Low Power CMOS AD Converters

Embed Size (px)

Citation preview

  • 7/27/2019 Low Power CMOS AD Converters

    1/53

    AACD-1994, PRG SLIDE 1

    Design Considerations for High-Speed, Low-Power CMOS A/D

    Converters

    Introduction: Technology and ArchitectureConsiderations Design of Low-Power Pipeline A/D Converters Comparison with Alternative Approaches Possible Future Trends and Barriers

  • 7/27/2019 Low Power CMOS AD Converters

    2/53

    AACD-1994, PRG SLIDE 2

    o e o na og nter acesin VLSI Electronic Systems

    VLSI Digital

    Physical sensors

    Audio I/OStorage media

    TransmissionMedia

    Imagers andSystem

    and Actuators

    Displays

  • 7/27/2019 Low Power CMOS AD Converters

    3/53

    AACD-1994, PRG SLIDE 3

    High vs. Low Integration level in A/DInterface Systems

    Low-Integration Interface

    High-Integration Interface

  • 7/27/2019 Low Power CMOS AD Converters

    4/53

    AACD-1994, PRG SLIDE 4

    Key Problems in ADCImplementations

    Must be compatible with high-integration solutions,quasi-digital technology

    Drive to lower supplies complicates all aspects ofdesign

    ADC Performance can be optimized for systemapplication

    Drive toward digital solutions tends to increase ADCperformance requirements

  • 7/27/2019 Low Power CMOS AD Converters

    5/53

    AACD-1994, PRG SLIDE 5

    Example Applications for High-SpeedCMOS ADCs

    Wireless LAN Data Channel (1-50MS/s, 6-10b) Magnetic Storage Read Channel(50-200MS/s,6-8b) ADSL data channel (3-10MS/sec, 12-16b) Digital Multi-standard TV Baseband ADC(20MS/sec,8-10b) Digital Video Camera ADC(20MS/sec, 8-12b) CATV Decoder Modem ADC(10-20MS/s,8-10b)A HDTV, various apps, (50-75MS/s, 10b)

    Digital-IF for Multi-standard Broadcast TV rcvr(100-200Mb/sec, 8-12b)

  • 7/27/2019 Low Power CMOS AD Converters

    6/53

    AACD-1994, PRG SLIDE 6

    1 10 100 1000 10000

    2

    4

    6

    8

    10

    12

    14

    Clock Cycles per output sample

    Bits

    of Resol

    ution

    Flash,

    Pipeline

    Succs.

    Approx

    Serial

    2nd order

    Sigma-delta

    1-bit

    t=2(0.4n+1)

    t=2(n)

    t-nt=1

    Qualitative Comparison of ADC

    Techniques

    Key point: For Video Rates, only candidates are flash, multistep, and pipeline

  • 7/27/2019 Low Power CMOS AD Converters

    7/53

    AACD-1994, PRG SLIDE 7

    Where does Power go in a High Speed ADC?

    Precision comparators

    Resistor string

    Op amps, etc.

    Key Aspects of Architecture Selection:

    Minimum Number of precision comparators

    No R-string

    Low power op amp

    =>Promising Approach: Power-Optimized Pipeline

  • 7/27/2019 Low Power CMOS AD Converters

    8/53

    AACD-1994, PRG SLIDE 8

    Parallel A/D Converter

    High Speed- 10MS/sec->500MS/sec Complex- requires 2N Comparators, High Power Used mainly for very high-speed signal acquisition

  • 7/27/2019 Low Power CMOS AD Converters

    9/53

    AACD-1994, PRG SLIDE 9

    Two-step Flash ADCs

    S/H ADC DAC ADCinput

    Coarse result

    Fineresult

    +

    -

    Advantages: Much less hardware than flash

    Disadvantages:

    No gain in path- requires precision

    comparators

    Requires at least three full clocks Usually requires R-string

    Exponential hardware growth with resolution

  • 7/27/2019 Low Power CMOS AD Converters

    10/53

    AACD-1994, PRG SLIDE 10

    +

    Gvin vo

    ADC

    Stage1InputS/H Stagei StageNs

    Output Register

    Input

    k-bit

    k bits

    ... ...

