31
M. Lozano, E. Cabruja, A. Collado Summary of Bump Bonding Techniques for Pixel Systems Centro Nacional de Microelectrónica Barcelona (Spain)

M. Lozano, E. Cabruja, A. Collado Summary of Bump Bonding Techniques for Pixel Systems Centro Nacional de Microelectrónica Barcelona (Spain)

Embed Size (px)

Citation preview

Page 1: M. Lozano, E. Cabruja, A. Collado Summary of Bump Bonding Techniques for Pixel Systems Centro Nacional de Microelectrónica Barcelona (Spain)

M. Lozano, E. Cabruja, A. Collado

Summary of Bump Bonding Techniques for Pixel Systems

Centro Nacional de Microelectrónica

Barcelona (Spain)

Page 2: M. Lozano, E. Cabruja, A. Collado Summary of Bump Bonding Techniques for Pixel Systems Centro Nacional de Microelectrónica Barcelona (Spain)

VERTEX 2000 2/31

INDEX

Pixel systems Summary of bump bonding techniques Technology comparison and forecasts Testing issues Thermal issues Conclusions

Page 3: M. Lozano, E. Cabruja, A. Collado Summary of Bump Bonding Techniques for Pixel Systems Centro Nacional de Microelectrónica Barcelona (Spain)

VERTEX 2000 3/31

Pixels systems

Pixel detector chip Two dimensional diode array Material: Si, diamond, SiC, GaAs, CdTe, CdZnT

Electronics chip Built on a separate substrate Provides: Amplification, data storage, data compression,

communication

Pixel detector bonded to electronics

Page 4: M. Lozano, E. Cabruja, A. Collado Summary of Bump Bonding Techniques for Pixel Systems Centro Nacional de Microelectrónica Barcelona (Spain)

VERTEX 2000 4/31

Pixel systems

Small pixel size (50 -250 µm) High number of pixels (100 - 10 000) Very low leakage current Low cross talk between pixels Unaffordable with conventional bonding technologies Ideally suited for bump bonding flip chip technology Not commercially available (yet)

Many difficulties to be solved

Page 5: M. Lozano, E. Cabruja, A. Collado Summary of Bump Bonding Techniques for Pixel Systems Centro Nacional de Microelectrónica Barcelona (Spain)

VERTEX 2000 5/31

Bump bonding flip chip technology

Process steps: Direct bonding Rerouting

» Detector and/or amplifier chips Under Bump Metallisation (UBM) Bumping

» On detector or on amplifier chip, depending on the application

Flip chip Reflow, anneal o adhesive bonding Underfilling

Page 6: M. Lozano, E. Cabruja, A. Collado Summary of Bump Bonding Techniques for Pixel Systems Centro Nacional de Microelectrónica Barcelona (Spain)

VERTEX 2000 6/31

Rerouting

Rerouting Adapt pad distribution between

detector and electronics chips Material: Al Up to 4 layers High reliability (99.8%) Increase cost Best to adjust pixel and

amplifier size to avoid it

Dielectric choice Inorganic

» Deposited SiO2, Si3N4

» Spin-on glass (SOG) Organic:

» Polyimide Photosensitive polyimide

» Reduce complexity and cost. Another choice for the

detector: no passivation

Page 7: M. Lozano, E. Cabruja, A. Collado Summary of Bump Bonding Techniques for Pixel Systems Centro Nacional de Microelectrónica Barcelona (Spain)

VERTEX 2000 7/31

Under Bump Metallisation (UBM)

Aluminum not suitable for direct bump bonding Al2O3 passivation layer Au-Al intermetallics

Process steps (mod. 1) Sputter etching metal layers Normal photolithography Metal etching

Process steps (mod. 2) Spin on 5 µm photoresist Sputter etching metal layers Lift off

Metal layers : 1st: Diffusion barrier and adherence 2nd: Soldering 3rd: Passivation for 2nd layer

