13
Week 3: Today we went to have a look at some buildings around the University. The Architecture building spans over six levels and 17,488 square metres. Downstairs in the basement there are a two 120 seat lecture theatres and one 500 seat lecture theatre. There is a hanging studio in the atrium with a capacity of around 3050 students. The library is down in the basement, with study spaces on the level 1 atrium. The rest of the floors from 15 are tutorial rooms and staff/academia offices, with access by 2 flights of stairs and 5 lifts. Structural components of the building The building has a basement level and 5 floors. The basement retention system consists of 12m bored piles with ground anchors and a capping beam cast on top of them. The basement has a reinforced suspended slab and the rest of the floor slabs from Ground, 15 are Bondek composite slabs with post tensioned 600mm beams. The columns in the building are all precast to save time compared with insitu and the lift and stair core are also precast panels. Concrete panels with a smooth white off form finish are cast in to the slab beam system (shown on the right). These act as shear walls and are precast with mesh as reinforcement. Later the outer zinc façade screens will be bolted with 4 x M20 High strength bolts to the panel which will connected it. The façade serves no structural purpose and is a layer for aesthetics. Lastly for the Joseph Reed Façade (below) that is being incorporated in to the new design is being supported by a retention system to prevent it stability from lateral loads until structurally attached to the rest of the building. This retention system consists of temporary and permanent system of steel UB and UC (similar to the Oval Pavilion Canopy). The permanent retention system is cast in to the slab and welded with angled brackets and stitch plates.

Logbook week 3, 4 , 5 & 6

  • Upload
    jshue

  • View
    239

  • Download
    3

Embed Size (px)

DESCRIPTION

 

Citation preview

Week  3:    

Today  we  went  to  have  a  look  at  some  buildings  around  the  University.  

The  Architecture  building  spans  over  six  levels  and  17,488  square  metres.  Downstairs  in  the  basement  there  are  a  two  120  seat  lecture  theatres  and  one  500  seat  lecture  theatre.  There  is  a  hanging  studio  in  the  atrium  with  a  capacity  of  around  30-­‐50  students.  The  library  is  down  in  the  basement,  with  study  spaces  on  the  level  1  atrium.  The  rest  of  the  floors  from  1-­‐5  are  tutorial  rooms  and  staff/academia  offices,  with  access  by  2  flights  of  stairs  and  5  lifts.  

Structural  components  of  the  building  

The  building  has  a  basement  level  and  5  floors.  The  basement  retention  system  consists  of  12m  bored  piles  with  ground  anchors  and  a  capping  beam  cast  on  top  of  them.  The  basement  has  a  reinforced  suspended  slab  and  the  rest  of  the  floor  slabs  from  Ground,  1-­‐5  are  Bondek  composite  slabs  with  post  tensioned  600mm  beams.  The  columns  in  the  building  are  all  precast  to  save  time  compared  with  insitu  and  the  lift  and  stair  core  are  also  precast  panels.    

Concrete  panels  with  a  smooth  white  off  form  finish  are  cast  in  to  the  slab  beam  system  (shown  on  the  right).  These  act  as  shear  walls  and  are  precast  with  mesh  as  reinforcement.    

Later  the  outer  zinc  façade  screens  will  be  bolted  with  4  x  M20  High  strength  bolts  to  the  panel  which  will  connected  it.  The  façade  serves  no  structural  purpose  and  is  a  layer  for  aesthetics.  

Lastly  for  the  Joseph  Reed  Façade  (below)  that  is  being  incorporated  in  to  the  new  design  is  being  supported  by  a  retention  system  to  prevent  it  stability  from  lateral  loads  until  structurally  attached  to  the  rest  of  the  building.  This  retention  system  consists  of  temporary  and  permanent  system  of  steel  UB  and  UC  (similar  to  the  Oval  Pavilion  Canopy).  The  permanent  retention  system  is  cast  in  to  the  slab  and  welded  with  angled  brackets  and  stitch  plates.  

 

Slabs,  Footings  and  Foundations  

There  is  a  basement  floor  in  this  building,  so  there  are  strip  footings  that  the  basement  slab  sits  on.  Part  of  this  basement  retention  system  is  bored  piles  held  in  by  ground  anchors.  This  is  structurally  connected  to  a  capping  beam,  strip  footings  and  both  the  ground  and  basement  slab.  

Depending  on  the  soil  conditions  effects    the    centre  to  centre  spacing  of  the  bored  piles.  

The  bearing  capacity  of  the  soil,  depends  on  the  area  of  the  footings,  however  the  depth  of  the  footings  depends  on  how  reactive  the  soil  is.  

