41
Locality of temperature 1 / 17 Locality of temperature structural properties of thermal states Christian Gogolin ICFO - The Institute of Photonic Sciences MPQ - Max Planck Institute of Quantum Optics New trends in complex quantum systems dynamics 2015-05-27

Locality of temperature structural properties of thermal states - … · 2020. 3. 8. · Locality of temperature j Equilibration & thermalization6 / 17 Equilibration Theorem (Equilibration

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

  • Locality of temperature 1 / 17

    Locality of temperaturestructural properties of thermal states

    Christian Gogolin

    ICFO - The Institute of Photonic Sciences

    MPQ - Max Planck Institute of Quantum Optics

    New trends in complex quantum systems dynamics2015-05-27

    http://www.icfo.eu/http://www.mpq.mpg.de/

  • Locality of temperature 1 / 17

    Locality of temperaturestructural properties of thermal states

    Christian Gogolin

    ICFO - The Institute of Photonic Sciences

    MPQ - Max Planck Institute of Quantum Optics

    New trends in complex quantum systems dynamics2015-05-27

    Not as technical as it sounds!

    http://www.icfo.eu/http://www.mpq.mpg.de/

  • Locality of temperature | Motivation 2 / 17

    Motivation I: Measuring temperature

    [1] Y. Gao and Y. Bando, Nature, 415.6872 (2002), 599

  • Locality of temperature | Motivation 2 / 17

    Motivation I: Measuring temperature

    [1] Y. Gao and Y. Bando, Nature, 415.6872 (2002), 599

  • Locality of temperature | Motivation 3 / 17

    Motivation II: Coherent dynamics of large systems

    DOI: 10.1126/science.1224953, 1318 (2012);337 Science

    et al.M. GringRelaxation and Prethermalization in

    an Isolated Quantum System

    This copy is for your personal, non-co

    mmercial use only.

    clicking here.colleagues, clients, or customers by , you can order high-quality copies for

    yourIf you wish to distribute this article t

    o others

    here.following the guidelines

    can be obtained byPermission to republish or repurpos

    e articles or portions of articles

    ): September 19, 2012 www.sciencemag.org (this informati

    on is current as ofThe following resources related to this article are

    available online at

    http://www.sciencemag.org/content/33

    7/6100/1318.full.htmlversion of this article at:

    including high-resolution figures, can be found in the online

    Updated information and services,

    http://www.sciencemag.org/content/suppl/2012/09/05/science.1224953.DC1

    .html can be found at: Supporting Online Material

    http://www.sciencemag.org/content/33

    7/6100/1318.full.html#ref-list-1, 3 of which can be accessed free:cites 53 articlesThis article

    http://www.sciencemag.org/cgi/collect

    ion/physicsPhysics

    subject collections:This article appears in the following

    registered trademark of AAAS.

    is aScience

    2012 by the American Association for the Advancement of Science; all right

    s reserved. The title Copyright

    American Association for the Advancement of Science, 1200 New York Ave

    nue NW, Washington, DC 20005. (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, excep

    t the last week in December, by the

    Science

    on

    Sep

    tem

    ber

    19, 2

    012

    ww

    w.s

    cien

    cem

    ag.o

    rgD

    ownl

    oade

    d fr

    om

    337, 1318 (2012):

    Relaxation and Prethermalization in

    an Isolated Quantum SystemM. Gring,1 M. Kuhnert,

    1 T. Langen,1 T. Kitagawa,2 B. Rauer,1 M. Schreitl,

    1 I. Mazets,1,3

    D. Adu Smith,1 E. Demler,2 J. Schmiedmayer

    1,4*

    Understanding relaxation processes is animportant unsolved problem in many are

    as of

    physics. A key challenge is the scarcity ofexperimental tools for the characterization

    of complex

    transient states. We used measurements of full quantum mechanical probability dis

    tributions of

    matter-wave interference to study the relaxation dynamics of a coherently split one

    -dimensional

    Bose gas and obtained comprehensive information about the dynamical states of

    the system.

