24
Maccor: Battery Testing Equipment Lean Six Sigma: Green Belt Report Collaborators: Brian King [email protected], Maccor Inc. Farhana Enam [email protected], The University of Oklahoma Jay Patel [email protected], The University of Oklahoma Leslie Barnes [email protected], The University of Oklahoma Nauman Khan [email protected], The University of Oklahoma Nitya Gupta [email protected], The University of Oklahoma Tarek Firoze Akhtar [email protected], The University of Oklahoma Submitted to: Dr. B. Mustafa Pulat [email protected], The University of Oklahoma

LSS Maccor - Green Belt Project

Embed Size (px)

Citation preview

Page 1: LSS Maccor - Green Belt Project

Maccor:  Battery  Testing  Equipment  Lean  Six  Sigma:  Green  Belt  Report  

       

                           Collaborators:        v Brian  King  -­‐  [email protected],  Maccor  Inc.  v Farhana  Enam  -­‐  [email protected],  The  University  of  Oklahoma    v Jay  Patel  -­‐  [email protected],  The  University  of  Oklahoma  v Leslie  Barnes  -­‐  [email protected],  The  University  of  Oklahoma  v Nauman  Khan  -­‐  [email protected],  The  University  of  Oklahoma    v Nitya  Gupta  -­‐  [email protected],  The  University  of  Oklahoma  v Tarek  Firoze  Akhtar  -­‐  [email protected],  The  University  of  Oklahoma      

Submitted  to:  v Dr.  B.  Mustafa  Pulat  -­‐  [email protected],  The  University  of  Oklahoma    

Page 2: LSS Maccor - Green Belt Project

2    

ABSTRACT      Maccor  Inc,  company  has  been  plagued  with  defects  and  intermittent  connections  related  to  their  customer  interface.  Previous  customers  have  had  difficulties  with  the  workmanship,  quality  and  reliability  of  the  Anderson  Power  Pole  connections.  Despite  initial  visual  inspections  and  testing  these  defects  passed  Maccor’s  Quality  Assurance  department.  Data  of  7  metrics  showing  significant  defects  of  12  Maccor  Battery  test  systems  were  gathered.  

 When  analyzing  the  data  and  with  discussions  from  Maccor  employees  it  was  determined  that  Maccor  had  recently  hired  several  new  wiring  assembly  personnel  that  may  not  have  understood  the  process  or  expectations  completely.  Maccor  did  not  have  a  formal  or  visual  training  program,  only  peer  to  peer.  As  a  group  we  discussed  the  possibility  to  help  Maccor  resolve  was  to  complete  a  standard  operating  system  and  to  make  a  visual  poster  explaining  procedures  and  techniques  including  visual  example.  

 The  results  of  defects  from  the  initial  12  Maccor  Battery  test  systems  gave  the  Customer  Interface  a  high  amount  of  defects  per  unit  58.33%  with  a  low  Sigma  value  of  2.883.  The  Rolled  Throughput  Yield  was  a  first  attempt  of  83.56%.  The  owner  of  the  company  has  a  desired  view  of  maintaining  99%  or  better  in  everything  related  to  shipping  a  Maccor  system.  

 The  results  of  defects  after  the  implementation  of  the  SOS  and  Visual  poster  gave  the  Customer  Interface  an  improved  defect  per  unit  of  25%  with  a  higher  Sigma  value  of  3.536.  The  Rolled  Throughput  Yield  was  a  first  attempt  improved  to  that  of  99.89%.  What  is  not  explained  in  these  numbers  is  that  of  the  seven  metrics  observed  many  of  them  had  multiple  defects  and  numerous  hours  of  rework  and  materials  included.  The  cost  of  rework  of  the  first  12  Maccor  systems  was  $4193.55  and  after  the  improved  phase  for  a  second  set  of  12  Maccor  systems  was  $48.85.  The  annual  return  of  investment  is  10259%.  

 

 

 

     

Page 3: LSS Maccor - Green Belt Project

3    

DEFINE  PHASE:    1.1   Problem  Statement     Defects  in  the  customer  interface  of  the  Maccor  battery  testing  equipment     are  creating  excessive  variability  and  little  standardization  in  the  wiring     process,  which  results  in  multiple  defects  and  numerous  hours  of  rework.          1.2   Identify  Critical  to  Quality/Performance  

Customers  are  wanting  to  be  able  to  interface  with  their  batteries  without  flaw  and  polarity,  which  dealt  to  incorrect  placement  of  color  coded  wiring  insulation  (backwards  battery  connection)  free  from  intermittent  connection  (connections  were  not  reliable  –  due  to  over  bent  appc  creating  a  gap  into  the  mates  of  appc  connections).    