Slab  and  Beam  system  

The  slab  is  a  Bondek  permanent  formwork  system,  where  the  Bondek  acts  as  bottom  reinforcement  in  tension.    The  beams  are  post  tensioned.  The  slabs  and  beams  are  poured  at  the  same  time  as  well  as  the  columns  for  that  floor.  Columns  transfer  load  down  to  beams,  then  through  slab  and  so  on  for  each  floor  until  it  gets  to  the  foundations.  

 

 

 

 

 

 

 

 

To  the  right,  it  shows  loads  of  the  800mm  thick  beam.  The  beam  takes  the  uniformly  distributed  load  of  the  slab  and  transfers  it  to  the  beam.  As  the  arrows  along  the  beam  show,  the  forces  are  then  transferred  along  the  beam  to  the  supports  (columns)  at  each  side.  The  columns  600  x  600  then  transfer  the  loads  through  compression  down  to  the  footings  and  then  to  the  foundation.  

The  notes  on  the  ground  floor  plan    

1. Erection  sequence  2. Legend  3. Consultants  4. Client  5. Revision  no.  6. Drawing  title  7. Project  number  8. Title  

 

Drawings  

1. Ground  Floor  Plan  (1:100)  2. Sections  3. Elevations  (dosent  show  

structural  components  4. Structural  Services  5. Details  (Wall  typically  1:20  

or  1:5)  6. Roof  Plan  7. Window  schedule  

Legend  for  Structural  Drawings  

1. Concrete  beam  sizes  and  reinforcement  and  ligatures  

2. Depth  of  concrete  slab  3. Columns  schedule  4. Masonry  schedule  5. Grade  of  Concrete  6. Spacing  of  Ligatures  7. Lap  length  and  cog  length  of  

steel  reinforcement.  

 Above  are  some  of  the  things  we  looked  at.  There  are  always  many  consultants  on  the  job,  so  there  name  is  on  the  drawings  as  a  sign  of  their  approval  as  they  all  have  expertise  in  certain  fields  to  help  the  drawings  become  certified  and  meet  Australian  standards.  Some  may  consist  of  Food  service  consultants  for  like  kitchens  to  make  sure  the  bench  height  is  right,  it  has  enough  space  to  serve  food  etc.  The  are  engineers  which  inspect  structural  drawings,  electrical  for  services  and  mechanical.  There  are  heritage  consultants  that  help  consider  the  best  way  to  incorporate  facades  or  vegetation.  Landscape  architects  consider  the  terrain,  soil  and  gradient  of  the  site.  Architects  are  in  charge  of  making  sure  it  fits  the  clients  criteria  in  terms  of  interior  fittings,  size  and  how  appropriate  it  is  for  its  use.  

Week  4  

Today  we  learned  scale,  annotation  and  working  drawing  conventions  with  the  Oval  Pavilion  drawings.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  2:  Consultants  for  Project  Figure  1:  From  Oval  Pavilion  

Bricks  

Manufactured  from  clay  or  Shale,  then  hardened  by  a  firing  process,  can  have  holes  in  the  middle  for  reinforcement.  Can  be  used  for  walls,  arches  and  paving.  Mortar  are  in  between  the  joints,  an  are  10mm  thick.  There  are  different  finishes  due  to  its  exposure  to  weather,  or  the  final  finish.  

Bricks  are  relatively  strong  and  durable,  it  is  brittle  but  has  good  compressive  strength,  however  hard  to  be  shaped.  Medium  density  and  cost  effective.  

Disadvantages,  labour  intensive,  need  regular  expansive  joints  due  to  it  absorbing  moisture  and  expanding.  Corrosion  may  occur  if  exposed  to  salty  air  and  this  can  effect  it  visually.

 

 

 

 

 

 

 

 

 

 

 

Figure  3  :  Types  of  patterns  that  bricks  can  be  arranged  in,  with  10mm  thk  mortar  in-­‐between.  Depends  on  the  visual  effect  with  different  patterns  or  may  be  for  a  window  opening  or  work  around  an  object.  

Figure  4  :  These  are  the  dimensions  of  a  brick.  When  the  width  110mm  is  doubled  it  equals  220,  with  room  for  10mm  of  mortar,  makes  the  length  be  230mm  

In-­‐situ  Concrete  

• Liquid,  Plastic  texture,  once  set,  good  compressive  • Sequence:  Formwork,  Reinforcement  (Mesh,  bottom  or  top  reinforcement,  ligatures  and  starter  bars  may  be  placed)  ,  Pour  or  pump,  vibrate  

and  curing.  • Curing:  Chemical  process  of  hydration  and  hardening  of  the  concrete.  • Control  Joints,  for  when  concrete  shrinks,  still  have  to  structurally  connect  the  two  different  pours  together.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure  5:  Shotcrete,  High  slump,  sticky,  pressurized  to  compact  the  concrete  at  time  of  placement.  Good  for  basement  retention  systems  

Week  5  

Columns  

Slenderness  of  the  column  is  the  width  to  length  ratio.  It  determines  the  compressive  strength  of  the  column,  short  columns  are  usually  used  when  structurally  important  and  if  only  part  of  secondary  structure,  slender  columns  are  used.  Slender  long  columns  are  more  likely  to  fail  through  buckling.  Buckling  is  when  there  is  excessive  bending  and  causes  the  column  to  fail.  We  prefer  columns  to  fail  by  crushing,  which  is  from  shear  force  where  the  compressive  strength  is  exceeded.    