    After an initial rapid evolution, the full distributions reveal the approach toward a

    thermal-like

    steady state characterized by an effectivetemperature that is independent from th

    e initial

    equilibrium temperature of the system before the splitting process. We conjecture t

    hat this state

    can be described through a generalized Gibbs ensemble and associate it with preth

    ermalization.

    Despite its fundamental importance, a gen-

    eral understanding of how isolated quan-

    tummany-body systems approach thermal

    equilibrium is still elusive. Theoretical concepts

    such as the quantum ergodic theory orthe ei-

    genstate thermalization hypothesis (1–3) infer re-

    quirements for a system to be able to undergo

    relaxation, but it is still unclear onwhat time scale

    this occurs. In situations in which conservation

    laws inhibit efficient relaxation, many-body sys-

    tems are expected to display a complex behavior.

    An intriguing phenomenon that has been sug-

    gested in this context is prethermalization (4), a

    general concept that is predicted to be applicable

    to a large variety of physical systems (5–9). In

    the present understanding, prethermalization is

    characterized by the rapid establishment of a

    quasi-stationary state that already exhibits some

    equilibrium-like properties. Full relaxation to the

    1ViennaCenter forQuantumScienceandTechnology,Atominstitut,

    Technische Universität (TU) Wien, Stadionallee 2, 1020

    Vienna, Austria.2Harvard–Massachussets Institute of Tech-

    nology Center for Ultracold Atoms (CUA),Department of

    Physics, Harvard University, Cambridge, MA 02138, USA.

    3Ioffe Physico-Technical Institute of the Russian Academy of

    Science, 194021 St. Petersburg, Russia.4Zentrum für Mikro-

    und Nanostrukturen (ZMNS), TU Wien, Floragasse 7, 1040

    Vienna, Austria.

    *To whom correspondence should be addressed. E-mail:

    [email protected]

    Fig. 1. (A) An initial-phase fluctuating 1D Bose gas is split into two uncoupled

    gases with almost identical phase distributions f1(z) and f2(z) (black solid

    lines) and allowed to evolve for a time te. (B)At te = 0 ms, fluctuations in the

    local phase difference ∆f(z) between the two gases are very small, and the

    corresponding phase correlation length is very large. During the evolution,

    these relative-phase fluctuations increase,and the correlation length de-

    creases. The main question we address is whether or when this system will

    reach the corresponding thermal equilibrium of uncorrelated phases as

    characterized by the initial temperature T andthermal coherence length lT. In

    experiment, this situation can be prepared on purpose by splitting a thermal

    gas and cooling it into two independent gases (32). (C) Typical experimental

    matter-wave interference patterns obtainedby overlapping the two gases in

    time-of-flight after different evolution times.Differences in the local relative

    phase lead to a locally displaced interferencepattern. Integrated over a length

    L, the contrast C(L) is a direct measure of thestrength of the relative-phase

    fluctuations. (D) Because of the stochastic nature of the phase distributions,

    repeated experimental runs yield a characteristic distribution P(C

    2) of con-

    trasts, which allows one to distinguish between the initial state, an in-

    termediate prethermalized state, and the true thermal equilibrium of the

    system.

    14 SEPTEMBER 2012 VOL 337 SCIENCE www.sciencemag.org

    1318

    REPORTS

    on

    Sep

    tem

    ber

    19, 2

    012

    ww

    w.s

    cien

    cem

    ag.o

    rgD

    ownl

    oade

    d fr

    om

  • Locality of temperature | Motivation 4 / 17

    Motivation III: A new foundation for statistical mechanics

    Thermodynamics

    Statistical mechanics

    ?t

    Second Law, ergodicityequal a priory probabilities

    Classical mechanics ?

  • Locality of temperature | Motivation 4 / 17

    Motivation III: A new foundation for statistical mechanics

    Thermodynamics

    Statistical mechanics

    ?t

    Second Law, ergodicityequal a priory probabilities

    Classical mechanics ?