 1.3   Performance  Metrics  

We  will  collect  the  number  of  defects  before  and  after  improvement  for  our  measure  of  quality  analysis;  the  mean  and  standard  deviation  of  the  defects  will  also  be  considered.    

 1.4   Project  Objectives  

We  target  to  meet  the  company’s  goal  of  0.0025%  defects  per  cabinet  or  less.  The  current  defect  percentage  does  not  meet  this  goal,  which  will  be  defined  further  in  the  Measure  phase.  This  means  there  should  be  at  most  1  defect  per  cabinet  (400  wires).    

   1.5   Customers,  Suppliers  and  Process  Outline    

 

SUPPLIER  • Mechanical  Wiring  Assembler  

INPUTS  • Mechanical  Assembler  • Wire  Cutters  • Wire  Strippers    • Pneumatic    Crimper  • Air  Pressure  Source  • Battery  Testing  Equipment  with  previous  processes  complete  • Anderson  Power  Pole  Contacts  

PROCESS  • SEE  BELOW  

OUTPUTS  • Completed  battery  testing  equipment  product  

CUSTOMER  • Quality  Control  Technician  • Final  Product  Customer  (ITM,  Apple,  etc.)  

Page 4: LSS Maccor - Green Belt Project

4    

   This  process  will  be  repeated  multiple  times  as  there  are  8  wires  for  each  row  with  a  total  of  12  rows  for  each  customer  interface,  as  shown  below.  

 

       

designate  and  

seperate  the  wires  in  regards  to  

row  location  on  customer  interface  

measure  and  cut  each  wire  to  specieic  length  based  on  the  location  of  the  

powerpole  interface  (column  location)  

measure  and  strip  the  length  

of  terminated  powerpole  insulation  

attach  an  Anderson  powerpole  contact  to  striped  and  terminated  

wire  

crimp  Anderson  powerpole  contact  with  

pneumatic  crimper  

insert  Anderson  powerpole  contact  

into  correct  customer  interface  location  based  on  the  color  of  the  wire's  insulation  

Page 5: LSS Maccor - Green Belt Project

5    

1.6   Benefits  and  Value  of  Project    

The  value  of  this  project  is  to  improve  overall  quality  and  reliability  to  the  customer  interface  of  Maccor  Battery  test  systems.  This  could  possibly  have  a  long-­‐standing  relationship  with  the  end  customers  and  could  sway  the  customers  desire  with  regards  to  future  purchases.    Maccor  Inc.  builds  approximately  150  Systems  per  year  with  a  customer  interface  of  96  channels  per  system.  Using  J08294  as  an  example  for  a  single  worst  case  system  ROI  the  following  is  true.    

𝑅𝑂𝐼 =384  𝑐𝑟𝑖𝑚𝑝𝑠 $0.05  𝑝𝑒𝑟  𝑐𝑜𝑛𝑡𝑎𝑐𝑡  𝑐𝑟𝑖𝑚𝑝 + (8  𝑙𝑎𝑏𝑜𝑟  ℎ𝑜𝑢𝑟𝑠/𝑠𝑦𝑠𝑡𝑒𝑚)($65.00/ℎ𝑜𝑢𝑟)

16  𝑠𝑡𝑢𝑑𝑒𝑛𝑡  𝑑𝑒𝑠𝑖𝑔𝑛  ℎ𝑜𝑢𝑟𝑠 $30.00  𝑝𝑒𝑟  ℎ𝑜𝑢𝑟 + ($25.00  𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙  𝑐𝑜𝑠𝑡)  

 

𝑅𝑂𝐼 =  $539.20$505.00 = 1.0677 = 106.77%  𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡  

   

𝑅𝑂𝐼   𝑦𝑒𝑎𝑟𝑙𝑦 =$539.20 150  𝑠𝑦𝑠𝑡𝑒𝑚𝑠

$505 =  $80,880$505 = 160.158 = 16,015%  𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡    

     

Page 6: LSS Maccor - Green Belt Project

6    

MEASURE  PHASE:    2.1     Data  Collection    

The  current  state  metric  performance  data  was  collected  for  twelve  systems,  and  is  as  tabulated  below.  