    00 01 10 11

    k bits k bits

    DAC

    k-bitvin

    vo

    S/H

    Quantized Feedforward ADCs

    Advantages:

    Same throughput as flash

    Much less hardware than flash

    Disadvantage:

    Requires fastinterstage processing

  • 7/27/2019 Low Power CMOS AD Converters

    11/53

    AACD-1994, PRG SLIDE 11

    Design Considerations for High-Speed, Low-Power CMOS A/D

    Converters

    Introduction: Technology and ArchitectureConsiderations

    Design of Low-Power Pipeline A/D Converters Comparison with Alternative Approaches Possible Future Trends and Barriers

  • 7/27/2019 Low Power CMOS AD Converters

    12/53

    AACD-1994, PRG SLIDE 12

    Design of Low-Power Pipeline ADCs

    Some Basic Pipeline Concepts Low-Power Interstage Gain Blocks Dynamic Comparator Implementation

    Bootstrapped Clock Driver Design Capacitor Size Optimization Experimental Results

  • 7/27/2019 Low Power CMOS AD Converters

    13/53

    AACD-1994, PRG SLIDE 13

    Pipelined ADC Stage-Typical CMOS Implementation

    CS

    CI

    +

    -

    -

    +

    CICS

    Reference LevelGenerator

    Analog

    Mux

    Comps

    Decode

    Logic

    DAC

    k bits

    vin

    vin

    vo

    vo

    +

    +

    vDAC+ vDAC

    Bias

    Clocks

    0

    1

    1

    11

    0

    0

    1

    0

    0

    0

    0

    0

    0

    0

    100

    Ref: C. Conroy, VLSI92

  • 7/27/2019 Low Power CMOS AD Converters

    14/53

    AACD-1994, PRG SLIDE 14

    Typical Implementation: Capacitive DAC

    VIN

    VOUT

    ADC

    CS1

    CI

    CP

    +

    -

    VREF

    CS2

    CS3

    Code

    .

    .

    .

    .

    .

    .

    ADC usually R-string flash or Cap-based flash.

  • 7/27/2019 Low Power CMOS AD Converters

    15/53

    AACD-1994, PRG SLIDE 15

    Power Minimization in Switched-Capacitor Gain Blocks

    (Telescopic)Folded Cascode Unfolded Cascode

    First consider simplest amplifiers:

    Cs

    Cf

    Cl

  • 7/27/2019 Low Power CMOS AD Converters

    16/53

    AACD-1994, PRG SLIDE 16

    Key Issue: What is the fastestattainable settling?

    Simplest possible op amp:

    Cs

    Cf

    Cl

    Cs

    Cgs

    Cl Cp

    Cf+Cgd=Cft

    Cl+Cp =CLtThis is a single-time-constant circuit!

    1

    gm

    Cs

    Cg s

    +( ) 1 1C

    F t

    Cg s

    Cs

    ++

    CL t

    CF t

    +=

    1

    2 ft

    1

    Cs

    Cg s

    +

    1 1

    CF t

    Cg s

    Cs

    ++

    CL t

    CF t

    +=

    1

    2 ft

    1

    CL t

    CF t

    +=

    Device Width and Drain Current

    Fixed Vgs-Vt

  • 7/27/2019 Low Power CMOS AD Converters

    17/53

    AACD-1994, PRG SLIDE 17

    Max Attainable Speed, ContdWhat is the best achievable speed as a functon of technology and charge

    gain?

    m in

    1

    2 ft

    1

    CL t

    CF t

    +=

    m in

    1

    2 ft

    1 Aq

    ( )+=Where Aq = Charge Gain of circuit

    1.0u 1.5u 3u

    0.1ns0.2ns

    0.5ns

    Assumptions:1. Square law applies

    2. No slewing

    3. Vgs-Vt = 0.5V

    4. Neglects all second order device

    effects.