    “There is no line of argument proceding fromthe laws of microscopic mechanics to macroscopicphenomena that is generally regarded by physicistsas convincing in all respects.”

    — E. T. Jaynes [2] (1957)

    “Statistical physics [...] has not yet developeda set of generally accepted formal axioms [...]”

    — Jos Uffink [3] (2006)

  • Locality of temperature | Motivation 4 / 17

    Motivation III: A new foundation for statistical mechanics

    Thermodynamics

    Statistical mechanics

    Quantum mechanics

  • Locality of temperature | Motivation 4 / 17

    Motivation III: A new foundation for statistical mechanics

    Thermodynamics

    Statistical mechanics

    Quantum mechanics

    !!! Reviews !!! Reviews !!! Reviews !!! Reviews !!! Reviews !!!

    Shallow but broad but overview:J Eisert, M Friesdorf, and C Gogolin, Nature Physics, 11(2014), 124–130

    In depth review:C. Gogolin and J. Eisert (2015), arXiv: 1503.07538v1

    http://arxiv.org/abs/1503.07538v1

  • Locality of temperature | Equilibration & thermalization 5 / 17

    Equilibration & thermalization

  • Locality of temperature | Equilibration & thermalization 6 / 17

    Equilibration

    Theorem (Equilibration on average [12])

    If H has non-degenerate energy gaps, then for every ρ(0) = |ψ0〉〈ψ0|there exists a ωS such that:

    D(ρS(t), ωS

    )≤ 1

    2

    √d2Sdeff

    =⇒ If deff � d2S then ρS(t) equilibrates on average.

    [10] M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne, Physical Review Letters, 100.3 (2008), 30602[11] P. Reimann, Physical Review Letters, 101.19 (2008), 190403[12] N. Linden, S. Popescu, A. Short, and A. Winter, Physical Review E, 79.6 (2009), 61103[13] A. J. Short and T. C. Farrelly, New Journal of Physics, 14.1 (2012), 013063[14] P. Reimann and M. Kastner, New Journal of Physics, 14.4 (2012), 043020

  • Locality of temperature | Equilibration & thermalization 6 / 17

    Equilibration

    Theorem (Equilibration on average [12])

    If H has non-degenerate energy gaps, then for every ρ(0) = |ψ0〉〈ψ0|there exists a ωS such that:

    D(ρS(t), ωS

    )≤ 1

    2

    √d2Sdeff

    =⇒ If deff � d2S then ρS(t) equilibrates on average.

    [10] M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne, Physical Review Letters, 100.3 (2008), 30602[11] P. Reimann, Physical Review Letters, 101.19 (2008), 190403[12] N. Linden, S. Popescu, A. Short, and A. Winter, Physical Review E, 79.6 (2009), 61103[13] A. J. Short and T. C. Farrelly, New Journal of Physics, 14.1 (2012), 013063[14] P. Reimann and M. Kastner, New Journal of Physics, 14.4 (2012), 043020

    Setting

    dB � dSdS

    ρS(t) = TrB[ρ(t)]

  • Locality of temperature | Equilibration & thermalization 6 / 17

    Equilibration

    Theorem (Equilibration on average [12])

    If H has non-degenerate energy gaps, then for every ρ(0) = |ψ0〉〈ψ0|there exists a ωS such that:

    D(ρS(t), ωS

    )≤ 1

    2

    √d2Sdeff

    =⇒ If deff � d2S then ρS(t) equilibrates on average.

    [10] M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne, Physical Review Letters, 100.3 (2008), 30602[11] P. Reimann, Physical Review Letters, 101.19 (2008), 190403[12] N. Linden, S. Popescu, A. Short, and A. Winter, Physical Review E, 79.6 (2009), 61103[13] A. J. Short and T. C. Farrelly, New Journal of Physics, 14.1 (2012), 013063[14] P. Reimann and M. Kastner, New Journal of Physics, 14.4 (2012), 043020

  • Locality of temperature | Equilibration & thermalization 6 / 17

    Equilibration

    Theorem (Equilibration on average [12])

    If H has non-degenerate energy gaps, then for every ρ(0) = |ψ0〉〈ψ0|there exists a ωS such that:

    D(ρS(t), ωS

    )≤ 1

    2

    √d2Sdeff

    =⇒ If deff � d2S then ρS(t) equilibrates on average.