 

   2.2     “AS  IS”  Value  Stream  Map    

By  taking  the  current  manufacturing  process  and  other  relevant  data  into  consideration,  the  “AS  IS”  Value  Stream  was  mapped  using  the  support  process  boxes.  

   

     

Defect J08290 J08291 J08292 J08293 J08294 J08295 J08296 J08297 J08298 J08299 J08300 J08301Wire  stripped  too  long 0 0 0 0 384 121 0 5 1 0 1 0Visible  wire  strands 0 6 0 0 102 116 0 9 9 0 14 6Crimp  on  wrong  side  contact 0 0 0 0 2 2 0 0 0 0 0 0Wire  crimped  on  insullation 0 0 0 0 0 1 0 0 0 0 0 0Wire  pulled  from  contacts 0 0 0 0 3 5 0 0 0 0 0 2Wrong  color  in  housing 0 0 0 0 0 0 0 0 0 0 0 0Contact  bent  down 0 0 0 0 0 0 0 0 0 0 0 0Sum  of  Defects 0 6 0 0 491 245 0 14 10 0 15 8Rework  in  hours  in  disassembly 0.5 4 4 0.5 0.5 0.5 0.5Rework  in  hours  in  reassembly 1 8 8 2 2 2 1

Page 7: LSS Maccor - Green Belt Project

7    

2.3     Baseline  Performance  Display.    

The  observed  data  was  used  to  calculate  baseline  performance.  The  tables  below  show  the  Average,  Standard  Deviation,  Defects  per  Million  Opportunities  (DPMO)  and  Rolled  Throughput  Yield  (RTY)  for  the  relevant  data.    

 • Average,  Standard  Deviation  &  DPMO    

   

         

Total  Defects 348+121+5+1+1 512 Total  Defects6+102+116+9+9+1

4+6262

Total  Possible  Defects 96*4*12 4608 Total  Possible  Defects 96*4*12 4608

Percentage  of  Defects .11111*100 11.11% Percentage  of  Defects .05686*100 5.69%

0.056858

Visible  wire  strands

Defects  Per  Units  (DPU)  =  Total  Defects/Total  Units  

Sampled512/4608 0.111111

Wire  Stripped  too  Long

Sigma  (σ)NORMSINV(1-­‐

(DPMO/1000000))+  1.5

2.720699

Defects  Per  Units  (DPU)  =  Total  Defects/Total  Units  

Sampled262/4608

Defects  Per  Million  Observed  (DPMO)  =  

(DPU*1000000)/Opportunities  for  error  in  a  unit

(.1111*1000000)/1

111100

Defects  Per  Million  Observed  (DPMO)  =  

(DPU*1000000)/Opportunities  for  error  in  a  unit

(.05686*1000000)/1

56860

Sigma  (σ)NORMSINV(1-­‐

(DPMO/1000000))+  1.5

3.081692

Page 8: LSS Maccor - Green Belt Project

8    

 

     

   

     

Total  Defects 3+5+2 10 Total  Defects 0 0

Total  Possible  Defects 96*4*12 4608 Total  Possible  Defects 96*4*12 4608

Percentage  of  Defects .00217*100 0.22% Percentage  of  Defects 0*100 0.00%

Wire  pulled  from  Contacts

(.00217*1000000)/1

2170

Sigma  (σ)NORMSINV(1-­‐

(DPMO/1000000))+  1.5

4.35233

Defects  Per  Million  Observed  (DPMO)  =  

(DPU*1000000)/Opportunities  for  error  in  a  unit

Wrong  color  in  Housing

Defects  Per  Million  Observed  (DPMO)  =  

(DPU*1000000)/Opportunities  for  error  in  a  unit

(0*1000000)/1 0

Sigma  (σ)NORMSINV(1-­‐

(DPMO/1000000))+  1.5

Defects  Per  Units  (DPU)  =  Total  Defects/Total  Units  

Sampled0/4608 0

Defects  Per  Units  (DPU)  =  Total  Defects/Total  Units  

Sampled(10/4608) 0.00217

Total  Defects 0 0 Total  Defects 7 7

Total  Possible  Defects 96*4*12 4608 Total  Possible  Defects 12 12

Percentage  of  Defects .0*100 0.00% Percentage  of  Defects .58333*100 58.33%

2.883

Contact  bent  down Overall  Observation

Sigma  (σ)NORMSINV(1-­‐

(DPMO/1000000))+  1.5

Defects  Per  Units  (DPU)  =  Total  Defects/Total  Units  

Sampled(7/12)