    5. Aq = 1, Cl=Cf

    0.8u

    m in

  • 7/27/2019 Low Power CMOS AD Converters

    18/53

    AACD-1994, PRG SLIDE 18

    What is the Minimum Obtainable Power?

    Cg s o p t( ) C S

    CF

    CL

    CF

    CL

    ++=

    22 f

    T

    1

    CL

    CF

    +( ) 2m i n

    = =

    Po p t

    8 Vd d

    1

    2

    1 Aq

    +( ) 2 CS

    CF

    CL

    CF

    CL

    ++ L 2

    2 =

    1g

    m

    Cs

    Cg s

    +( ) 1 1C

    F t

    Cg s

    Cs

    ++

    CL t

    CF t

    +=

    Minimize:

    Result:

    Id

  • 7/27/2019 Low Power CMOS AD Converters

    19/53

    AACD-1994, PRG SLIDE 19

    Observations:

    Optimum Cgs is equal to Cequiv Power is very sensitive to charge gain- use low gain/stage in pipelines

    Power drops rapidly with technology line width Analysis says pwr goes as square of speed, channellength, but actually it is more like linear because ofSlew Rate, Velocity Saturation.

    Leff,Microns

    DesiredTime

    Const.

    kT/C noise for1/6 lsb, Vswing=1V

    Cs Cf ClPower,Vdd=3V

    0.8 400ps 8bits, 600uVRMS 10fF 5fF 5fF 72uW

    0.8 400ps 10bits, 150uVRMS 160fF 80fF 80fF 1.1mW

    0.8 400ps 12bits, 37uVRMS 2.5pF 1.25pF 1.25pF 18mW

    0.8 400ps 14bits, 9uVRMS 40pF 20pF 20pF 200mW

  • 7/27/2019 Low Power CMOS AD Converters

    20/53

    AACD-1994, PRG SLIDE 20

    More Practical AmplifierConfigurations

    Design Issues with FC, Telescopic:

    Poor voltage gain-settling time trade-off

    Poor voltage swing-settling time trade-off Barely usable at 3V, not usable at 1.5V

    Alternative Approaches:

    Add broadband input stage to telescopic Two-stage Miller compensated w/one stagecascoded

    Multi-stage Nested Miller amplifier

  • 7/27/2019 Low Power CMOS AD Converters

    21/53

    AACD-1994, PRG SLIDE 21

    C3 C4

    Vin+ Vin-

    Vout+ Vout-

    Vdd = 3.3V

    Vdd = 3.3V

    Vdd = 3.3V

    C1 C2

    Gain-BoostAmplifier

    Bias 4

    Bias1

    Bias2

    Bias3

    Bias4

    Bias1

    Bias3

    sw1 sw2

    Bias1

    Telescopic Amplifier with Gain

    Boost Stage

    ts = 17ns(0.1%)

    Cs = 0.39pF

    Cf = 0.39pF

    Cl = 1.8pFPd = 4.1mW

    Vdd=3.3V

    Av>60dB

    Swing = +/1VoltP-P

  • 7/27/2019 Low Power CMOS AD Converters

    22/53

    AACD-1994, PRG SLIDE 22

    Dynamic Comparators in PipelineADCs

    Conventional Comparator Design:

    Broadband, Low-offset preamp

    Latch

    Clk

    Vin dout

    Key Goal:

    Get rid of preamp with its power dissipation, usedynamic latch as comparator

    Key Question:

    How much comparator offset can be tolerated?

  • 7/27/2019 Low Power CMOS AD Converters

    23/53

    AACD-1994, PRG SLIDE 23

    Gain and Offset Errors in Pipelines

    OffsetError

    GainError

    S/H

    OffsetError

    GainError

    S/H

    OffsetError

    GainError

    S/H

    n1bitADC

    n1bitDAC n2bitADC n2bitDAC

    n3bitADC

    n1 bits n2 bits

    n3 bits

    +

    -

    +

    -

    Vin

    Error: Effect on Linearity:

