutions con-taining additiveshave lower vis-cosity

  • ResultsMembrane Preparation (Flat Sheets)

    Influence of post treatment on membrane properties was investigated Self-made dope solution was used

    Tenfold increase of permeability after post treatment Self prepared dope solution similar to supplied one (BASF) Reduction of PVP during post treatment clearly detectable in ATR-FT-IR Contact angle ≈ 70º for all three membranes (sessile drop method)

    0

    20

    40

    60

    80

    100

    0

    200

    400

    600

    800

    1000

    without posttreatment

    with posttreatment

    self prepareddope solution -

    with posttreatment

    Rej

    ectio

    n [%

    ]

    Perm

    eability [Lm

    ‐2h‐

    1 bar

    ‐1] 

    Base Membrane

    Permeability Rejection

    0

    20

    40

    60

    80

    100

    120

    640114016402140264031403640

    Transm

    ission [%

    ]

    Wavenumber [cm‐1]

    ATR‐FT‐IR

    With post treatment Without post treatment PVP

  • ResultsMembrane CharacterisationStructure analysis – SEM

    Without post treatment after post treatment self-made dope solution –after post treatment

    All samples show regular sponge like bulk structure and defined separation layer

    SEM analysis shows no difference in general membrane structure after post treatment

    CrossSection

    Top

    Bottom

  • ResultsFiber Spinning

    -0026-1

    200 µm

    -0026-3

    -0026-4

    -0026-5

    -0026-6

    -0026-9

    -0026-8

    -0026-7

    -0026-2

    Mn of PESU-block orreference1. 2,4 kDa2. 4,2 kDa3. 12,9 kDa4. 6,1 kDa5. 2,6 kDa (Add. Pluriol)6. 2,4 kDa (Add. Pluronic)7. 3,5 kDa (St. Lutensol)8. 4,7 kDa (St. Pluriol)9. 14 kDa (St. Pluronic)

    Mn of PESU-block orreference1. 2,4 kDa2. 4,2 kDa3. 12,9 kDa4. 6,1 kDa5. 2,6 kDa (Add. Pluriol)6. 2,4 kDa (Add. Pluronic)7. 3,5 kDa (St. Lutensol)8. 4,7 kDa (St. Pluriol)9. 14 kDa (St. Pluronic)

  • ResultsModule Preparation

    • Sealant needs to penetrateinto the membrane structureto avoid “axial leakage“

    • Viscosity of sealant needs tobe low, pot life realtively high

    • Potting system has to beadjusted to membrane material

    Modules for short-term fouling tests

    (0,036 or 0,051 m2 filtration area)

  • ResultsAdsorptive FoulingEvaluation of fouling conditions

    50 % dilution and 24 h fouling time will be used for further experiments

    Membrane

    Foulant0510152025303540

    0 5 10 15 20 25

    RFR [%

    ]

    Time [h]

    RFR − Influence of  me

    0

    10

    20

    30

    40

    50

    0 20 40 60 80 100

    RFR [%

    ]

    Dilution [%]

    RFR − Influence of concentration

    Diluted flower soil was used

    RFR addicted to concentration

    Concentrated flower soil was used

    Relative flux reduction (RFR) as indicator for fouling

    Significant fouling already after 8–16 h

    Without Fouling

    After 24 h

  • ResultsFouling Tests

    “Poseidon" Ultrafiltration plant (UF) from Convergence Industry B.VFiltration and backwash pressure: 0- 6 bar

    Filtration flow rate: 4-200 L/hBackwash flow rate: 2- 100 L/h

  • ResultsFouling Trials with Flower Soil1.c)

    21

    Pure waterfiltration

    Foulantfiltration

    Pure waterfiltrationand BW (3x)

    Chemi-cal cleaning

    Pure waterfiltration andBW (3x)

    Flower soil causes strong fouling, but no irreversible fouling

    Pure waterfiltration

  • Conclusions

    • Large number of new additives prepared andcharacterised

    • Membrane formation works for most of theadditives, characterisation of the membranes (flat sheets, fibers) on going

    • Fouling procedures and several possible foulantsinvestigated, focus on flower soil extract

    • First additives for metal adsorption prepared, membrane tests started

  • Acknowledgements

    • BMBF for funding

    • PTJ for support

    • MABMEM-Team (UDE, IWW, HZG, inge, BASF SE)