Defects  Per  Million  Observed  (DPMO)  =  

(DPU*1000000)/Opportunities  for  error  in  a  unit

(.58333*1000000)/7

Sigma  (σ)NORMSINV(1-­‐

(DPMO/1000000))+  1.5

0.58333Defects  Per  Units  (DPU)  =  Total  Defects/Total  Units  

Sampled0/4608 0

Defects  Per  Million  Observed  (DPMO)  =  

(DPU*1000000)/Opportunities  for  error  in  a  unit

(0*1000000)/1 0 83332.9

Page 9: LSS Maccor - Green Belt Project

9    

• RTY      

 

     

 2.4    Detailed  Problem  Statement    

The  defects  in  the  customer  interface  of  the  Maccor  battery  testing  equipment  create  excessive  variability  and  minimal  standardization  in  the  wiring  process,  which  result  in  multiple  defects  and  numerous  hours  of  rework.      After  inspection  of  12  systems,  the  problems  were  narrowed  down  to  seven  major  categories  leading  to  the  concerned  defect.  These  defects  are  categorized  as  follows:  •  Wire  stripped  too  long  •  Visible  wire  strands  •  Crimps  on  wrong  side  contact  •  Wire  crimped  on  insulation  •  Wire  pulled  from  contacts  •  Wrong  color  in  housing  •  Contact  bent  down  

RTY  -­‐  Rolled  Throughput  Yield

Step  4

Step  5

100%

100%

100%

88.89%

94.21%(1-­‐(267/4608))*100

(1-­‐(0/4608))*100

(1-­‐(0/4608))*100

Step  1

Step  2

Step  3

(1-­‐(10/4608))*100

100*100*100*88.89*94.21*99.78RTY 83.56%

99.78%Step  6

(1  -­‐  (No  of  Defect/Total  Possible  Defects))*100

Yield  Percent

RTYYield  at  Step  1  *  Yield  at  Step  2…  *  Yield  at  Step  

6

Yield  percent

PPM  Wasted=  (total  Defects/  Total  Possible  Defects)*1000000

0

0

0

111111.11

57942.71

2170.14

(1-­‐(512/4608))*100

(1-­‐(0/4608))*100

STEP 1  FROM  SOSYield  =  100%

STEP 2  FROM  SOSYield  =  100%

STEP 3  FROM  SOSYield  =  100%

STEP 4  FROM  SOSYield  =  88.89%

STEP 5  FROM  SOSYield  =  94.21%

STEP 6  FROM  SOSYield  =  99.78%

Only  83.56%  is  correct  after  the  first  attempt.

0  PPM  wasted

0  PPM  wasted

0  PPM  wasted

111111.11  PPM  wasted

57942.71  PPM  wasted

2170.14  PPM  wasted

Page 10: LSS Maccor - Green Belt Project

10    

It  is  notable  that  out  of  the  seven  defect  categories  mentioned  above,  the  first  two,  namely,  ‘Wire  stripped  too  long’  and  ‘visible  wire  strands’  have  the  highest  occurrences  as  compared  to  the  remaining  “five”  categories.  

   

Page 11: LSS Maccor - Green Belt Project

11    

ANALYZE  PHASE:    3.1     Root  Cause  Analysis    

The  analysis  was  done  for  all  seven  machines  based  on  cumulative  defects  and  specific  unit  defects  as  well.  

   • Scatter  Diagram  

   

• Pie  Chart      

                           

• Pareto  Chart  

Page 12: LSS Maccor - Green Belt Project

12    

 

 The  above  graph  gives  us  the  relation  between  the  cumulative  types  of  defects,  their  frequency,  and  also,  depicts  the  domination  of  the  more  frequent  defects  over  the  others.  