    Input Gain None

    Other Gains Reduced by 1st stg gain

    Offsets None

    Effect of ADC Nonlinearity Errors

  • 7/27/2019 Low Power CMOS AD Converters

    24/53

    AACD-1994, PRG SLIDE 24

    Effect of ADC Nonlinearity Errors

    2-bit example:

    S/H

    2 bitADC

    2 bitDAC

    2 bits

    +

    -

    Vin

    Inputreferrednonlinearity

    error

    4

    00 01 10 11Vr

    -VrResidual

    Residual

    Case 1: Ideal ADC, DAC

    Vin

    Vr

    00 01 10 11Vr

    -Vr

    Residual

    Vin

    Vr

    Negative DecisionLevel Error

    Positive DecisionLevel Error

    Case 2: Nonideal ADC, Ideal DAC+

    Key Point: Can remove ADC Errors by Increasing ADC range in next stg

    Di i l C i i Pi li

  • 7/27/2019 Low Power CMOS AD Converters

    25/53

    AACD-1994, PRG SLIDE 25

    Digital Correction in Pipelines

    VinStage 1

    0.5Stage 2

    n1 bitreg

    n1 bitreg

    n2 bitreg

    Correction

    Logic

    n1+n2-1 bits out

    Reduce Gain to Increase Conversion Range

    Correction Logic is Simple

    Comparators: Need additional, but they are much simpler

    Final Result: DAC Linearity and amplifier gain errors ultimately limit linearity

  • 7/27/2019 Low Power CMOS AD Converters

    26/53

    AACD-1994, PRG SLIDE 26

    Important Case: 1.5 bit/Stage with

    Digital Correction

    -1 +10 12

    14

    14

    12

    vin

    vout+1

    -1

    01 10

    0

    q 2-bit

    q 222 = 2 comps

    q G = 221= 2

    00

    refs: C. Conroy, VLSI92, Jusuf ICCAD90, Lee VLSI93, Jespers ESSCIRC91

    Key Point: Tolerates comparator offset

    on the order of 1/4 full scale!

    I ti f ADC R f

  • 7/27/2019 Low Power CMOS AD Converters

    27/53

    AACD-1994, PRG SLIDE 27

    Incorporation of ADC ReferenceLevel Function in Comparator

    Vin+Vin-

    Vout+Vout-

    Vdd

    latch / reset

    Vref+Vref-

    M1 M2 M3 M4

  • 7/27/2019 Low Power CMOS AD Converters

    28/53

    AACD-1994, PRG SLIDE 28

    Vin+ Vin-

    Vout+Vout-

    Vdd

    latch/reset

    Vref+Vref-

    w1w2 w1 w2

    If w1 = M x w2, Vdecision = Vref / M

    Well defined built-in Vdecision based on ratio

    Simple design for low input cap.

    No DC power!

    Vout+Vout-

    Vdd

    latch/reset

    R1 R2

    Dynamic Comparator Implementation

    Low Voltage Switched Capacitor Gain

  • 7/27/2019 Low Power CMOS AD Converters

    29/53

    AACD-1994, PRG SLIDE 29

    Low Voltage Switched-Capacitor GainBlocks

    DAC

    B+1 bits

    STAGE i

    +

    - opamp

    Vout

    Vref

    Vin

    (2B

    - 1) x C

    C

    B+1 bitsflash

    C

    C

    ADC

    InterstageAmplifier

    -Vref

    Vin

    Switch

    Cs

    L V l O i f MOS

  • 7/27/2019 Low Power CMOS AD Converters

    30/53

    AACD-1994, PRG SLIDE 30

    *Integrated A/D&D/A Converter, OCATE, July 1991Low Power ADC by Vlado Valencic

    VddGND

    Conductance vs. Voltage *

    -Vthp

    Vdd=5VGND

    Vdd=3.3VGND

    GND Vdd=1.5V

    Gap!