Examples: Ti/Ni/Au Ti/Au/Cu/Au

Page 8: M. Lozano, E. Cabruja, A. Collado Summary of Bump Bonding Techniques for Pixel Systems Centro Nacional de Microelectrónica Barcelona (Spain)

VERTEX 2000 8/31

Bumping technologies

Evaporation through mask Evaporation with thick photoresist Screen printing Stud bumping (SBB) Electroplating Electroless plating Conductive Polymer Bumps

Page 9: M. Lozano, E. Cabruja, A. Collado Summary of Bump Bonding Techniques for Pixel Systems Centro Nacional de Microelectrónica Barcelona (Spain)

VERTEX 2000 9/31

Evaporation through mask (C4)

Process steps Mask alignment Sequential evaporation of

» Thin UBM layer: Cr/Cr-Cu/Cu/Au

» Ball: Pb/Sn Reflow into spheres

Characteristics Proprietary of IBM Need for a metallic mask Pitch 200 µm Bump height 100 - 125 µm Expensive

Page 10: M. Lozano, E. Cabruja, A. Collado Summary of Bump Bonding Techniques for Pixel Systems Centro Nacional de Microelectrónica Barcelona (Spain)

VERTEX 2000 10/31

Evaporation with thick photoresist

Process steps Spin on thick photoresist (30 - 60 µm) Sequential evaporation of

» Thin UBM layer: Cr/Cr-Cu/Cu/Au

» Ball: Pb/Sn Lift off photoresist Reflow into spheres

Characteristics Variation of previous method Higher pitch

Page 11: M. Lozano, E. Cabruja, A. Collado Summary of Bump Bonding Techniques for Pixel Systems Centro Nacional de Microelectrónica Barcelona (Spain)

VERTEX 2000 11/31

Screen printing

Process steps Stencil alignment Solder paste deposition with a squeegee Reflow into spheres

Characteristics Minimum pitch: 200 µm Stencil printing thickness: 100 - 50 µm

Same bump height Solder pastes:

» Sn/Pb, Sn/Pb/Ag, Sn/Ag, Sn/Sb» Pb free pastes: In, Pd, Sn/Ag/Cu

Most widespread Very high yield

Page 12: M. Lozano, E. Cabruja, A. Collado Summary of Bump Bonding Techniques for Pixel Systems Centro Nacional de Microelectrónica Barcelona (Spain)

VERTEX 2000 12/31

Stud bumping (SBB)

Process steps Sequential creation of a ball with a

ball bonder and ball bond Overall planarisation of bumps Optional reflow into spheres

Charactersitics Ball material: Au (Pb free) Min. ball size: 45 µm (3 wire ) Min. pitch: 70 µm No need for UBM in substrate Usable in single chips No self alignment Cheap, but low throughput

Stud Bump BondingSolder Ball BumpingSBB

Page 13: M. Lozano, E. Cabruja, A. Collado Summary of Bump Bonding Techniques for Pixel Systems Centro Nacional de Microelectrónica Barcelona (Spain)

VERTEX 2000 13/31

Electroplating bump bonding

Process steps Ni/Au sputtering over the

whole wafer Photolithography to delimit

bump areas

(thick photoresist) Electrolytic deposition:

» Cu layer

» Pb/Sn bumps Photoresist elimination Etch wafer metalisation Reflow into spheres

Page 14: M. Lozano, E. Cabruja, A. Collado Summary of Bump Bonding Techniques for Pixel Systems Centro Nacional de Microelectrónica Barcelona (Spain)

VERTEX 2000 14/31

Electroplating bump bonding

Characteristics Other bump materials:

» Au

» Au/Sn The plating process can induce

wafer stress Equipment compatible with

other microelectronic technologies

Minimum pitch 40 µm Bump height 30 - 75 µm

Difficulties: Bump height highly dependent

in current density Variations in current density

across the wafer gives non uniformity in bump height

Difficult in using thick photoresists

» Deposit

» Align

» Exposure

Page 15: M. Lozano, E. Cabruja, A. Collado Summary of Bump Bonding Techniques for Pixel Systems Centro Nacional de Microelectrónica Barcelona (Spain)