To  increase  strength  of  column  

• Add  another  column  (hence  distribute  the  load  over  two  supports  instead  of  one.)  • Increase  concrete  strength,  ie  50MPa  compressive  strength  is  better  than  20MPa.  • Increase  size  of  ligatures  of  main  bars  of  steel  reinforcement  (ligatures  stop  the  main  bars  from  buckling  outwards)  • Increase  cross  sectional  area  to  distribute  the  force  over  a  grater  area.  • Make  the  column  shorter,  or  fix  the  ends  as  a  rigid  or  pin  connection  to  allow  a  smaller  K  constant  and  hence  reduce  buckling  failure.  

 

 

 

 

 

 

 

Timber  Properties  

 

Hard  and  easily  marked,  can  be  bent  into  new  shapes  from  steam  pressure,  it  is  a  poor  conductor  of  heat  and  electricity.  Made  up  of  fibres  and  needs  to  be  protected  as  it  quite  porous  and  can  absorb  moisture.  Timber  has  a  low  embodied  energy  and  is  quite  renewable  depending  on  country  and  if  it  is  renewably  sourced.    

Strength  graded  ,  either  visually  or  machine  graded,  to  find  the  load  it  can  take.  

Can  be  seasoned  or  unseasoned.  Seasoned  reduces  variation  in  size  of  timber  If  it  has  more  than  15%  moisture  content  is  unseasoned,  or  if  less  than  15  %  moisture  content  is  seasoned  (note  a  growing  tree  is  100  %).  Can  do  this  through  air  drying,  or  kiln  drying  48  hours  but  more  energy  costs.  May  need  to  be  treated  to  reduce  termites  or  fungi  from  growing,  depends  on  climate.    

Look  at  the  grain  of  the  timber,  and  don’t  put  knots  in  the  tension  side  as  wood  is  stronger  in  compression  than  tension.  Knots  are  stronger  in  compression  than  tension.  Timber  is  relatively  good  in  tension  and  compression  parallel  to  i  

 

 

 

 

 

 

 

Figure  7:  The  fibres  when  subject  to  tension  and  compressive  forces  in  the  parallel  direction  to  the  grain  is  relatively  strong  

Figure  6:  The  strength  of  wood  is  not  very  effective  when  subject  to  compression  and  tension  forces  perpendicular  to  the  grain,  so  the  direction  of  the  grain  needs  to  be  considered  

Walls,  Grids  and  Columns  

 

 

 

 

 

 

Light  Gage  Cold  form  steel,  could  be  Cee  or  Zed  Purlins,  keeps  the  dead  loads  down  and  are  used  for  roofing  systems.  

Steel  frames  are  good  for  temporary  supports  and  also  for  reducing  weight  and  floor  space  when  compared  to  concrete.  Universal  columns  are  equal  sizes  for  the  flanges  and  webs  to  allow  compressive  forces  to  not  buckle  in  either  direction.  Universal  beams  need  to  have  a  deeper  flange  than  web,  this  is  due  to  the  bending  moment  of  a  beam  spanning  over  supports.  

Load  bearing  walls  have  steel  reinforcement  inside  it  and  are  either  insitu  or  pre  cast.  Reinforcement  can  be  grouted  inside  masonry  to  make  reinforced  masonry.  Steel  lintel  can  be  used  to  transfer  forces  around  window  openings.  The  options  for  solid  masonary  are  concrete  masonry  units  or  clay  bricks.  They  can  be  double  skinned  or  brick  veneer  (one  layer  of  bricks  and  timber  stud).  The  two  skins  are  connected  together  with  metal  cavity  wall  ties.  

 

 

 

Timber  stud  frame  is  needed  to  be  braced  and  noggings  to  reduce  its  effective  length.  It  is  usually  covered  up  with  timber  plywood.  

The  weep  holes  and  damp  proof  course  show  that  the  wall  is  a  cavity  and  has  double  skins,  rather  than  a  solid  wall.    