    Gon

    Vdd

    Gon

    = gdsn+gdsp

    (Vthn=|Vthp| = 0.8V)Vin

    -Vthn

    Low-Voltage Options for MOS

    Transmission Gates

    L V lt T i i G t

  • 7/27/2019 Low Power CMOS AD Converters

    31/53

    AACD-1994, PRG SLIDE 31

    Possiblesolutions

    Good (+) / Bad (-)

    Dual Vth process(0Vth Native dev)

    + standard design approach- need process mod

    Low Vth Process + Needed for digital anyway- Big cost in power due to limited swing to railGlobal charge pump - possible cross-talk to sensitive nodes

    - difficult to predict CL

    Local charge pump + no cross-talk (can isolate sensitive nodes)+ easy to predict CL

    Low-Voltage Transmission Gates,

    contd

  • 7/27/2019 Low Power CMOS AD Converters

    32/53

    AACD-1994, PRG SLIDE 32

    Vdd = 3.3 V

    C1 C2CL

    0

    3.3

    0

    Vhi = ~5V

    Vsub_hi

    Only NMOS switch needed

    Less parasitic cap.

    V h iC 2

    C

    2

    C

    L

    C

    parasitic

    + + 2 V d d=

    High-Voltage Clock Generator

    Optimum Scaling of Pipeline Stages

  • 7/27/2019 Low Power CMOS AD Converters

    33/53

    AACD-1994, PRG SLIDE 33

    N bit ADC, B bits/stageex) N=10, B=1

    STAGE 1 STAGE 3 STAGE 4Vin STAGE 2

    10bit 9bit

    STAGE 1 STAGE 3 STAGE 4Vin STAGE 2

    10bit9bit With Scaling

    Without Scaling8bit

    8bit

    Optimum Scaling of Pipeline Stagesfor Power Dissipation

  • 7/27/2019 Low Power CMOS AD Converters

    34/53

    AACD-1994, PRG SLIDE 34

    Approx. 40 - 50% reduction in static powerconsumption!

    Minimum performance degradation

    Requires auto-calibration to correct cap

    mismatches for front stages

    Speed LimitedNoise Limited

    Stage

    Power

    1 2 N-1 N

    Scaled!

    Unscaled

    (Due to parasitic capacitance)

    Optimization result:

    Experimental Prototype

  • 7/27/2019 Low Power CMOS AD Converters

    35/53

    AACD-1994, PRG SLIDE 35

    Experimental Prototype

    1.2m 2-poly, 1-metal CMOS Technology 3.2x3.3mm active area

    Experimentally Observed Power vs.

  • 7/27/2019 Low Power CMOS AD Converters

    36/53

    AACD-1994, PRG SLIDE 36

    3

    5

    10

    15

    20

    30

    1 2 5 10 20

    Power(mW)

    Fs(MS/s)

    p ySampling Rate

    Master bias current adjusted for each sample rate

  • 7/27/2019 Low Power CMOS AD Converters

    37/53

    AACD-1994, PRG SLIDE 37

    -1.0

    -0.5

    0.0

    0.5

    1.0

    -1.0

    -0.5

    0.0

    0.5

    1.0

    0 code 1000

    0 code 1000

    (a)

    (b)

    (LSB)

    (LSB)

    (a)Measured DNL, 3.3V, 25C, Code Density

    Integral and Differential Nonlinearity

    (b)Measured INL, 3.3V, 25C, Code Density

    SNDR versus Input Level

  • 7/27/2019 Low Power CMOS AD Converters

    38/53

    AACD-1994, PRG SLIDE 38

    2025

    30

    35

    40

    45

    50

    5560

    0-10-20-30-40

    Input level (dB)

    SNDR (dB)

    SNDR versus Input Level

    3.3V Supply, 25C

    Ideal 10 bit

    100kHz Input

    10MHz Input

  • 7/27/2019 Low Power CMOS AD Converters

    39/53

    AACD-1994, PRG SLIDE 39

    Measurement Results

    ADC Performance: 3.3V @ 25C

    *: Output pad driver power not included

    Technology 1.2-m CMOS

    Resolution 10 b

    Conversion Rate 20 MS/s

    Active Area 3.2 x 3.3 mm2

    Differential Input Range +/- 1 V

    Input Capacitance 1 pF (single-ended)

    Power Dissipation 35 mW* at 20MS/s(2.8 mW* at 1MS/s)