VERTEX 2000 15/31

Electroless plating

Process steps Pad conditioning Zinkation Bump electroless deposition

Characteristics No need for electrodes Photolithography not required Bump material: Ni/Au Minimum pitch 75 µm Bump diameter 40 µm Bump height 5 - 30 µm

Page 16: M. Lozano, E. Cabruja, A. Collado Summary of Bump Bonding Techniques for Pixel Systems Centro Nacional de Microelectrónica Barcelona (Spain)

VERTEX 2000 16/31

Conductive Polymer Bumps

Process steps Thick photoresist patterning Conductive polymer filling Selective polymer curing Photoresist removal

Characteristics Very new procedure Minimum bump size 100 µm Pb free Higher contact resistance

» Rc > 100 m

Page 17: M. Lozano, E. Cabruja, A. Collado Summary of Bump Bonding Techniques for Pixel Systems Centro Nacional de Microelectrónica Barcelona (Spain)

VERTEX 2000 17/31

Flip chip alignment

Special equipment required Pick and place Alignment

Accuracy better than 1/3 bump Alignment State of the art:

Mechanical: 5µm Infrared: 2µm

Self alignment during reflow allows certain degree of tolerance

Industrial equipment requires wafers as substrates, not chips

Page 18: M. Lozano, E. Cabruja, A. Collado Summary of Bump Bonding Techniques for Pixel Systems Centro Nacional de Microelectrónica Barcelona (Spain)

VERTEX 2000 18/31

CTE (ppm/ºC)

Si 2.6C 1.18SiC 4.6 - 5.9GaAs 6.86CdTe 4.9CdZnTe 4.89

Melt. Point (ºC)

57Bi 43Sn 13962Sn 36Pb 2Ag 17963Sn 37Pb 18390Sn 9.5Bi 0.5Cu 19896.5Sn 3.5Ag 22180Au 20Sn 28095Pb 5Sn 308

Thermal stress: CTE mismatch No problem with silicon detectors Could be an issue with alternative

materials

Reflow Reflow

Soft bumps (PbSn): direct reflow Hard bumps (Au, Ni) : solder paste High temperature step

» Reflow temp. > Melt. Point + 40ºC

Use low reflow temperatures Problems with further soldering

steps of the pixel system

Page 19: M. Lozano, E. Cabruja, A. Collado Summary of Bump Bonding Techniques for Pixel Systems Centro Nacional de Microelectrónica Barcelona (Spain)

VERTEX 2000 19/31

Adhesive bonding

Isotropic (ICA) or anisotropic (ACA) conductive adhesives

Eliminates reflow Requires hard bumps:

Au, Au/Sn, Ni

There are anisotropic adhesive pastes and films

Advantages Low thermal processing Eliminates solder mask Excellent fine pitch No clean Pb free

Disadvantages Lower mechanical strength No self-alignment

» Higher accuracy of alignment Higher electrical resistance Higher thermal resistance More difficult to rework

Page 20: M. Lozano, E. Cabruja, A. Collado Summary of Bump Bonding Techniques for Pixel Systems Centro Nacional de Microelectrónica Barcelona (Spain)

VERTEX 2000 20/31

Underfilling

Optional Curing temperature: 140 -

180 ºC Materials:

Silicones Epoxies

In pixel systems it will be necessary to evaluate: Interaction of fillers with

detector surface Radiation resistance of the

materials used

Advantages Improve reliability Reduce thermal stress Increase fatigue resistance Protect from moisture and

contamination Avoid corrosion

Disadvantages Difficults reworking Need of a dispensing machine Increase cost

Page 21: M. Lozano, E. Cabruja, A. Collado Summary of Bump Bonding Techniques for Pixel Systems Centro Nacional de Microelectrónica Barcelona (Spain)