   

Page 13: LSS Maccor - Green Belt Project

13    

• Histogram    

 Upon  plotting  a  histogram  of  machines  and  their  respective  defects,  two  major  visual  inferences  were  made.  

a) “Wire  stripped  too  long”  was  a  severe  defect  when  present,  and  relatively  non-­‐occurring  in  other  cases.  

b) “Visible  wire  strands”  was  a  more  common  defect  as  compared  to  “wire  stripped  too  long”  despite  the  latter  having  a  greater  frequency  when  viewed  from  a  cumulative  defects  point  of  view.  

   

Page 14: LSS Maccor - Green Belt Project

14    

3.2     Identify  Waste/lost  time    

Further  analyses  are  done  to  identify  downtime,  and  their  respective  costs.    

   

It  is  notable  to  see  that  from  a  cost  of  defects  point  of  view,  “wire  stripped  too  long”  and  “visible  wire  strands”  contribute  the  most,  and  are  the  priority  root  causes.    

   

Defect J08290 J08291 J08292 J08293 J08294 J08295 J08296 J08297 J08298 J08299 J08300 J08301Wire  stripped  too  long 0 0 0 0 384 121 0 5 1 0 1 0Visible  wire  strands 0 6 0 0 102 116 0 9 9 0 14 6Crimp  on  wrong  side  contact 0 0 0 0 2 2 0 0 0 0 0 0Wire  crimped  on  insullation 0 0 0 0 0 1 0 0 0 0 0 0Wire  pulled  from  contacts 0 0 0 0 3 5 0 0 0 0 0 2Wrong  color  in  housing 0 0 0 0 0 0 0 0 0 0 0 0Contact  bent  down 0 0 0 0 0 0 0 0 0 0 0 0Sum  of  Defects 0 6 0 0 491 245 0 14 10 0 15 8Rework  in  hours  in  disassembly -­‐ 0.5 -­‐ -­‐ 4 4 -­‐ 0.5 0.5 -­‐ 0.5 0.5Labor  removal  of  defective  interface@$65.00p/hr -­‐

$32.50-­‐ -­‐

$260.00 $260.00-­‐

$32.50 $32.50-­‐

$32.50 $32.50

New  Interface  Wire  and  Labor   -­‐ 0 -­‐ -­‐ $955.00 $955.00 -­‐ 0 0 -­‐ 0 0Gold  Anderson  Contacts  @$0.05  each -­‐ $0.30 -­‐ -­‐ $19.20 $19.20 -­‐ $0.70 $0.50 -­‐ $0.75 $0.40Rework  in  hours  in  reassembly -­‐ 1 -­‐ -­‐ 8 8 -­‐ 2 2 -­‐ 2 1Labor  cost  for  re-­‐interface  @$65.00p/hr -­‐ $65.00 -­‐ -­‐ $520.00 $520.00 -­‐ $130.00 $130.00 -­‐ $130.00 $65.00Total  cost  incurred  per  System  Job  Number -­‐ $97.80 -­‐ -­‐ $1,754.20 $1,754.20 -­‐ $163.20 $163.00 -­‐ $163.25 $97.90

Cost  of  repair  for  initial  12  Maccor  systems  =  $  4193.55

Page 15: LSS Maccor - Green Belt Project

15    

3.3    Verify  and  prioritize  root  causes    

An  ANOVA  test  was  performed  based  on  the  following  hypotheses:  • Null  Hypothesis,  Ho:  The  mean  defects  of  respective  jobs  are  the  same.  • Alternative  Hypothesis,  Ha:  There  is  significant  difference  between  the  mean  

defects  of  the  respective  jobs.    

A  confidence  interval  of  90%  was  considered  and  the  results  were  as  follows:  

 Observation  table:  

                                     

             Results:    

SUMMARYGroups Count Sum Average VarianceColumn  1 5 6 1.2 7.2Column  2 5 491 98.2 27414.2Column  3 5 245 49 4030.5Column  4 5 14 2.8 16.7Column  5 5 10 2 15.5Column  6 5 15 3 38Column  7 5 0 0 0Column  8 5 0 0 0Column  9 5 0 0 0Column  10 5 0 0 0Column  11 5 0 0 0Column  12 5 8 1.6 6.8

ANOVASource  of  Variation SS df MS F P-­‐value F  critBetween  Groups 49970.05 11 4542.732 1.728978 0.095245 1.708545Within  Groups 126115.6 48 2627.408