    DNL/INL 0.5 / 0.6 LSB

    SNDR 59.1 dB (Fin=100 kHz)55.0 dB (Fin= 10 MHz)

  • 7/27/2019 Low Power CMOS AD Converters

    40/53

    AACD-1994, PRG SLIDE 40

    (mW/MS/s)

    Power/fs

    1/L(m)3m 2m 1m

    0.1

    1

    10

    100

    1.5m 0.8m

    Matsushita,ISSCC93

    10bit ADC

    Power/fs vs. Technology

    [88]

    [90][91]

    [92]

    [93]

    [92]

    10bit

    [94]

    [Year]

    [94]

    This Work

    Summary of High Speed ADC Performance

  • 7/27/2019 Low Power CMOS AD Converters

    41/53

    AACD-1994, PRG SLIDE 41

    y g p

    Author Type ratebits

    techS/H?

    PSV Pwr Area FM1 FM2

    1. Sekino,So-ny,ISSCC82

    2step 30M 8 4Gbip N 5V 0.7 35K 7.5 2.74

    2.Tsukada,Hitach

    i, ISSCC85

    FL 25M 8 2uCMOS Y 5V 0.3 33K 16 13.6

    3. Dingwall,RCA,ISSCC85

    2step 5M 8 2uCMOS Y 5V 0.15 6K 3.3 5.6

    4. Peetz,HP,ISSCC86

    FL 250M 8 7Gbip N 5 12 48K 36 0.77

    5.Lewis,UCB,ISSCC86

    Pipe 5M 9 3uCMOS Y 10 0.18 10K 7.2 23.0

    6. V.D.Grift,-Phil, ISSCC87

    Fold 50M 8 7.5Gbip N 5 0.3 10K 6.6 5.63

    7. Yoshi,So-ny,ISSCC87

    FL 350M 8 10Gbip N 5 1.5 22K 35 5.97

    8. Akazaw,NT-T,ISSCC87

    FL 400M 8 18Gbip N 5 2.7 65K 22 2.08

    9. Tsutomo-to,NTT,ISSCC88

    FL 2G 6 26Gbip N 5 2 18K 76 9.73

    10. V.D.Pla-asche,Ph,ISSC

    C88

    Fold 100M 8 12Gbip N 5 0.8 17K 8.3 2.65

    ADC Performance, Contd

  • 7/27/2019 Low Power CMOS AD Converters

    42/53

    AACD-1994, PRG SLIDE 42

    11.Matsuura,Hita,ISSCC88

    2step 20M 8 2u Y 5 0.2 11K 13 16.4

    12. Song,UnivIll,ISSCC88

    Pipe 1M 12 1.5CMOS Y 5 0.4 7.8K 0.4 4.0

    13. Shimit-zu,ISSCC88

    2step 20M 10b

    4.5Gbip Y 5 0.9 40K 4.4 5.06

    14. Kerth, Xtal,CICC88

    2step 1M 12b

    3uCMOS Y 10 0.7 150K 1.4 8.0

    15. Mas-ayuki,NTT,ISSCC89

    2st 40M 8b 1uCMOS Y 5 0.6 20K 8.0 3.41

    16. Chin,Nat,ISSCC89

    2st 1.5M 10b

    2uCMOS N 5 0.15 15K 1.0 6.82

    17. Fukishi-ma,Sony,ISSCC89

    2st 40M? 8b 1.4CMOS Y 5 0.1 8.1K 22.2 56.8?