    [10] M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne, Physical Review Letters, 100.3 (2008), 30602[11] P. Reimann, Physical Review Letters, 101.19 (2008), 190403[12] N. Linden, S. Popescu, A. Short, and A. Winter, Physical Review E, 79.6 (2009), 61103[13] A. J. Short and T. C. Farrelly, New Journal of Physics, 14.1 (2012), 013063[14] P. Reimann and M. Kastner, New Journal of Physics, 14.4 (2012), 043020

    Effective dimension

    deff =1∑

    k |〈Ek|ψ0〉|4

    Intuition: Dimension of supporting energy subspace

  • Locality of temperature | Equilibration & thermalization 6 / 17

    Equilibration

    Theorem (Equilibration on average [12])

    If H has non-degenerate energy gaps, then for every ρ(0) = |ψ0〉〈ψ0|there exists a ωS such that:

    D(ρS(t), ωS

    )≤ 1

    2

    √d2Sdeff

    =⇒ If deff � d2S then ρS(t) equilibrates on average.

    [10] M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne, Physical Review Letters, 100.3 (2008), 30602[11] P. Reimann, Physical Review Letters, 101.19 (2008), 190403[12] N. Linden, S. Popescu, A. Short, and A. Winter, Physical Review E, 79.6 (2009), 61103[13] A. J. Short and T. C. Farrelly, New Journal of Physics, 14.1 (2012), 013063[14] P. Reimann and M. Kastner, New Journal of Physics, 14.4 (2012), 043020

  • Locality of temperature | Equilibration & thermalization 7 / 17

    Thermalization

    t

    Yes

    t

    No

    Equilibrate?

  • Locality of temperature | Equilibration & thermalization 7 / 17

    Thermalization

    t

    T

    Yes

    T

    No

    Yes

    t

    No

    Equilibrate?

    Thermalize?

  • Locality of temperature | Equilibration & thermalization 8 / 17

    Thermalization is a complicated process

    Thermalization implies:

    1 Equilibration [10–15]

    2 Subsystem initial state independence [16, 17]

    3 Weak bath state dependence [18]

    4 Diagonal form of the subsystem equilibrium state [19]

    5 Thermal state ωS = TrB[ω] ≈ gSHS (β) ∝ e−β HS [18, 20, 21]

    [10] M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne, Physical Review Letters, 100.3 (2008), 30602[11] P. Reimann, Physical Review Letters, 101.19 (2008), 190403[12] N. Linden, S. Popescu, A. Short, and A. Winter, Physical Review E, 79.6 (2009), 61103[13] A. J. Short and T. C. Farrelly, New Journal of Physics, 14.1 (2012), 013063[14] P. Reimann and M. Kastner, New Journal of Physics, 14.4 (2012), 043020[16] C. Gogolin, M. P. Müller, and J. Eisert, Physical Review Letters, 106.4 (2011), 40401[15] J. Gemmer, M. Michel, and G. Mahler, vol. 784, Lecture Notes in Physics, Berlin, Heidelberg: Springer, 2009[17] A. Hutter and S. Wehner, Physical Review A, 87.1 (2013), 012121[18] A. Riera, C. Gogolin, and J. Eisert, Physical Review Letters, 108.8 (2012), 080402[19] C. Gogolin, Physical Review E, 81.5 (2010), 051127[20] M. P. Mueller, E. Adlam, L. Masanes, and N. Wiebe (2013), arXiv: 1312.7420[21] F. G. S. L. Brandão and M. Cramer (2015), arXiv: 1502.03263v1. . .

    http://arxiv.org/abs/1312.7420http://arxiv.org/abs/1502.03263v1

  • Locality of temperature | Locality of temperature 9 / 17

    Locality of temperature

  • Locality of temperature | Locality of temperature 10 / 17

    The setting

    Local Hamiltonian (spins or fermions)

    H

    S

    :=∑λ∈E

    (S)

    Thermal state

    g

    B

    (β) :=e−β H

    B

    Tr [e−β H

    B

    ]

    Introduce buffer region

    TrSc [gB(β)] ≈ TrSc [g(β)] ?