Total 176085.6 59

Page 16: LSS Maccor - Green Belt Project

16    

 From  the  calculations  shown  above,  we  see  that  the  “F  critical”  value  is  “1.708545”  and  the  “actual  F”  value  is  “1.728978”.  Since  the  actual  F  value  is  higher  than  the  F  critical  it  lies  on  the  right  hand  side  or  the  rejection  region  of  the  F  Distribution  chart.  Hence,  the  Null  Hypothesis,  Ho  is  rejected.  This  implies  that  there  is  a  significant  difference  between  the  mean  defects,  and  this  helps  us  prioritize  the  two  defects  from  the  rest,  which  are  “wire  stripped  too  long”  and  “visible  wire  strands”.    

 Note:  The  significant  ANOVA  result  is  only  at  10%  level,  and  not  at  the  typical  5%  level  most  statisticians  use.  

   

Page 17: LSS Maccor - Green Belt Project

17    

IMPROVE  PHASE:    4.1   Select  Approaches  &  Tools  Used  to  Fix  Process  to  Desired  State:      

The  tools  that  will  be  used  to  lower  the  number  of  defects  and  get  the  process  to  the  desired  state  are  a  Standard  Operating  Sheet  (SOS  Document),  a  large  magnetic  board  with  the  SOS  blown  up  on  the  wall,  training  the  SOS,  and  including  an  Operator  Log  Sheet.  

 4.2   Map  Targeted  Future  State:    

   4.3     Improvement  Plan:    

Process  performance  will  be  improved  by  introducing  the  SOS  document  and  training  will  standardize  the  process  thus  decreasing  the  number  of  defects.  The  large  magnetic  board  will  serve  as  a  reminder  to  follow  the  SOS  document  consistently  and  repeatedly.  Finally,  the  Operator  Log  Sheet  will  serve  as  a  self-­‐check  for  the  operators,  thus  decreasing  the  number  of  defects  per  million.  This  sheet  will  also  give  a  tracking  method  of  which  operator  needs  more  training  or  if  excessive  defects  are  consistent,  dismissed.  

     

Page 18: LSS Maccor - Green Belt Project

18    

4.4     Technology  Useful  in  Supporting  Process:    

The  SOS  documents  and  Operator  Log  Sheets  are  low  cost  improvements  that  entail  the  cost  of  a  couple  hours  of  training  and  paper/ink.  The  magnetic  board  will  be  slightly  more  expensive,  but  the  cost  is  justified  significantly  in  the  reduction  of  waste,  such  as  copper  and  reworking  time.  Copper  is  bought  at  a  higher  price  by  the  foot  when  new  and  sold  at  a  significantly  lower  price  when  recycled.  The  reworking  time  is  eight  working  hours  per  machine  and  will  be  significantly  reduced.  

 4.5   Pilot  Test:    

Pilot  test  not  needed.        

Page 19: LSS Maccor - Green Belt Project

19    

4.6     Completed  Items  from  Improvement  Plans    

 SOS  Document  on  each  cabinet.      

Page 20: LSS Maccor - Green Belt Project

20    

   4.7   Improved  State  Data:  

   The  observed  data  was  used  to  calculate  baseline  performance.  The  tables  below  show  the  Average,  Standard  Deviation,  Defects  per  Million  Opportunities  (DPMO)  and  Rolled  Throughput  Yield  (RTY)  for  the  relevant  data.    

 • Raw  Data                        

   

• Average,  Standard  Deviation  &  DPMO    

       

Defect J08311 J08312 J08313 J08314 J08342 J08343 J08344 J08498 J08515 J08535 J08550 J08603Wire  stripped  too  long 0 0 0 0 0 0 0 0 0 0 0 0Visible  wire  strands 0 0 0 0 0 0 0 0 0 0 0 0Crimp  on  wrong  side  contact 0 0 0 0 0 0 0 0 0 0 0 0Wire  crimped  on  insullation 0 0 0 0 0 0 0 0 0 0 0 0Wire  pulled  from  contacts 0 0 0 0 0 0 0 0 0 0 2 0Wrong  color  in  housing 0 0 0 2 0 0 0 0 0 0 0 0Contact  bent  down 0 0 0 0 0 0 0 0 0 0 0 1

Sum  of  Defects 0 0 0 2 0 0 0 0 0 0 2 1

Rework  in  hours  in  disassembly 0.25 0.25 0.25Rework  in  hours  in  reassembly 0.25 0.25 0.25