    18. Robertson,AD,ISSCC90

    Pipe 20M 10b

    BICMOS Y 5 1.0 85K 10.0 10.2

    19. Song, UnivIll,ISSCC90

    2step 15M 10b

    1uCMOS Y 5 0.250 4K 3.0 12.28

    20. Zojer,Sei-mens,ISSCC90

    2step 75M 10b

    7Gbip Y 5 2 23K 10.7 5.476

    ADC Performance, Contd

  • 7/27/2019 Low Power CMOS AD Converters

    43/53

    AACD-1994, PRG SLIDE 43

    21.Mats.,Mistub,ISSCC90

    2st 30M10b

    7GBCMOS Y 10 0.75 40K 4.3 5.87

    22. Lin, UCB,-VLSI90

    Pipe 2.5M 13b

    3uCMOS Y 5V 0.1 40K 3.6 144(12b)

    23. Lewis,AT-T,CICC91

    Pipe 20M 10b

    1uCMOS Y 5V 0.3 12K 4.0 13.6

    24. Gendai,Sony,ISSCC91

    FL 500M 8b 10Gbip N 5V 3.1 35K 50 4.1

    25. Mat-suzawa, Mat-s.,ISSCC91

    FL 1G 6b 13Gbip N 5V 2.8 40K 75 6.8

    26. ValBerg,-Phil,ISSCC92

    fold 600M 8b ? N 5V 0.9 7K 50(est) 14.2

    27. Vorenka-mp,Phil,ISSCC92

    Pipe 50M 10b

    3Gbip Y 5V 0.75 18K 16 21.8

    28. Corcora-n,HP,ISSCC92

    Pipe 20M 12b

    7Gbip Y 10V 3.5 26K 3 3.5

    29. Reza-vi,Stan,ISSCC92

    2step 5M 12b

    1uCMOS Y 5V 0.2 16K 0.8 16.2

    30. Karanico-las,MIT,ISSCC93

    Pipe 1M 15b

    4G,2.4uBiCMOS

    Y 10 1.8 100K 025 4.4

    ADC Performance, Contd:

  • 7/27/2019 Low Power CMOS AD Converters

    44/53

    AACD-1994, PRG SLIDE 44

    FM1 is ratio of sampling rate to equivalent technology ft multiplied by 103

    FM2 is a power figure of merit normalized to technology ft. It is given by

    P= power dissipation

    B= number of bits

    SR=sample rate

    31.Kusumoto,Mats,ISSCC93

    Pipe 20M 10b

    0.8uCMOS Y 5 0.030 10K 2 68.3

    32. Sone,NEC,ISSCC93

    Pipe 100M 10b

    0.8uBiCMOS Y 5V 0.95 32K 5-10? 10.7

    33. Colleran,UCLA,ISSCC93

    Pipe 100M 10b

    12Gbip Y 5 0.8 30K 8 10.2

    34. Conroy,VLSI 92

    Parallelpipe

    85M 8b 1.2uCMOS Y 5 0.8 35K 18 5.7

    35. Tada,ISSCC93

    2-step 30M 10b

    0.8uCMOS Y 3.3 0.030+ 20K 3.5 90

    F M 22

    BS R( )

    P f

    t

    =

    22This work

  • 7/27/2019 Low Power CMOS AD Converters

    45/53

    AACD-1994, PRG SLIDE 45

    0.30

    1.0

    3.0

    10.0

    30.0

    100

    6 7 8 9 10 1211 13Resolution, bits

    FM2

    9

    4

    7

    8

    2

    10

    15

    1

    63

    115

    20

    18

    23

    2113

    16

    22

    14

    12

    19

    Flash

    2-stepFolding

    Pipeline

    24

    25

    26

    27

    28

    29

    31

    3233

    Comparison of Power Figure of Merit, Recently

    Published Flash, 2-step, and Pipeline ADCs

    33

    34

    F M 22

    BS R( )

    P ft

    =

    35

    Effective ft vs. Channel Length

  • 7/27/2019 Low Power CMOS AD Converters

    46/53

    AACD-1994, PRG SLIDE 46

    1

    2

    3

    4

    5

    6

    7

    5u 3u 2u 1.5u 1u

    Silicon MOSFET

    0.8u 0.6u

    8

    9

    10

    Drawn Channel Length

    1.2u

    Approximate

    Value of NMOS

    Device ft, Ghz

    (Assumes bias

    point of

    Vgs-VT = 0.5V)

    QbicI NMOS(RGM 1994 data)