VERTEX 2000 21/31

Bump technology comparison

Pb alloys can be alfa sources

Min.ball size

Min.Pitch

Bumpmaterial UBM Substrate Comments

Evaporationthrough mask

100 µm 250 µm Pb/Sn Cr-Cu Wafer No fine pitch

Screen printing 100 µm 200 µmPb/Sn

Sn/Ag/CuTi-Ni-Au Wafer

Most widespreadCheap

Stud bumping(SBB)

70 µm 45 µmAu

Pb/SnNo need

WaferChip

Low throughputNo self-alignment

Electroplating 25 µm 40 µmPb/Sn

Cu/Sb/Ag/Sn

Cr-CuTiW-Cu-Au

Ti-Ni-AuWafer

Need for tight control

Electroless plating 40 µm 70 µm Ni/Au ZnWaferChip

Need for pad conditioning

Conductive PolymerBumps

100 µm 150 µm Polymer Cr-Au Wafer Very new

Min.ball size

Min.Pitch

Bumpmaterial UBM Substrate Comments

Evaporationthrough mask

100 µm 250 µm Pb/Sn Cr-Cu Wafer No fine pitch

Screen printing 100 µm 200 µmPb/Sn

Sn/Ag/CuTi-Ni-Au Wafer

Most widespreadCheap

Stud bumping(SBB)

70 µm 45 µmAu

Pb/SnNo need

WaferChip

Low throughputNo self-alignment

Electroplating 25 µm 40 µmPb/Sn

Cu/Sb/Ag/Sn

Cr-CuTiW-Cu-Au

Ti-Ni-AuWafer

Need for tight control

Electroless plating 40 µm 70 µm Ni/Au ZnWaferChip

Need for pad conditioning

Conductive PolymerBumps

100 µm 150 µm Polymer Cr-Au Wafer High RcVery new

Page 22: M. Lozano, E. Cabruja, A. Collado Summary of Bump Bonding Techniques for Pixel Systems Centro Nacional de Microelectrónica Barcelona (Spain)

VERTEX 2000 22/31

1999 SIA Technology Roadmap Technology roadmap predictions Not technological details High pitch flip chip (< 50 µm) as needed for high resolution pixel

detectors Seems not to be of primary commercial interest in USA It will remain at lab level until 2007 Probably price will not decrease in short term

Flip chip pitch area (µm) 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

High performance

200 200 200 200 200 200 150 150 150 150

Low cost applications 180 165 150 130 120 110 100 70 50 35

Page 23: M. Lozano, E. Cabruja, A. Collado Summary of Bump Bonding Techniques for Pixel Systems Centro Nacional de Microelectrónica Barcelona (Spain)

VERTEX 2000 23/31

1999 Japan JISSO Technology Roadmap Similar figures to SIA Roadmap Japan is leading Pb free bumps

For environmental reasons, but good for radiation detectors

Although not listed, electroless should also be considered Pitch target: 50 µm

1999 2000 2005 2010Max number of pads 256 - 2300 560 - 4300 560 - 8400 560 - 14400Chip thickness (µm)Area pad pitch (µm) 250 - 70 120 - 50 100 - 50 50Bump diameter (µm) 150 - 100 100 - 60 60 - 40 50 - 30Bump height (µm) 120 - 80 100 - 60 80 - 40 60 - 30Bump material PbSn, AuBump formation methodBump bonding material SnPb paste

Electroplatting, Stud bumpingSnPb paste, Pb free solder

PbSn, Au, AgSn

650 - 175 650 - 100

Page 24: M. Lozano, E. Cabruja, A. Collado Summary of Bump Bonding Techniques for Pixel Systems Centro Nacional de Microelectrónica Barcelona (Spain)

VERTEX 2000 24/31

Testing issues

Determine electrical properties of bump bonds Contact resistance Temperature variation