 

 

Week  6  

Roofing  

Primary  function  is  to  provide  shelter  and  protection  for  the  users  of  the  building.  There  a  range  of  roofing  systems  from  steep  gable  roofs,  timber  or  steel  structure  or  even  a  concrete  slab  as  a  flat  roof  (3  degree  angle).  

Flat  Roof  

• Concrete  slab  with  a  waterproof  membrane  • Metal  decking  or  plywood  as  formwork  • Could  have  lightweight  precast  planks  sitting  on  concrete  or  steel  beams  and  columns.  • Can  be  useful  to  create  roof  gardens  or  carparks.  • Can  consist  of  lightweight  concrete  insulation,  membrane  and  rubber  coat  to  prevent  wearing.  

Pitched  Roof    

• Pitch  greater  than  3  degrees  • Tiles  need  to  be  at  a  greater  slope  than  sheet  metal,  due  to  waterproofing  and  the  profile  of  it.  • Roof  beams  and  purlins  on  top  which  roof  sheeting  connects  to.  • Portal  frames  have  rigid  connections  between  beams  and  columns  and  span  large  distances.  Z  or  C  shaped  purlins  to  hold  roof  sheeting.  • Timber  gable  roofs  consists  of  Ridge  beams,  rafters,  joists,  ceiling  top  plates,  under  purlins.  • Hip  roofs  are  similar  to  Gable  and  are  used  around  irregular  shapes/  folds  around  a  corner  i.e.  a  L  shape  roof  

 

 

 

-­‐Common  Rafters  

-­‐Ceiling  Joists  

-­‐Ridge  

-­‐Valley  Rafter  

-­‐Hip  Rafter  

 

 

 

Trusses  

• Efficient  beams,  span  long  distances  with  relatively  low  materials.  Timber  and  Steel  usually.    • Bracing  allows  better  stability.  

Space  Frames  

CHS  RHS  or  SHS  ,  accommodate  two  way  spans  for  large  areas  of  glazing,  often  used  for  train  stations,  atriums  or  shopping  malls.  

 

Site  Visit  Presentations  

Through  the  site  visit  presentations  I  found  one  groups  sit  of  a  medium  rise  development  for  apartment  buildings  quite  interesting.  

Some  of  the  key  features  was  precast  concrete  and  steel  structure.  This  allowed  for  faster  speeds  of  construction  as  no  time  was  wasted  for  stripping  and  propping  formwork  as  well  as  no  need  to  wait  for  curing  of  concrete  when  poured  insitu.  

A  big  issue  for  many  buildings  were  the  compliance  with  the  Building  Code  Australia  and  Australian  Standards  to  provide  fire  safety.  For  wall  framing  systems,  special  fire  rated  plywood  was  used  and  designs  to  that  the  building  will  collapse  in  and  not  out  which  would  harm  the  people  on  the  street  and  adjacent  buildings.  

Usually  fire  ratings  of  120  minutes  are  needed  so  that  in  multistorey  buildings  people  can  evacuate  safely  before  the  spreading  of  the  fire.  However  for  buildings  with  a  sole-­‐occupancy,  where  escape  and  exit  routes  are  easier,  fire  ratings  are  less  strict.    

 

 

 

This  week  I  had  the  Construction  workshop  on.  

• To  the  right  is  our  “winning”  design,  where  it  took  a  total  of  550kgs  of  a  point  load  at  mid  span  

• The  deflection  was  only  around  30mm  compared  to  others  with  up  to  85mm  deflection  

• Below  on  the  left  is  another  teams,  which  using  similar  material  was  only  able  to  achieve  around  half  the  load  capacity  of  our  groups.  

• Materials  were  pine  wood    30  x  30  x  1200  and  Plywood  sheet.  • Plywood  was  strong  in  tension,  however  we  used  it  to  provide  sheer  strength  

and  help  bond  the  pine  wood  together.  • Tools  were  a  screwdriver,  nails,  hammer,  saw  and  drill.  

 

 

 

•  

 

 

 

 

 

• Our  design  was  based  on  the  bending  moment  and  sheer  force  diagram  for  a  point  load  over  a  span.  

• Bending  moments  show  internals  stresses  inside  the  structural  component  due  to  an  external  stress  (point  load).  

• Sheer  forces  are  unaligned  forces,  pushing  a  one  part  of  a  body  one  way  and  another  part  in  the  opposite,  hence  the  change  in  direction  at  the  point  load.  

• We  decided  that  the  cracks  or  failure  was  most  likely  to  occur  at  mid  span  

• The  shape  of  our  design  followed  the  bending  moment  diagram  and  we  tried  to  make  it  as  thick  as  possible  in  the  middle.  

• The  cracks  still  occurred  at  the  middle  although  it  was  had  4  layers  in  the  middle  ½  of  the  span  and  only  2  layers  at  ¼  spans.