  • 7/27/2019 Low Power CMOS AD Converters

    47/53

    AACD-1994, PRG SLIDE 47

    Design Considerations for High-Speed, Low-Power CMOS A/D

    Converters

    Introduction: Technology and ArchitectureConsiderations

    Design of Low-Power Pipeline A/D Converters Comparison with Alternative Approaches Possible Future Trends and Barriers

    Comparison of Pwr in Pipelines, Sigma-Delta Converters

  • 7/27/2019 Low Power CMOS AD Converters

    48/53

    AACD-1994, PRG SLIDE 48

    vn

    2 fp b

    fs 2 k T

    Cs

    Typical Sigma-Delta Front End:

    Vin+

    Vin-

    Vdac-Vdac+ To second and later stages

    In-band kT/C:

    Conclusion: For each 2x increase in OSR,

    Cs can be 2x smaller Sample rate is 2x higher Power remains constant for constant in-band noise

    One-bit increase in SNR costs 4X in cap value, power

    Comparison of FM3 for Sigma Delta, Pipelines

  • 7/27/2019 Low Power CMOS AD Converters

    49/53

    AACD-1994, PRG SLIDE 49

    F M 3P

    fs

    22 B

    =

    Author Type

    ModulatorSamp.Rate

    OutSR

    OutputResolution

    Techn PSVMod.Pwr

    FM3

    1. Dedic,ISSCC94

    6thord.

    3.25M 200K 14b 1.2uCMOS

    5V 40mW 7.8e-16 200mW/MS/sec

    2. Alex-ander,ISSCC94

    4thord.

    12M 192K 14b(limbyxtalk)

    1uBiCMOS

    5V 150mW(est)

    350e-16

    3. Rito-neime,ISSCC94

    4thord.

    2.5M 44K 16b 1.2uBiCMOS

    5V 100mW

    5.5e-16 2.3mW/kS/sec

    4. Ray,pc

    4thord.

    18M 584K 13b 1uCMOS

    5V 25mW 6.6e-16 43mW/MS/sec

    5. Mats.,ISSCC94

    2ndord.

    6M 380K 9b 0.5uCMOS

    1V 1.5mW 39e-16 3.9mW/MS/sec

    6. Tcho pipe 20M 20M 10b 1.2uCMOS

    3V 35mW 15e-16 1.7mW/MS/sec

    Typical Power Performance Levels,

  • 7/27/2019 Low Power CMOS AD Converters

    50/53

    AACD-1994, PRG SLIDE 50

    Typical Power Performance Levels,

    Recently Published ADCs

    10 12 14 16

    mW/MS/sec

    1

    10

    100

    1000

    1

    3

    4

    56

    Effective Resolution, bits

    Power,

  • 7/27/2019 Low Power CMOS AD Converters

    51/53

    AACD-1994, PRG SLIDE 51

    Design Considerations for High-Speed, Low-Power CMOS A/D

    Converters

    Introduction: Technology and ArchitectureConsiderations

    Design of Low-Power Pipeline A/D Converters Comparison with Alternative Approaches Possible Future Trends and Barriers

    Key Issues in High-Speed ADCsG i F d

  • 7/27/2019 Low Power CMOS AD Converters

    52/53

    AACD-1994, PRG SLIDE 52

    Going Forward

    Where do we get another major power increment?

    Class B op amps?

    Charge-domain operation?How do we get to 1.5 volts at reasonable power? Nested Miller op amps? More coarse/fine sampling?

    How do we solve the Digital supply noise problem?

    More effective on-board sub-regulation? Better CAD tools for simulation?

    Process/package enhancements?How do we push sample rates to 200-300 Mhz in CMOS? More parallelism plus self-cal? Better analysis of MOS sample/hold?

    Projecting Integration levels in A/DInterface Systems

  • 7/27/2019 Low Power CMOS AD Converters

    53/53

    AACD-1994, PRG SLIDE 53

    Interface Systems

    Low-Integration Interface, 1984

    High-Integration Interface, 1994

    Super-integrated subsystem, 2004

    0.15 micron technology

    1.5-2.5V Vdd, >108 xistors/chip

    Analog content