Determine re-routing capacitances

Leakage between bumps Evaluate reliability of bump

bonds

Contact Resistance Very small resistance values (m) Requires the use of special test

structures Contact resistance of:

» Rerouting metal measurement

» UBM

» Bumps

Page 25: M. Lozano, E. Cabruja, A. Collado Summary of Bump Bonding Techniques for Pixel Systems Centro Nacional de Microelectrónica Barcelona (Spain)

VERTEX 2000 25/31

Rerouting metal contact measurement Test chip with special Kelvin

contact resistance test structures Chip metal with UBM Flip chip to substrate through ball UBM to substrate through ball

Page 26: M. Lozano, E. Cabruja, A. Collado Summary of Bump Bonding Techniques for Pixel Systems Centro Nacional de Microelectrónica Barcelona (Spain)

VERTEX 2000 26/31

Contact resistance results

0

1

2

3

4

5

-40 -20 0 20 40 60 80 100

Temperature (ºC)

Contact resistance (mW)

Al flip chip with Al substrate (through ball)

Au with Al on substrate

Au flip-chip with substrate (through ball)

Page 27: M. Lozano, E. Cabruja, A. Collado Summary of Bump Bonding Techniques for Pixel Systems Centro Nacional de Microelectrónica Barcelona (Spain)

VERTEX 2000 27/31

Other testing issues

Leakage between bumps: Final leakage current with the system finished. Difficult to measure Need not only for test chips, but for test system

Bump bonding yield Find for dead channels Separate dead channels at the amplifier or during bonding

System reliability

Page 28: M. Lozano, E. Cabruja, A. Collado Summary of Bump Bonding Techniques for Pixel Systems Centro Nacional de Microelectrónica Barcelona (Spain)

VERTEX 2000 28/31

Thermal issues

High density of heat generation with difficult evacuation

Bumps can evacuate heat but is not the best way Heatsink needed

In substrate chips In backside of flipped chip With forced convection

» Air cooled

» Liquid cooled

Good thermal design Good material choice for heat evacuation

Page 29: M. Lozano, E. Cabruja, A. Collado Summary of Bump Bonding Techniques for Pixel Systems Centro Nacional de Microelectrónica Barcelona (Spain)

VERTEX 2000 29/31

Thermal measurements

Using specific test chips with heaters and temperature sensors

Thermal measurements Thermal conductivities Thermal resistances

Thermal modeling Thermal conductivities Heat dissipation

Page 30: M. Lozano, E. Cabruja, A. Collado Summary of Bump Bonding Techniques for Pixel Systems Centro Nacional de Microelectrónica Barcelona (Spain)

VERTEX 2000 30/31

Example of thermal measurements

CNM MCM-D tecnology Thermal conductivities

» Si: 150 W/mK

» Pb/Sn bump ball: 5 W/mK

» Underfill: 0.3 W/mK

» Polyimide: 0.2 W/mK Thermal resistance

» 1 cm2 Si chip: 0.03 K/W

» 1 ball: 850 K/W

» 1000 ball: 0.85 K/W Thermal model:

» Heating of test flip chip without heatsink

40

50

60

70

80

90

100

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8Power (W)

Flip chip temperature (ºC)

Modelled

Measured

Page 31: M. Lozano, E. Cabruja, A. Collado Summary of Bump Bonding Techniques for Pixel Systems Centro Nacional de Microelectrónica Barcelona (Spain)

VERTEX 2000 31/31

Conclusions

Flip chip bump bonding is the perfect technology for pixel systems

Still difficulties to be solved Pb alpha emission Thick photoresist manipulation Testing Thermal behavior

Commercial interest 50 µm pitch still not

commercially available Prices will decrease

CNM is involved in different EC projects SUMMIT

» MCM-D technology

» Screen printing

» Finished CIRRµS

» Jan 2000 - Dec 2002

» High volume, low cost, Pitch 40 µm

» Partners: Philips, CNM, CS2, Freudenberg, IMEC, TEMIC, TUB

» Evaluation of different technologies