  • Locality of temperature | Locality of temperature 10 / 17

    The setting

    Local Hamiltonian (spins or fermions)

    H

    S

    :=∑λ∈E

    (S)

    Thermal state

    g

    B

    (β) :=e−β H

    B

    Tr [e−β H

    B

    ]

    Introduce buffer region

    TrSc [gB(β)] ≈ TrSc [g(β)] ?

    1/β

  • Locality of temperature | Locality of temperature 10 / 17

    The setting

    Local Hamiltonian truncated to S ⊂ V

    HS :=∑λ∈E(S)

    Thermal state

    g

    B

    (β) :=e−β H

    B

    Tr [e−β H

    B

    ]

    Introduce buffer region

    TrSc [gB(β)] ≈ TrSc [g(β)] ?

    S

    E(S)

  • Locality of temperature | Locality of temperature 10 / 17

    The setting

    Local Hamiltonian truncated to S ⊂ V

    HS :=∑λ∈E(S)

    Thermal state

    g

    B

    (β) :=e−β H

    B

    Tr [e−β H

    B

    ]

    Introduce buffer region

    TrSc [gB(β)] ≈ TrSc [g(β)] ?

    S

    ????

    ?

    1/β

  • Locality of temperature | Locality of temperature 10 / 17

    The setting

    Local Hamiltonian truncated to S ⊂ V

    HS :=∑λ∈E(S)

    Thermal state

    gB(β) :=e−β HB

    Tr [e−β HB ]

    Introduce buffer region

    TrSc [gB(β)] ≈ TrSc [g(β)] ?

    S

    B

    d(S, ∂B)

    ????

    ?

  • Locality of temperature | Locality of temperature 11 / 17

    This can be made rigorous:

    Generalized covariance

    covτρ(A,A′) := Tr[ρτAρ1−τA′]− Tr[ρA] Tr[ρA′]

    exactly captures the response of local expectation values.

    Theorem (Truncation formula [22])

    For any observable A = AS ⊗ 1

    Tr[AgB(β)]− Tr[Ag(β)] = β∫ 1

    0

    ∫ 10

    covτg(s,β)(H∂B, A) dτ ds ,

    where g(s, β) is thermal state of H(s) := H − (1− s) H∂B .

    [22] M. Kliesch, C. Gogolin, M. J. Kastoryano, A. Riera, and J. Eisert (2013), arXiv: 1309.0816v2

    http://arxiv.org/abs/1309.0816v2

  • Locality of temperature | Locality of temperature 11 / 17

    This can be made rigorous:

    Generalized covariance

    covτρ(A,A′) := Tr[ρτAρ1−τA′]− Tr[ρA] Tr[ρA′]

    exactly captures the response of local expectation values.

    Theorem (Truncation formula [22])

    For any observable A = AS ⊗ 1

    Tr[AgB(β)]− Tr[Ag(β)] = β∫ 1

    0

    ∫ 10

    covτg(s,β)(H∂B, A) dτ ds ,

    where g(s, β) is thermal state of H(s) := H − (1− s) H∂B .

    [22] M. Kliesch, C. Gogolin, M. J. Kastoryano, A. Riera, and J. Eisert (2013), arXiv: 1309.0816v2

    http://arxiv.org/abs/1309.0816v2

  • Locality of temperature | Locality of temperature 11 / 17

    This can be made rigorous:

    Generalized covariance

    covτρ(A,A′) := Tr[ρτAρ1−τA′]− Tr[ρA] Tr[ρA′]

    exactly captures the response of local expectation values.