Total  Defects 0 0 Total  Defects 0 0Total  Possible  Defects 0 4608 Total  Possible  Defects 0 4608Defects  Per  Unit  (DPU)  =  Total  Defects/Total  Unit  Samples 0/4608 0

Defects  Per  Unit  (DPU)  =  Total  Defects/Total  Unit  Samples 0/4608 0

Percentage  of  Defects 0*100 0.00% Percentage  of  Defects 0*100 0.00%Defects  Per  Million  Observed  (DPMO)  =  (DPU  *  1000000)/Opportunities  for  error  in  a  unit

=(0*1000000)/4608 0

Defects  Per  Million  Observed  (DPMO)  =  (DPU  *  1000000)/Opportunities  for  error  in  a  unit

=(0*1000000)/4608 0

Sigma

NORMSINV(1-­‐DPMO/1000000)+1.5 infinite Sigma

NORMSINV(1-­‐DPMO/1000000)+1.5 infinite

Wire  Stripped  Too  Long Visible  Wire  Strands

Page 21: LSS Maccor - Green Belt Project

21    

       

   

     

Total  Defects 0 0 Total  Defects 0 0Total  Possible  Defects 0 4608 Total  Possible  Defects 0 4608Defects  Per  Unit  (DPU)  =  Total  Defects/Total  Unit  Samples 0/4608 0

Defects  Per  Unit  (DPU)  =  Total  Defects/Total  Unit  Samples 0/4608 0

Percentage  of  Defects 0*100 0.00% Percentage  of  Defects 0*100 0.00%Defects  Per  Million  Observed  (DPMO)  =  (DPU  *  1000000)/Opportunities  for  error  in  a  unit

=(0*1000000)/4608 0

Defects  Per  Million  Observed  (DPMO)  =  (DPU  *  1000000)/Opportunities  for  error  in  a  unit

=(0*1000000)/4608 0

Sigma

NORMSINV(1-­‐DPMO/1000000)+1.5 infinite Sigma

NORMSINV(1-­‐DPMO/1000000)+1.5 infinite

Crimp  on  Wrong  Side  of  Contact Wire  Crimped  on  Insulation

Total  Defects 2 2 Total  Defects 2 2Total  Possible  Defects 96*4*12 4608 Total  Possible  Defects 96*4*12 4608Defects  Per  Unit  (DPU)  =  Total  Defects/Total  Unit  Samples 2/4608 0.000434

Defects  Per  Unit  (DPU)  =  Total  Defects/Total  Unit  Samples 2/4608 0.000434

Percentage  of  Defects 0.0434 0.043% Percentage  of  Defects 0.0434 0.043%Defects  Per  Million  Observed  (DPMO)  =  (DPU  *  1000000)/Opportunities  for  error  in  a  unit

=(0.000434*1000000)/4608 0.09419

Defects  Per  Million  Observed  (DPMO)  =  (DPU  *  1000000)/Opportunities  for  error  in  a  unit

=(0.000434*1000000)/4608 0.09419

Sigma

NORMSINV(1-­‐DPMO/1000000)+1.5 6.710453 Sigma

NORMSINV(1-­‐DPMO/1000000)+1.5 6.710453

Wire  Pulled  from  Contacts Wrong  Color  in  Housing

Total  Defects 1 1 Total  Defects 3 3Total  Possible  Defects 96*4*12 4608 Total  Possible  Defects 12 12Defects  Per  Unit  (DPU)  =  Total  Defects/Total  Unit  Samples 1/4608 0.000217

Defects  Per  Unit  (DPU)  =  Total  Defects/Total  Unit  Samples 3/12 0.25

Percentage  of  Defects .000217*100 0.022% Percentage  of  Defects .25*100 25%Defects  Per  Million  Observed  (DPMO)  =  (DPU  *  1000000)/Opportunities  for  error  in  a  unit

=(0.000217*1000000)/4608 0.047095

Defects  Per  Million  Observed  (DPMO)  =  (DPU  *  1000000)/Opportunities  for  error  in  a  unit