    Theorem (Truncation formula [22])

    For any observable A = AS ⊗ 1

    Tr[AgB(β)]− Tr[Ag(β)] = β∫ 1

    0

    ∫ 10

    covτg(s,β)(H∂B, A) dτ ds ,

    where g(s, β) is thermal state of H(s) := H − (1− s) H∂B .

    [22] M. Kliesch, C. Gogolin, M. J. Kastoryano, A. Riera, and J. Eisert (2013), arXiv: 1309.0816v2

    http://arxiv.org/abs/1309.0816v2

  • Locality of temperature | Locality of temperature 12 / 17

    Clustering of correlations

    Theorem (Clustering of correlations at high temperature [22])

    Let J := maxλ ‖hλ‖∞, then for every τ ∈ [0, 1] and β < β∗(J, α)∣∣covτg(β)(A,A′)∣∣ ≤ C e− d(A,A′) / ξ(β J,α)with α = α(E) the lattice animal constant.

    =⇒ D(gS(β), gB

    S(β))≤ C ′ e−d(S,∂B)/ξ(β J,α)

    [22] M. Kliesch, C. Gogolin, M. J. Kastoryano, A. Riera, and J. Eisert (2013), arXiv: 1309.0816v2

    http://arxiv.org/abs/1309.0816v2

  • Locality of temperature | Locality of temperature 12 / 17

    Clustering of correlations

    Theorem (Clustering of correlations at high temperature [22])

    Let J := maxλ ‖hλ‖∞, then for every τ ∈ [0, 1] and β < β∗(J, α)∣∣covτg(β)(A,A′)∣∣ ≤ C e− d(A,A′) / ξ(β J,α)with α = α(E) the lattice animal constant.

    =⇒ D(gS(β), gB

    S(β))≤ C ′ e−d(S,∂B)/ξ(β J,α)

    [22] M. Kliesch, C. Gogolin, M. J. Kastoryano, A. Riera, and J. Eisert (2013), arXiv: 1309.0816v2

    Lattice animal constant

    #animals(m) ≤ αm

    http://arxiv.org/abs/1309.0816v2

  • Locality of temperature | Locality of temperature 12 / 17

    Clustering of correlations

    Theorem (Clustering of correlations at high temperature [22])

    Let J := maxλ ‖hλ‖∞, then for every τ ∈ [0, 1] and β < β∗(J, α)∣∣covτg(β)(A,A′)∣∣ ≤ C e− d(A,A′) / ξ(β J,α)with α = α(E) the lattice animal constant.

    =⇒ D(gS(β), gB

    S(β))≤ C ′ e−d(S,∂B)/ξ(β J,α)

    [22] M. Kliesch, C. Gogolin, M. J. Kastoryano, A. Riera, and J. Eisert (2013), arXiv: 1309.0816v2

    Lattice animal constant

    #animals(m) ≤ αm

    http://arxiv.org/abs/1309.0816v2

  • Locality of temperature | Locality of temperature 12 / 17

    Clustering of correlations

    Theorem (Clustering of correlations at high temperature [22])

    Let J := maxλ ‖hλ‖∞, then for every τ ∈ [0, 1] and β < β∗(J, α)∣∣covτg(β)(A,A′)∣∣ ≤ C e− d(A,A′) / ξ(β J,α)with α = α(E) the lattice animal constant.

    =⇒ D(gS(β), gB

    S(β))≤ C ′ e−d(S,∂B)/ξ(β J,α)

    [22] M. Kliesch, C. Gogolin, M. J. Kastoryano, A. Riera, and J. Eisert (2013), arXiv: 1309.0816v2

    Lattice animal constant

    #animals(m) ≤ αm

    http://arxiv.org/abs/1309.0816v2

  • Locality of temperature | Locality of temperature 12 / 17

    Clustering of correlations

    Theorem (Clustering of correlations at high temperature [22])

    Let J := maxλ ‖hλ‖∞, then for every τ ∈ [0, 1] and β < β∗(J, α)∣∣covτg(β)(A,A′)∣∣ ≤ C e− d(A,A′) / ξ(β J,α)with α = α(E) the lattice animal constant.