=(0.25*1000000)/12 20833.33

Sigma

NORMSINV(1-­‐DPMO/1000000)+1.5 6.83759 Sigma

NORMSINV(1-­‐DPMO/1000000)+1.5 3.536834

Contact  Bent  Down Overall  Observation

Page 22: LSS Maccor - Green Belt Project

22    

• RTY      

 • Cost  

 Relevant  cost  of  repair  for  12  Maccor  systems  to  achieve  improved  state  =  (0.75  hr)labor  x  ($  65/hr)shop  rate  +  ($  0.10)contacts  =  $  48.85      

   

       

   

Page 23: LSS Maccor - Green Belt Project

23    

CONTROL  PHASE:    5.1     Validate  Performance  Improvements  

 Average  Defect  Percentage   Standard  Deviation   DPMO  As  Is     To  Be   As  Is     To  Be   As  Is     To  Be  58.33%   25%   2.883   3.536834   83332.9   20833.33  

   

Initial  RTY  for  the  “as  is”  model  showed  that  only  83.56%  is  correct  after  the  first  attempt.  RTY  for  the  “to  be”  model  shows  that  99.89%  is  correct  after  the  first  attempt.  

 The  final/achieved  ROI  is  calculated  as  the  ratio  of  money  saved  arising  from  initial  and  improved  state  cost  of  repairs  to  the  money  spent  on  labor  and  materials.  It  is  to  be  noted  that  this  is  a  monthly  ROI.  Since  there  are  about  12  systems  completed  per  month,  and  about  150  systems  completed  per  year,  the  annual  ROI  comes  out  to  be  10259%.  The  calculations  are  shown  below.        

𝑅𝑂𝐼!"#$!!" =$  4193.55(!"!#!$%  !"#$  !"  !"#$%!) − $  48.55(!"#$%&'(  !"#"$  !"#$  !"  !"#$%!)

16  𝑠𝑡𝑢𝑑𝑒𝑛𝑡  𝑑𝑒𝑠𝑖𝑔𝑛  ℎ𝑜𝑢𝑟𝑠 $30.00  𝑝𝑒𝑟  ℎ𝑜𝑢𝑟 + ($25.00  𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙  𝑐𝑜𝑠𝑡)  

 

𝑅𝑂𝐼!"#$!!" =  $4144.70$505 = 8.21 = 821%  

 

𝑅𝑂𝐼!"#$%! =    $4144.7012  𝑠𝑦𝑠𝑡𝑒𝑚𝑠 ∗ 150  𝑠𝑦𝑠𝑡𝑒𝑚𝑠

$505 = 102.59 = 10259%    

     5.2     Sustain  and  Control  Plan    

 The  improvements  set  in  motion  were  sustained  largely  by  acquiring  a  commercial  printer  system  to  be  able  to  regularly  print  out  Operator  Log  Sheets  and  SOS  documents  when  needed.  Each  workstation  got  a  folder  to  document  the  Operator  Log  Sheets  that  were  regularly  replaced  each  week.  This  helped  ensure  the  opportunity  to  back  track  if  ever  needed.  The  magnetic  board  was  constantly  kept  in  professional  format  and  updated  to  be  identical  to  the  SOS  documents  if/when  updated.    

   

Page 24: LSS Maccor - Green Belt Project

24    

 5.3   Steps  for  Ongoing  Improvements    

To  ensure  ongoing  improvement,  the  SOS  document  will  be  monitored  regularly  to  add  or  delete  steps,  as  the  process  requires.  Standardized  training  will  be  maintained  and  workers  who  show  excellent  results  will  be  encouraged  to  take  the  positions  of  training  to  boost  morale.  The  large  magnetic  board  will  be  regularly  maintained  to  ensure  it  covers  all  the  instructions  thoroughly  for  the  workers.  Following  the  Operator  Log  Sheets,  workers  who  are  highlighted  to  be  in  need  of  additional  training  will  receive  more  in  depth  and  hands  on  help  during  the  training  sessions.  A  schematic  of  an  Operator  Log  Sheet  is  shown  below:  

 

     5.4     Identify  and  Record  Other  Improvement  Opportunities  Discovered  

 Other  opportunities  of  improvement  were  identified  in  the  form  of…  1.  Monitor  the  factory  air  supply  to  pneumatic  crimping  tools  to  maintain  proper  crimps  2.  Inspect  and  service  all  hand  tools  and  equipment  before  use.  3.  Train  and  certify  multiple  inspectors  to  handle  workloads  and  vacations/time  off.