    =⇒ D(gS(β), gB

    S(β))≤ C ′ e−d(S,∂B)/ξ(β J,α)

    [22] M. Kliesch, C. Gogolin, M. J. Kastoryano, A. Riera, and J. Eisert (2013), arXiv: 1309.0816v2

    Lattice animal constant

    #animals(m) ≤ αm

    http://arxiv.org/abs/1309.0816v2

  • Locality of temperature | Locality of temperature 12 / 17

    Clustering of correlations

    Theorem (Clustering of correlations at high temperature [22])

    Let J := maxλ ‖hλ‖∞, then for every τ ∈ [0, 1] and β < β∗(J, α)∣∣covτg(β)(A,A′)∣∣ ≤ C e− d(A,A′) / ξ(β J,α)with α = α(E) the lattice animal constant.

    =⇒ D(gS(β), gB

    S(β))≤ C ′ e−d(S,∂B)/ξ(β J,α)

    [22] M. Kliesch, C. Gogolin, M. J. Kastoryano, A. Riera, and J. Eisert (2013), arXiv: 1309.0816v2

    http://arxiv.org/abs/1309.0816v2

  • Locality of temperature | Locality of temperature 13 / 17

    Implications

    β < β∗(J, α) =⇒ D(gS(β), gB

    S(β))≤ C ′ e−d(S,∂B)/ξ(β J,α)

    Local stability of thermal states

    gS(β) only depends exponentially weakly on far away terms of theHamiltonian.

    Classical simulability with cost independent of total system size

    Local expectation values can be calculates with cost independent of thetotal system size.

  • Locality of temperature | Locality of temperature 13 / 17

    Implications

    β < β∗(J, α) =⇒ D(gS(β), gB

    S(β))≤ C ′ e−d(S,∂B)/ξ(β J,α)

    Local stability of thermal states

    gS(β) only depends exponentially weakly on far away terms of theHamiltonian.

    Classical simulability with cost independent of total system size

    Local expectation values can be calculates with cost independent of thetotal system size.

  • Locality of temperature | Locality of temperature 13 / 17

    Implications

    β < β∗(J, α) =⇒ D(gS(β), gB

    S(β))≤ C ′ e−d(S,∂B)/ξ(β J,α)

    Local stability of thermal states

    gS(β) only depends exponentially weakly on far away terms of theHamiltonian.

    Classical simulability with cost independent of total system size

    Local expectation values can be calculates with cost independent of thetotal system size.

  • Locality of temperature | Locality of temperature 14 / 17

    A universal bound on phase transitions

    Universal critical temperature

    The critical temperature

    1

    β∗J=

    2

    ln((1 +

    √1 + 4/α)/2

    )upper bounds the physical critical temperatures of all possible models.

    Example: 2D square lattice (α ≤ 4 e)The bound:1/(β∗ J) = 2/ ln((1 +

    √1 + 1/ e)/2) ≈ 24.58

    Ising model (ferromagnetic, isotropic) phase transition at:1/(βc J) = 2/ ln(1 +

    √2) ≈ 2.27

  • Locality of temperature | Locality of temperature 14 / 17

    A universal bound on phase transitions

    Universal critical temperature

    The critical temperature

    1

    β∗J=

    2

    ln((1 +

    √1 + 4/α)/2

    )upper bounds the physical critical temperatures of all possible models.

    Example: 2D square lattice (α ≤ 4 e)The bound:1/(β∗ J) = 2/ ln((1 +

    √1 + 1/ e)/2) ≈ 24.58

    Ising model (ferromagnetic, isotropic) phase transition at:1/(βc J) = 2/ ln(1 +

    √2) ≈ 2.27

  • Locality of temperature | Conclusions 15 / 17

    Conclusions

  • Locality of temperature | Conclusions 16 / 17

    Conclusions

    Ongoing program reconsidering the foundations of statisticalmechanics

    Well connected to exciting experiments

    Rigorous results on equilibration, thermalization, locality oftemperature, . . .

  • Locality of temperature | References 17 / 17

    References

    Thank you for your attention![1] Y. Gao and Y. Bando, Nature, 415.6872 (2002), 599.

    [2] E. T. Jaynes, Physical Review, 106.4 (1957), 620–630.

    [3] J. Uffink, http://philsci-archive.pitt.edu/id/eprint/2691,2006.

    [4] J Eisert, M Friesdorf, and C Gogolin, Nature Physics, 11(2014), 124–130, arXiv: 1408.5148.

    [5] C. Gogolin and J. Eisert (2015), arXiv: 1503.07538v1.

    [6] M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer,M. Schreitl, I. Mazets, D. A. Smith, E. Demler, andJ. Schmiedmayer, Science (New York, N.Y.), 337.6100(2012), 1318–22, arXiv: 1112.0013.

    [7] T. Langen, R. Geiger, M. Kuhnert, B. Rauer, andJ. Schmiedmayer, Nature Physics, 9.10 (2013), 640–643.

    [8] M. Cheneau, P. Barmettler, D. Poletti, M. Endres,P. Schauss, T. Fukuhara, C. Gross, I. Bloch, C. Kollath, andS. Kuhr, Nature, 481.7382 (2012), 484–7, arXiv: 1111.0776.

    [9] S. Trotzky, Y.-A. Chen, A. Flesch, I. P. McCulloch,U. Schollwöck, J. Eisert, and I. Bloch, Nature Physics, 8.4(2012), 325–330, arXiv: 1101.2659.

    [10] M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne,Physical Review Letters, 100.3 (2008), 30602, arXiv:cond-mat/0703314.

    [11] P. Reimann, Physical Review Letters, 101.19 (2008), 190403,arXiv: 0810.3092.

    [12] N. Linden, S. Popescu, A. Short, and A. Winter, PhysicalReview E, 79.6 (2009), 61103, arXiv: 0812.2385.

    [13] A. J. Short and T. C. Farrelly, New Journal of Physics, 14.1(2012), 013063, arXiv: 1110.5759.

    [14] P. Reimann and M. Kastner, New Journal of Physics, 14.4(2012), 043020, arXiv: 1202.2768.

    [15] J. Gemmer, M. Michel, and G. Mahler, vol. 784, LectureNotes in Physics, Berlin, Heidelberg: Springer, 2009.

    [16] C. Gogolin, M. P. Müller, and J. Eisert, Physical ReviewLetters, 106.4 (2011), 40401, arXiv: 1009.2493.

    [17] A. Hutter and S. Wehner, Physical Review A, 87.1 (2013),012121, arXiv: 1111.3080.

    [18] A. Riera, C. Gogolin, and J. Eisert, Physical Review Letters,108.8 (2012), 080402, arXiv: 1102.2389.

    [19] C. Gogolin, Physical Review E, 81.5 (2010), 051127, arXiv:0908.2921.

    [20] M. P. Mueller, E. Adlam, L. Masanes, and N. Wiebe (2013),arXiv: 1312.7420.

    [21] F. G. S. L. Brandão and M. Cramer (2015), arXiv:1502.03263v1.

    [22] M. Kliesch, C. Gogolin, M. J. Kastoryano, A. Riera, andJ. Eisert (2013), arXiv: 1309.0816v2.

    http://arxiv.org/abs/1408.5148http://arxiv.org/abs/1503.07538v1http://arxiv.org/abs/1112.0013http://arxiv.org/abs/1111.0776http://arxiv.org/abs/1101.2659http://arxiv.org/abs/cond-mat/0703314http://arxiv.org/abs/0810.3092http://arxiv.org/abs/0812.2385http://arxiv.org/abs/1110.5759http://arxiv.org/abs/1202.2768http://arxiv.org/abs/1009.2493http://arxiv.org/abs/1111.3080http://arxiv.org/abs/1102.2389http://arxiv.org/abs/0908.2921http://arxiv.org/abs/1312.7420http://arxiv.org/abs/1502.03263v1http://arxiv.org/abs/1309.0816v2